
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

DAC 2007, June 4-8, 2007, San Diego, California, USA

Copyright 2007 ACM 978-1-59593-627-1/07/0006… 5.00

Using Negative Edge Triggered FFs to Reduce Glitching
Power in FPGA Circuits

Tomasz S. Czajkowski
Department of Electrical and Computer Engineering,

University of Toronto, Ontario, Canada

czajkow@eecg.toronto.edu

Stephen D. Brown
Department of Electrical and Computer Engineering,

University of Toronto, Ontario, Canada

brown@eecg.toronto.edu

ABSTRACT
This paper presents an algorithm for reducing dynamic power
dissipated by Field-Programmable Gate Array (FPGA) circuits.
The algorithm uses a fast probability based model to estimate
glitches on wires in a circuit and then inserts negative edge
triggered FFs at outputs of Lookup Tables (LUTs) that produce
glitches. A negative edge triggered FF maintains the logic value
produced by the LUT in the previous cycle for the first half of the
clock period, filtering glitches that occur at the output of the LUT.
The power dissipation is lowered by reducing the number of
transitions that propagate to the general routing network.

We applied the algorithm to a set of benchmark circuits
implemented on a commercial FPGA, Altera's Stratix II. The
results obtained using Quartus II 5.1 CAD tool show a reduction
in dynamic power dissipation by 7% on average and up to 25%.

Categories and Subject Descriptors

B.6.3 [Design Aids]: Optimization.

General Terms

Algorithms

Keywords

Dynamic Power, FPGAs, Glitches.

1. INTRODUCTION
Field-Programmable Gate Array (FPGA) devices are a popular
choice for low to medium volume digital applications. They can
implement various different circuits without a need to fabricate a
new chip, reducing costs and time to market. This flexibility is
paid for by increased power dissipation. The power consumed by
a circuit implemented on an FPGA device in a 90nm process, or
smaller, presents a problem, especially if an FPGA device is to be
used in a mobile application.

The power dissipation of a 4-input LUT based FPGA consists
40% of static power and 60% of dynamic power, with static
power increasing with shrinking feature sizes and increasing LUT
sizes [1]. In this work we are concerned strictly with the dynamic
power dissipated by a logic circuit.

Several techniques have been proposed to reduce dynamic power.
At the circuit level, effective power reduction techniques include
the insertion of control logic to synchronize inputs of logic blocks
and force at most one transition to occur at the output of a logic
block [2], and reducing the power supply voltage [3]. At the logic
level, the power dissipation is addressed during synthesis and
technology mapping. During synthesis, power dissipated by
frequently toggling wires can be reduced through rewiring [4],
local logic transformations [5], and addition of redundant gates
[6]. During technology mapping, power can be reduced by
covering connections with high toggle rates within a LUT and
minimizing logic replication [7]. Also, proposing several local
mappings and selecting the lowest power mapping [8], or trading
off area and depth for lower toggle rates on wires [9], can be
effective. Pipelining and retiming have also been used to balance
the path delays and reduce wire toggle rates [10,17].

This work focuses on logic level techniques to reduce the power
dissipated by glitches in a circuit. Glitches have been shown to be
able to double the toggle rate of wires in the circuit, causing a
substantial increase in power dissipation [11]. Their impact,
however, is not well defined until all circuit delays are known.

We propose to address power dissipation due to glitches
post-routing, where the delays between LUTs are known. To
reduce power in a circuit our algorithm selects LUTs that produce
glitches and inserts a negative edge triggered FF (nFF) at their
outputs. An negative edge triggered FF will maintain the output
wire state for the first half of a clock cycle, and when the clock
signal toggles, the FF will assume a new logic value. Power is
saved because glitches are not propagated to logic down stream.

This paper is organized as follows. Background information is
given in Section 2. The power models we use are described in
Section 3. Section 4 presents the idea of negative edge triggered
FF insertion and discusses alternatives to using negative edge
triggered FFs. The algorithm to implement the glitch reduction
technique is described in Section 5, while experimental results,
conclusion and acknowledgments are found in sections 6-8.

2. BACKGROUND
An FPGA can be thought of as a rectangular array of logic cells
(LCs) connected by a general purpose routing network. Each LC
consists of a k-input Lookup Table (k-LUT), typically a 4 or a 5-
LUT, and a Flip-Flop (FF). A circuit can be implemented by
programming logic functions into LCs and connecting them using
the routing network.

