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ABSTRACT

This paper describes a novel Field Programmable Gate Ar-
ray (FPGA) logic synthesis technique which determines if a
logic function can be implemented in a given programmable
circuit and describes how this problem can be formalized
and solved using Quantified Boolean Satisfiability. This tech-
nique is general enough to be applied to any type of logic
function and programmable circuit; thus, it has many ap-
plications to FPGAs. The application demonstrated in this
paper is FPGA PLB evaluation where their results show that
this tool allows radical new features of FPGA logic blocks
to be evaluated in a rigorous scientific way.

1. INTRODUCTION

FPGAs are integrated circuits characterized by a sea of pro-
grammable logic blocks (PLBs).
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Fig. 1. A simplified FPGA PLB.

An example of a PLB is shown in Fig. 1. The logic
block is composed of a 4-input lookup table (4-LUT) that
is capable of implementing any arbitrary Boolean function
of 4 variables. The LUT is implemented with a set of 24 =
16 static RAM (SRAM) bits that are programmed with the
truth-table values for the function to be implemented. In
general, many modern PLBs are based on the k-input lookup

table (k-LUT) which contains 2k SRAM bits. Although
the k-input LUT is very flexible, it is usually beneficial to
add dedicated non-programmable logic to the PLB such as
adders and XOR/AND-gates [1, 2]. These features increase
the number of functions that can be implemented by a PLB
without the power, speed, and area costs associated with pro-
grammable logic. However, because this reduces the flex-
ibility of the PLB, optimal mapping of functions to these
non-programmable components is difficult.

1.1. Motivation

The cost of implementing a circuit in an FPGA is directly
proportional to the number of PLBs required to implement
the functionality of the circuit. FPGAs are sold in a number
of pre-fabricated sizes. Decreasing the number of PLBs may
allow a circuit to be realized in a smaller FPGA. Typical
pricing is roughly linear to the number of PLBs in the FPGA
device [3].

The PLB architecture has a significant impact on the
number of PLBs required to realize a particular circuit. Thus,
clever PLB designs are necessary that capture the majority
of the functions encountered in typical circuits. In this pa-
per we will show how methods based on Quantified Boolean
Satisfiability can be used to rapidly determine if a PLB ar-
chitecture will achieve a high capture rate.

2. BACKGROUND

3. TECHNOLOGY MAPPING

The technology mapping step in the FPGA CAD flow con-
verts a gate-level network consisting of primitive gates into
the PLBs that are present in the target FPGA architecture.
The goal of the technology mapping step is to reduce area,
delay, or a combination thereof in the network of PLBs that
is produced. In this work, delay is proportional to the depth
of a circuit where the depth of a node is defined as the longest
path from the node to a primary input. Previous work showed
that the depth-optimal mapping solution can be obtained in



polynomial time using a dynamic programming procedure
[4].

x

edcba

f g

x

edcba

f g

edcba

f g

��� ����� ��� �����

(a) Initial Netlist (b) Possible Covering (c) LUT Mapping

Fig. 2. Technology mapping as a covering problem.

The process of technology mapping is often treated as
a covering problem. For example, consider the process of
mapping a circuit into LUTs as illustrated in Fig. 2. Fig. 2a
illustrates the initial gate level network, Fig. 2b illustrates a
possible covering of the initial network using 4-LUTs, and
Fig. 2c illustrates the LUT network produced by the cover-
ing. In the mapping given, the gate labeled x is covered by
both LUTs and is said to be duplicated. In a duplication-
free mapping, each gate in the initial circuit is covered by
a single LUT in the mapped circuit [5]. However, surpris-
ingly, the controlled use of duplication can lead to further
area savings [6]. In contrast to the depth minimization prob-
lem, the area minimization problem was shown to be NP-
hard for LUTs of size four and greater [7]. Thus, heuristics
are necessary to solve the area minimization problem.