A logic circuit is represented as a graph consisting of nodes
(LUTs or FFs) and directed edges that form a logical connection
between nodes. A primary input is an I/O pin configured to accept
input from external devices. A primary output is an I/O pin
configured to produce an output from a circuit.

324

18.2

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

Once each node is placed and connections between nodes are
routed, each node and edge is assigned a delay. We determine the
minimum clock period for a circuit by traversing it from outputs
of FF nodes to inputs of FF nodes and computing the longest path
delay to the output of each node, called the arrival time. A FF-to-
FF path with the longest delay is called the critical path.

FPGA power dissipation consists of static, short-circuit and
dynamic power. Static power dissipates when current flows
through a transistor even when the transistor is off. The short-
circuit power is dissipated by a CMOS gate during a short period
of time when both pull-up and pull-down networks conduct
current. The dynamic power is dissipated any time a capacitor in a
circuit is charged or discharged. It can be computed as follows:

i iwhere C is the capacitance of a net, f is the average toggle rate of
a net and V is the power supply voltage.

3. POWER MODELS
The focus of this work is to minimize the number of glitches
produced by a logic circuit, thereby reducing the dynamic power
it dissipates. To do so a power model for our optimizations is
needed. In particular, it is crucial to compute the average toggle
rate for a net in each circuit as well as estimate the capacitance of
that net. We also model the LUT and FF power dissipation.

3.1 Average Net Toggle Rate Computation
Several works that address the topic of toggle rate estimation
and/or prediction already exist. The work in [11] looks at the
transition density [12] and how this concept applies to circuits
implemented on FPGAs. In [11] the transition density is
represented as a weighted sum of transitions generated and
propagated through a LUT. Generated transitions are a function of
LUT depth and the number of paths to LUT inputs. Propagated
transitions are due to glitches that propagate through a LUT and
are based on the logic function the LUT implements. In [17]
transitions generated by LUTs are computed using the arrival time
of a signal at a gate. The propagation of glitches is consistent with
[12], where the concept of Boolean Difference is used to
determine the fraction of transitions that propagate through a gate.

While the above approaches predict overall toggle rate well, the
accuracy of toggle rate prediction for individual wires is
insufficient for the purpose of post-routing optimization. We
found the problem to be how glitches are propagated through a
LUT. In the above works the concept of Boolean Difference is

iused to determine the conditions under which a change in input x
of a LUT y causes a change in the output of the LUT. The
condition is expressed as a function of other signals that drive the

i iLUT, denoted as dy/dx . When dy/dx is 1 then a change on input

ix causes output y to change. Then the fraction of glitches

i ipropagated from wire x to output y is P[dy/dx =1].

This formulation does not account for path delays. It is possible

i ithat by the time dy/dx =1 condition is met, the input x has already
stabilized. Thus, no glitches are passed to the output of the LUT.
To avoid such overestimate, we impose a stricter constraint for

iglitch forwarding. We require that the dy/dx =1 condition be

isatisfied as well as that all inputs of the LUT y, except x , remain
stable for the duration of the clock cycle.

To compute transition density of any wire with reasonable
accuracy we use five wire properties. The first property is the
static probability. It indicates a probability that a signal assumes a
logic 1 value. The second property is the transition probability

t(P (y)), which defines how often a signal changes state. This
property accounts only for the functional behaviour of a signal
and can be broken down into two components. The first is the 061
transition probability, which indicates the probability a signal will
change state from 0 to 1. The second is the 160 transition
probability that indicates a 1 to 0 transition probability. Both
properties are considered conditional, since they only apply when
a signal is at a particular state to begin with. For example, the 061
transition probability only applies when a signal is in a logic 0
state. The final property is the transition density (D(y)). It is
similar to the transition probability, but it also includes transitions

tdue to glitches. Thus, D(y) - P (y) represents the number of
glitches that occur on a per clock cycle basis on any given wire.

To estimate the toggle rates in a circuit we process nodes in
topological order and compute the five wire properties for each
node output. They are computed in three steps. First, we compute
the wire properties under the assumption that inputs are glitch-
free. We use the probability of each possible transition of inputs
and determine the number of resulting transitions at the output,
using the LUT function and the arrival time of its inputs. Glitches
generated at the LUT output are accounted for, except those
whose duration is shorter than the inertial delay [13] of the LUT.
The second step accounts for glitches on LUT inputs as described
earlier. Finally, to account for synchronous elements the transition
density and probability values are updated once wire properties of
each FF input are computed. We then repeat the process several
times to account for the change in the toggle rate of FFs.