Another way to look at technology mapping is as a cone
selection problem. The subcircuits circled in Fig. 2b are ex-
amples of cones. Technology mapping seeks to find the best
set of cones that can be mapped to the current PLB archi-
tecture. “Best” is determined by the optimizing goal such
as area, speed, or power. If the FPGA architecture consists
solely of K-LUTs, mapping from cones to K-LUTs is a di-
rect process since any cone with K-inputs or less can be
implemented in a K-LUT. A cone with K-inputs or less is
known to be K-feasible. Thus, to technology map circuits
to K-LUTs, the circuit simply has to be decomposed into a
set of K-feasible cones. However, if the FPGA architecture
consists of generic K-input PLBs, mapping from cones to
PLBs is much more difficult since PLBs cannot implement
all possible K-feasible cones. For example, the PLB shown
in Fig. 3 cannot implement a 3-input OR gate.

Although more limited in functionality, PLBs offer speed,
area, and power advantages over fully programmable K-
LUTs. Furthermore, in general only a small subset of K-
feasible cones will appear in most logic circuits. Thus, so
long as a given PLB architecture can capture most cones en-
countered in real circuits, it will be successful in implement-

L1

L2

L3

L4

x1 x2 x3

f

2-LUT

AND-GATE

VccL5
0 1

00

01

10

11

M

N

Fig. 3. Example PLB.

ing circuits. One way to determine if a PLB will capture
most K-feasible cones found in circuits is to extract a set of
K-feasible cones from a set of circuits and determine how
many of these cones can fit into a given PLB where a high fit
percentage is desired. The tool presented in this paper does
this exact task, which will be described in Sec.4.3.

3.1. Quantified SAT

As stated in Sec. 1, the main contribution of this work is to
examine the use of Quantified Boolean Satisfiability (QSAT)
for use in PLB evaluation. QSAT is the problem of deter-
mining if a quantified Boolean formula (QBF),
F = Q1x1...Qnxnf(x1...xn) where Qi ∈ {∃, ∀}, has an
assignment to its variables, x1...xn, such that F evaluates to
true. If so, F is said to be satisfiable, otherwise it is unsat-
isfiable. This is analogous to the much simplier problem of
Boolean Satisfiability (SAT) where SAT seeks a single as-
signment to a Boolean formula F such that F evaluates to
true. SAT is actually a special case of QSAT where SAT
deals with Boolean formulae without any universal quanti-
fiers (variables in Boolean formulae without any quantifiers
implicitly have a single existential quantifier bound to them).
QSAT, however, may have universally quantified variables,
and thus seeks all assignments to its universally quantified
variables to satisfy a QBF. For example, consider the ex-
pressions in Equ. 1. The first expression shows a satisfi-
able Boolean formula with its associated satisfying assign-
ment. In contrast, simply by adding quantifiers to it, the
QBF shown in the second expression is unsatisfiable due to
the universally quantified variable x2.

(x1 + x2) · (x1 + x2)
satisfiable→ [x1 = 0, x2 = 1]

∃x1∀x2 (x1 + x2) · (x1 + x2)
unsatisfiable→ [x1 = 0, x2 = {0, 1}]
unsatisfiable→ [x1 = 1, x2 = {0, 1}]

(1)

For all practical purposes, QSAT only deals with QBFs
in Conjunctive-Normal-Form (CNF, sometimes referred as



a Product-of-Sums). A Boolean function is in CNF if it con-
sists solely of a conjunction of clauses, where a clause is a
disjunction of literals and a literal is any variable or its com-
plement. Equ. 1 are examples of formulae in CNF. In CNF,
the problem of QSAT can be rephrased to: Given a QBF,
F = Q1x1...Qnxnf(x1...xn) where Qi ∈ {∃, ∀}, find an
assignment to its variables, x1...xn, such that each clause in
f(x1...xn) has at least one literal that evaluates to true.

4. QUANTIFIED SAT APPLIED TO PLB
EVALUATION

The goal of PLB evaluation is to determine how useful a
new PLB architecture will be in implementing circuits. A
useful k-input PLB can be characterized by how many k-
input cones can fit into it where a high fit percentage is de-
sired. Thus, the underlying question asked when determin-
ing this fit percentage is as follows: Given an n-variable
Boolean function, Ffunction(x1, x2, ..., xn), does there ex-
ist a programmable configuration to a circuit, G, such that
the output of the circuit will equal Ffunction(x1, x2, ..., xn)
for all inputs? Previously, robust heuristics to answer this
question fell into two categories: a specialized PLB is pro-
posed and a customized mapping algorithm is implemented
to map benchmark circuits using the proposed element [8];
specialized Boolean matching techniques are developed to
decompose a logic function in such a way so that it matches
the structure of the proposed PLB [9]. Both of these tech-
niques suffer a lack of generality, which we address in our
novel QSAT based approach.

4.1. Formalizing Function Fitting Problem

Assuming that a programmable circuit can be represented as
a Boolean function Gcircuit = G(x1..xn, L1..Lm, z1..zo)
where xi, Lj , zk, Gcircuit represent the input signals, con-
figuration bits, intermediate circuit signals, and output func-
tion of the circuit respectively, the problem of function map-
ping into programmable logic can represented formally as a
QBF as follows.

∃L1...Lm∀x1...xn∃z1...zo(Gcircuit ≡ Ffunction) (2)

A satisfying assignment to Equ. 2 implies that Ffunction can
be realized in the programmable circuit.

In order to derive Equ. 2, the proposition (Gcircuit ≡
Ffunction) must be represented as a CNF Boolean formula.
This can be done using a well known derivation technique
that converts logic circuits into a characteristic function in
CNF [10]. This characteristic function describes all valid
inputs, output, configuration bits, and internal signal vec-
tors for the configurable circuit. For example, consider the
truth-table in Fig. 4. Its onset describes all input-output rela-
tions of an AND gate. To extract the characteristic function,

A B Z FAND

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

A
Z

B

FAND = (A+ Z) · (B + Z) · (A+B + Z)

Y
C

B
Z

A

FCASCADE = (A+ Z) · (B + Z) · (A+B + Z)
· (Z + Y ) · (C + Y ) · (Z + C + Y )

Fig. 4. Deriving a circuit characteristic function.

FAND, from the truth-table, any standard minimization tech-
nique can be used.

Deriving characteristic functions directly from the cir-
cuit input-output relation is only practical for primitive gates
and logic blocks where the number of inputs and outputs
is small. Fortunately, characteristic functions for larger cir-
cuits can be derived iteratively from the conjunction of its
subcircuit characteristic functions. For example, consider
the cascaded gates shown in Fig. 4. Notice the wire con-
necting the two gates is labeled with variable Z for CNF
construction. The characteristic function of the cascaded
circuit is simply the conjunction of the two AND gate charac-
teristic functions with variableZ as the logical link between
the two functions. The characteristic function, FCASCADE

evaluates to true if all wire signals are consistent. This in-
cludes the primary inputs and outputs as in FAND, plus any
intermediate wire signals (i.e. Z).

The previous conversion technique for the cascaded AND
structure can be extended to much larger circuits such as
PLBs. This creates a characteristic function, Ψ, dependent
on variables x1, ..., xn, L1, ..., Lm, z1, ..., zo, and G which
represent the inputs, programmable bits, intermediate wires,
and output of the circuit respectively. Thus, the proposition
(Gcircuit ≡ Ffunction) can be formed by substituting all
instances of the output variable G in Ψ by the expression
representing Ffunction. This is shown in Equ. 3 where the
notation [G/F (x1, ..., xn)] indicates that all instances of G
have been replaced by F (x1, ...xn). Sections following this
will use similar notation to represent the substitution opera-



tion.

[Gcircuit ≡ Ffunction] ≡ Ψ [G/F (x1, ..., xn)]

≡ ∃L1...Lm∀x1...xn∃z1...zoψ [G/F (x1, ..., xn)]
(3)

4.2. Removing Quantified Variables

Although QSAT solvers have shown initial promising re-
sults, it is often still faster to solve a QBF by removing
the universal quantifiers and converting it to a SAT prob-
lem [11]. Removing the universal quantifiers eliminates the
need to find multiple SAT instances for all universally quan-
tified variable assignments, thus saving time; however, in
doing so, the size of the Boolean formula increases sub-
stantially. To remove the universal quantifiers in a QBF, F ,
its proposition, f , is replicated to explicitly enumerate all
possible assignments of the universally quantified variables.
These replicated formulae are then conjoined with the log-
ical AND operator to form a Boolean function that can be
solved with SAT.