Figure 1 shows the accuracy of this method on the set of
benchmarks listed in Section 6. The comparison is with respect to
toggle rates obtained via timing simulation using ModelSIM-
Altera 6.0c and Quartus II 5.1. The average error of our technique
is 4% with 70% of the wires having transition density within
±20% of that obtained from simulation. This is better than in [11]
where the average error was approximately 17%, though the
results in [11] are obtained pre-placement and routing and hence
are expected to be less accurate.

3.2 Net Capacitance Model
iThe second part of Equation 1 is the net capacitance, C . To

iestimate capacitance of each net we solved Equation 1 for C ,
using the value of 1.2V for V and the toggle rate obtained from

(1)
Figure 1: Transition Density Estimate Error

325

Figure 2: Power dissipation of a gated D latch (top), a FF
(middle), and a gated LUT (bottom)

(3)

Figure 3: Negative Edge Triggered FF Insertion Example

isimulation for f . The power dissipated by each net was obtained
from Quartus II 5.1. We used this data to model the capacitance

iof a net (C) based on its fanout and the average connection delay
(d). The best-fit approximations of net capacitances were:

i• for fanout 1 nets, C = 1.4633*d,

i• for fanout 2 nets, C = 2.4892*d,

i• for fanout 3 nets, C = 3.1716*d, and

i• for fanout 4 nets, C = 3.6234*d - 0.6789

To obtain a net capacitance estimate for a net with fanout n$5, the
following formula is used:

This simplified recursive estimate only applies to nets with fanout
greater than 4, which constituted 5% of nets in our benchmark set.

3.3 LUT Power Model
The LUT Power Model accounts for charging and discharging of
capacitors inside of a LUT. While the model is consistent with
Equation 1, we estimate LUT power in terms of the transition
density of LUT output. This is because we have insufficient data
to recreate the exact capacitance values for each wire in the
hardware implementation of a Stratix II LUT. By using a model
related to transition density we can determine the change in power
dissipation of a LUT if some of its inputs have their transition
densities altered.

To model the power dissipation of a LUT we used ModelSIM-
Altera 6.0c to obtain transition density values in transitions per
second and performed power analysis using Quartus II 5.1. Using
its power analyzer we determined the power dissipated inside

LUTyeach individual LUT (P) and graphed it versus the transition
density measured in millions of transitions per second (x). A
second order approximation of the average dynamic power
dissipated by a LUT is given by the following equation:

3.4 FF Power Model
The final power model accounts for the power dissipated by a FF,
which we will insert into the circuit to filter out glitches. It
includes the power dissipated by the logic components used to
create the FF as well as the power dissipated by the clock network
due to the increase in capacitive load. The power dissipated by a
FF will have to be outweighed by the power saved due to the
removal of glitches for the optimization to be effective.

To account for FF power we related the power dissipated by the
FF to the clock frequency used to trigger it. We ran experiments
to determine how much power FFs use. In addition, we measured
the power consumed by two alternate glitch filters - a Gated LUT
and a gated D latch. A Gated LUT is a LUT that has its output
either ANDed or ORed with the clock signal. In an FPGA it is
implemented inside of a single LUT by altering the function a
LUT implements. A gated D latch on the other hand is a level
sensitive storage element, such that when clock input is 1 it is
transparent, while when clock is 0 it maintains its logic state.

To estimate the power dissipated by each of the above glitch
filters, we implemented them on a Stratix II FPGA and measured
the power they dissipate using the Power Play Power Analyzer in
Quartus II 5.1. The comparison of power dissipated by these
filters is shown in Figure 2. The graph shows power dissipation as
a function of clock frequency. A gated D latch takes the most
power, because we needed to use a LUT with feedback to create a
gated D latch, thus its implementation is far from optimal in terms
of power dissipation. An nFF and a gated LUT dissipated 33%
and 50% less power than a gated D latch, respectively.

4. GLITCH REDUCTION
Glitches occur because input signals to a LUT arrive at different
times, causing intermediate transitions to occur before the LUT
output stabilizes. We propose to insert an nFF at an output of a
LUT that produces glitches to prevent these glitches from
propagating to the routing network and causing subsequent
glitches down stream. This technique ensures that during the first
half of a clock cycle the output net retains its old value and is
updated during the latter half of the clock cycle.

Consider for example a LUT network in Figure 3. The clock
period is 5 and the arrival times of each LUT output are denoted
on the right hand side of each LUT. Now suppose that the routing
delays are such that input signals x, y and z arrive at the inputs of
LUT A in order x, y and z. Now suppose that wires x, y and z have
values 0, 1 and 0 respectively, and they will all toggle in the
current clock cycle. Because a change in signal x will be visible to
the LUT before a change in signals y and z, the LUT will initially
perceive the input to have changed from 010 to 110 and produce a
new output value for wire f. Subsequently, a change in the value
of wire y will occur, causing the LUT to again evaluate a new
output value for the input sequence 100. Lastly, the wire z will
change value and a final output value will be generated for input
sequence 101. Thus, the output of LUT A changes value three
times, two of which are unnecessary.

(2)

326

To remedy the problem, an nFF can be inserted at the output of
LUT A. During the first half of the clock cycle the output of the
nFF remains unchanged, and only changes once in the second
half of the clock cycle when the output wire assumes that value of
the output of LUT A. The wire f now retains its previous value
until the clock signal becomes zero and only changes once
thereafter. This operation reduces the number of times the output
wire toggles by two, thereby reducing power dissipation.

Alternatively we can use a gated LUT or a gated D latch to
achieve a similar effect. A gated D LUT can be used because we
can AND (or OR) the LUT function with the clock signal,
inverted if using an AND gate. It will force the output of the LUT
to 0 (with AND) or 1 (with OR) for the first half of the clock
cycle, masking the glitches present there. The downside is that if
we use an AND gate and the output of the LUT would remain at
logic 1 (or 0 if using an OR gate) for two consecutive clock
cycles, this technique would cause a glitch. We found that even
though a gated LUT uses least power (section 3.4) the additional
glitches it creates outweighed the power savings it provided.

A gated D latch was also considered. Rather than latching data at
the negative edge of the clock, it would become transparent
during the latter half of the clock cycle. The principle of its
operation in this context would be the same as for the nFF.
However, according to our analysis in Section 3.4, a gated D latch
implementation on a Stratix II device takes more power than a
nFF. This option is therefore not as attractive as using an nFF.

The cost of the nFF insertion is the increase in power dissipation
due to the presence of an additional FF, including the increase in
the capacitive load imposed on the clock network, and a possible
increase in the critical path delay. The area penalty was found to
be negligible (see Section 6), because an LC already contains a
FF, though it may be unused. Thus, choosing to insert an nFF
required the use of few additional ALMs on a Stratix II device.

5. OPTIMIZATION ALGORITHM
In the previous two sections we described how glitches can be
detected and how their presence in a logic circuit can be reduced.
We use the aforementioned data to create an algorithm to reduce
power dissipated due to glitches. The algorithm is rather
straightforward:

1. Scan all nets in a logic circuit to determine if any of the
optimizations from Section 4 can be applied

2. Analyze the resulting set of nets to determine the
benefit of applying the optimization to each net

3. Apply the optimization to a net on which the most
power could be saved

The effort to find wires suitable for optimization is guided by a
cost function that determines if glitch reduction on a particular net
is beneficial. It consists of three components: the power saving,
the power cost, and the delay penalty.

The power saving component determines how much power can be
saved on a particular net, and its transitive fanout, when the
optimization is applied. The power saving for a given net is:

y savewhere C is the capacitance of net y, Trans (y) is the average
number of transitions per cycle saved by the optimization,

transitiveP (y) is the power saved in the transitive fanout of net y, and

yV is the power supply voltage (1.2V). C is computed as described

savein Section 3.2. The Trans (y) component depends on the applied
optimization. For the nFF insertion it is equal to:

and indicates that all glitches are removed from the net.

transitiveThe P (y) component is computed by calculating how the
power dissipated in the transitive fanout of net y is affected by
removing glitches from wire y. It is done by summing the change
in power dissipation of each LUT and its output net using models
described in Section 3.

For the optimization to be effective the power saving associated
with the transformation must outweigh the power consumed by

costthe added circuit elements (P (y)). Two factors contribute to the
power cost: their power dissipation of a FF as described in
Section 3.4, and the need for translocation of existing FFs. The
second factor requires further explanation.