In order to give better understanding to the previously
described ideas, an example is given. Assume that a 3-input
function F needs to be implemented in the PLB shown pre-
viously in Fig. 3. In the following steps,F represents the
function of the cone under consideration for mapping, X �
represents input vector x1x2x3 = i, and Fi = F (X � ).
Step 1: Create CNF for individual elements in programmable cir-
cuit.

GLUT = (x1 + x2 + L1 + z1) · (x1 + x2 + L1 + z1)·

(x1 + x2 + L2 + z1) · (x1 + x2 + L2 + z1)·

(x1 + x2 + L3 + z1) · (x1 + x2 + L3 + z1)·

(x1 + x2 + L4 + z1) · (x1 + x2 + L4 + z1)

(4)

GMUX = (L5 + x3 + z2) · (L5 + x3 + z2) · (L5 + z2) (5)

GAND = (z1 + G) · (z2 + G) · (z1 + z2 + G) (6)

Step 2: Formulate the programmable circuit CNF from equations 4, 5,
and 6.

Gcircuit = GLUT · GMUX · GAND (7)

Step 3: Replication of equation 7 to remove quantified variables.
This formulates GTotal where a satisfiable assignment to GTotal

implies F can be realized in the programmable circuit.

GTotal = Gcircuit[ 	 / 	 0, G/F0, z1/z3, z2/z4]·

Gcircuit[ 	 / 	 1, G/F1, z1/z5, z2/z6]·

Gcircuit[ 	 / 	 2, G/F2, z1/z7, z2/z8]·

Gcircuit[ 	 / 	 3, G/F3, z1/z9, z2/z10]·

Gcircuit[ 	 / 	 4, G/F4, z1/z11, z2/z12]·

Gcircuit[ 	 / 	 5, G/F5, z1/z13, z2/z14]·

Gcircuit[ 	 / 	 6, G/F6, z1/z15, z2/z16]·

Gcircuit[ 	 / 	 7, G/F7, z1/z17, z2/z18]

(8)

Note that in equation 8, the configuration bits are repre-
sented by the same variables (L1−5) in eachGcircuit(X � , fi)
instance, where as all other signals are unique variables in
each instance. This ensures that only one configuration will
exist for all entries of the truth table.

In the previous example, the pins on the programmable
circuit in Fig. 3 are not permutable. Given the labeling con-
vention in Fig. 3, the function F = (x1 + x2) · x3 can be
implemented; however, the function F = (x1 + x3) · x2

cannot. There is no need for restricting the labeling of the
input pins in this manner because most programmable cir-
cuits are able to route signals to any input pins. In order
to model this flexibility, virtual multiplexers controlled by
virtual configuration bits, Vp, are added at each input pin of
the programmable circuit. Going back to the circuit shown
in the last example, Fig. 5 illustrates the previous circuit
with virtual multiplexers added at the input pins. Thus, if
F = (x1+x3)·x2 is to be mapped into this network then the
virtual multiplexers would force x1 and x3 onto the first two
pins of the circuit and x2 to the third pin feeding the AND
gate to generate a satisfiable solution. In order to add the
virtual multiplexers to the previous example, the virtual mul-
tiplexer characteristic functions need to be added in Step 1,
then the the process proceeds normally as previously shown.
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Fig. 5. An example PLB with virtual multiplexers added.

4.3. Application to PLB Evaluation

PLB Evaluate
1 X ← GENERATECONES()
2 Y ← REMOVENOFITCONES()
3 FitPercent← (X − Y )/X

Fig. 6. An overview of the PLB evaluation algorithm.



Fig. 6 shows a high-level overview of our PLB evalua-
tion algorithm. As stated previously, PLBs that can capture
the functionality of most cones found in real circuits are de-
sired since their non-programmable components will not be
wasted. In order to help find such PLBs, our tool can be
used to return a PLB cone fit percentage where a high fit
percentage is preferred. This fit percentage is found by tak-
ing extracting a set of cones from a list of circuits (Fig. 6,
line 1), then applying our QSAT decision step to remove
cones that do not fit in the given architecture (Fig. 6, line 2).
By recording the number of cones generated and discared,
a fit percentage for various PLB architectures can be found
(Fig. 6, line 3).