In an FPGA an LC can be configured so that the LUT inside it
drives a FF, or vice-versa. In the latter case it is necessary to
move the FF to another LC to accommodate the nFF. This causes
an increase in capacitance on the net driven by the moved FF as
the signal source will be placed farther away from its destination.
The expected increase in the power dissipation for this net is

costtherefore added to the P (y) term.

save costUsing the definitions of P (y) and P (y) we define the power

save costsaving component of the cost function as P (y)-P (y). It
represents the expected change in power dissipation if a nFF is
inserted at the output of LUT y. Note that the static power is not
included in this computation. This is because inserting a FF in the
FPGA context means activating it, as it already exists on the
silicon fabric. Because it is activated in an LC (or ALM on a
Stratix II FPGA) that is already powered up, the FF itself is being
powered and hence dissipates static power, even when not used.

The final component of the cost function is the delay penalty. The
delay penalty arises when we apply an optimization and it
changes the delay profile of the circuit. For example, inserting an
nFF requires that paths, which either start or terminate at that FF,
need to compute in less than half of a cycle. While we can
compute the delay penalty for each net, we allow the user to
specify how much delay penalty, Ät, is acceptable to save power.

Using the above components we can fully formulate the cost
function. In its simplest form it is defined as:

ewhere Ät is the expected increase in the minimum clock period

savefor the circuit, u(t) is the unit step function, P (y) is the power

costsaving component, and P (y) is the cost of applying the
optimization. The ÄC function is 0 when the expected delay
penalty exceeds Ät. Otherwise, the function returns the expected
change in power dissipation that will be observed if the
optimization is applied. The optimization is applied when ÄC > 0.

6. EXPERIMENTAL RESULTS
To evaluate the effectiveness of our glitch reduction technique,
we applied it to several benchmark circuits distributed with the
QUIP 5.0 [14] and from OpenCores.org. We now describe the
experimental setup, methodology and the results we obtained.

(4)

(5)

(6)

327

6.1 Setup
The experimental setup consists of 8 circuits synthesized, placed
and routed with Quartus II 5.1. For each circuit the target clock
frequency was set to 1 GHz and the optimization technique was
set to balanced. The power optimization option was set to
Normal, indicating that power optimization is performed as long
as the design performance is maintained. All circuits compiled
this way were then simulated using ModelSIM-Altera 6.0c. The
simulation was performed using a random set of 10000 input
vectors over a period of 10000 clock cycles, and the clock
frequency was set to approximately 15% below maximum clock
frequency. The simulation step was set to 10ps. The simulation
result, in the form of a Value Change Dump File (.vcd), was then
used by the Quartus II 5.1 to determine the dynamic power
dissipated by each circuit. The Enable Glitch Filtering option was
turned ON to enable the power analyzer to account for inertial
delay of logic components in a circuit.

In Table 1 the name of each circuit in column 1, the clock
frequency used to simulate it in column 2, and the area each
circuit occupies in terms of Arithmetic Logic Modules (ALMs)
[15] in column 3. The critical path delay and power dissipation
are listed in columns 6 and 9 respectively. The power dissipation
does not include I/O power, because most of the circuits are
small. Most of these circuits would be sub-circuits in a larger
design and hence their I/O pins would become internal wires.

6.2 Methodology
For the purposes of power optimization each circuit was first
synthesized, placed and routed using Quartus II 5.1. The timing
analysis was then performed to compute arrival time for all nodes,
which is subsequently used to compute toggle rates of all circuit
wires. The algorithm from Section 5 was then applied to each
circuit, allowing only a 5% critical path delay penalty. Once the
algorithm was applied any modified net connections were
rerouted. The resulting circuit was then timing analyzed and
simulated using ModelSIM-Altera 6.0c. In each case we used the
same simulation clock frequency as before the optimization, and
ensured that the clock frequency is lower than the maximum
clock frequency for the original and the modified circuit. The
simulation results were used to obtain power estimate using
Quartus II 5.1 Power Play Power Analyzer.

6.3 Results
We applied the glitch reduction optimization to 8 benchmark
circuits. The results are summarized in Table 1. Table 1 shows the
name of each circuit in column 1, the final size of the circuit in
terms of ALMs in column 4, the critical path delay in column 7,
and the dynamic power dissipated by the circuit in column 10.

The change in area, delay and power is shown in columns 5, 8 and
11, respectively. The percentage change in these columns was
computed using the following formula:

Table 1 shows that inserting negative edge triggered FFs into a
circuit is an effective way of reducing the impact of glitches. We
see a 7% reduction in power dissipation, verified by a commercial
tool through simulation, at a cost of 3.6% in critical path delay.