A version of the algorithm described in [6] is used to
generate and store all K-feasible cones in the graph. The
K-feasible cones are generated as the graph is traversed in
topological order from primary inputs to primary outputs.
At every internal node v, new cones are generated by com-
bining the cones at the input nodes.

5. RESULTS

5.1. Evaluation of Various PLBs

To show the power of the PLB evaluation algorithm, several
unrelated PLB architectures were evaluated. Fig. 7 shows
the five different PLB architectures used for evaluation.
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Fig. 7. PLB architectures.

To evaluate the versatility of each PLB, a set of cones
were extracted from a list of circuits taken from the MCNC
benchmark suite [12] (approximately 1000 K-input cones
per circuit, where K was the input size of the PLB). These
cones were tested for PLB fitting using the Chaff [13] SAT
solver. The circuits used were unrelated to generate a large
set of dissimilar cones. The table shown in Tab. 1 shows the
PLB fit percentage of cones per circuit. The last row shows

Circuit a b c d e
C2670 27.9 1.59 41.8 0.00 0.00
ex5p 91.4 0.00 49.7 0.00 0.00
clma 61.5 0.00 40.5 1.29 1.29
dalu 78.2 0.00 38.5 0.00 0.00
des 12.2 0.00 72.6 0.00 0.00
i9 87.4 0.00 18.8 0.00 0.00
x3 21.5 0.00 38.9 20.2 20.1
f51m 21.7 0.00 18.0 0.00 0.00
misex3 70.2 0.00 45.4 11.8 12.9
mm30a 20.8 0.00 0.20 0.00 0.00
mult16b 2.91 0.00 0.00 0.00 0.00
% Fit 46.0 0.151 36.4 3.34 3.44

Table 1. PLB fit results.

Config Bits SAT (sec) QBF (sec)
47 0.01 4.16
48 0.38 11.3
49 0.93 45.11
50 1.23 375.12
51 1.75 403.67
52 2.56 1366.66
53 2.70 4117.38

Table 2. SAT and QBF solver running times.

the total percentage of all cones that fit. Note that the cone
fit percentage varies wildly for all PLBs depending on the
circuit. This shows that PLB usefulness is dependent on the
application of the circuit. Interestingly, PLB (b) failed for
all circuits except the ALU circuit (C2670). A reason for
this is because PLB (b) uses an XOR gate and XOR gates are
very rare in most control circuits and are generally used for
arithmetic logic.

5.1.1. QBF vs. SAT

In order to show the power of removing quantifiers in our
QBF to produce a SAT problem as shown in Sec. 4.2, we
ran a few cone fitting examples using a QBF solver and a
SAT solver. The example used a 7-input function realized
with a 7-input PLB consisting of two cascaded 4-LUTs. An
unsatisfiable function was selected so the entire search space
was explored. Furthermore, the configuration bits were pre-
configured to vary the size of the search space. This is shown
in Tab. 2. Config Bits shows the number of unconfigured
programmable bits in the circuit; SAT shows the Chaff SAT
solver [13] running times on a Sunblade 150 with 2.5 GB of
RAM; and QBF shows the Quaffle QBF solver [14] running
times on the same machine.



6. CONCLUSION AND FUTURE WORK

This work represents only the first step in the search for the
optimal FPGA PLB. Our research will progress in two dis-
tinct areas. The first is hardware acceleration for the PLB
evaluation tool. QSAT is P-Space complete and thus takes
a large amount of computation time even with advanced
heuristics. The use of specialized hardware acceleration cir-
cuitry should speed up our technology mapping time by an
order of magnitude or more for very complex PLB struc-
tures.

Our second area of research involves an automatic method
of chosing the FPGA PLBs to explore. We are exploring a
genetic algorithm that can create candidate PLBs from prim-
itive elements such as lookup tables, basic gates, multiplex-
ers and adder structures.

In addition to the presentation of QBF applications to
FPGAs, we have shown this class of problem that arises in
this work is very difficult for QBF solvers. In fact, it seems
that a naive translation to SAT is a far better approach than
the QBF representation. We hope to provide a number of
benchmarks that will help to drive the development of an
efficient QBF solver.
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