6.4 Discussion
In general, the insertion of an nFF is successful in reducing the
number of glitches in a circuit at a cost of increased critical path
delay. We obtained good power reduction results in most of the
circuits tested, ranging from 1% to 25% in power reduction.

The power savings come at a cost of circuit delay. The delay
increase is due to the delay introduced by inserting an nFF.
Another factor is the majority of glitches were found on near-
critical paths because they generally consisted of the largest
number of LUTs. However, for the nFF insertion to be effective, a
target LUT must have the output arrival time less than half a
clock period and the required time above half a clock period. For
near-critical paths this margin is small, thus it is difficult to find
candidates for optimization without incurring a delay penalty.

The largest power reduction was observed in the oc_des_perf_opt
circuit. This circuits is an implementation of a Data Encryption
System optimized for performance on Altera devices. The circuit
contains a large number of XOR gates with a large number of
unbalanced paths. Because an XOR gate allows all glitches to
propagate through it, removing glitches on one net causes a large
number of glitches to disappear from nets in its transitive fanout.

The second largest power reduction was observed in the barrel64
circuit. In this circuit 56 nFFs were added to produce a 12.7%
power reduction. A reduction of 17.5% in power was also
possible in this circuit, when a delay penalty of 8.7% was
allowed. Given that most FPGA circuits run at speeds under 200
MHz, sacrificing more speed in this circuit may be acceptable.
Other circuits that operated at above 200MHz did not produce
larger power savings when a 10% delay penalty was allowed.

The power reduction of 1% was observed on the aes128_fast
circuit, which is another cryptographic circuit. A detailed analysis
of this circuit revealed that we saved 34.14mW (9.2%) of power
in the routing alone. However, the saving came at a cost of
24.6mW for adding 173 negative edge triggered FFs and 1.86mW

Circuit Name
Sim. Freq.

(MHz)
Area(# of ALMs) Critical Path Delay (ns) Dynamic Power (mW)

Initial Final %Change Initial Final %Change Initial Final %Change

barrel64* 200 337 342 1.46 4.386 4.806 8.74 229.94 189.7 -17.50

mux64_16bit 275 608 608 0 3.052 3.052 0 389.24 389.2 0.00

fip_cordic_rca 125 182 182 0 7.551 7.851 3.82 43.28 39.49 -8.76

oc_des_perf_opt 290 1343 1356 0.96 2.989 3.07 2.64 1058.8 796.7 -24.75

oc_video_comp_sys_huffman_enc 260 212 214 0.93 3.626 3.626 0 94.88 95.19 0.33

cf_fir_24_8_8 170 1401 1401 0 5.375 5.71 5.87 290.41 292.9 0.84

aes128_fast 140 2458 2514 2.23 6.251 6.569 4.84 879.24 870.6 -0.99

rsacypher 140 419 419 0 6.376 6.563 2.85 50.73 48.22 -4.95
Average 0.7 3.6 -7.00

Table 1: Benchmark circuits before and after optimization

(7)

328

for routing the clock signal to Logic Array Blocks (LABs) in
which a clock signal was not needed previously. While the
optimization was successful in reducing the toggle rate of each
wire to which it was applied by 50-70%, the capacitance on most
of these nets was too low to significantly affect the core power
dissipation. In fact, most of the net connections in this circuit
were realized through short wires inside of a LAB. This is an
excellent example of how power dissipation was reduced by using
lower capacitance wires, rather than through toggle rate reduction.

For cf_fir_24_8_8 and oc_video_comp_sys_huffman_enc, the
power dissipation increased slightly. In these circuits the toggle
rate was overestimated, however not significantly enough to cause
a large power dissipation increase. Finally, the mux64_16bit
circuit saw no power, area or speed change. The reason for this
rests in the very low presence of glitches. We were able to
estimate the toggle rate of all wires almost perfectly and since the
circuit consisted primarily of short wires, the cost function used in
the algorithm did not recommend the insertion of an nFF.

6.5 Related Works
The works in [10] and [16] are the closest to our approach. The
problem of glitches is discussed in both papers and the research
presented there indicates that retiming is a good way to rebalance
path delays and at the same time reduce the appearance of
glitches. While the general idea is similar, that is to insert FFs at
glitchy nodes, the process of FF insertion is quite different.

A retiming algorithm rebalances path delays and maintains circuit
latency. This is accomplished by pushing FFs from the output of a
LUT to its inputs (push-back), or vice-versa (push-forward). The
push-back operation removes a single FF from the output of a
LUT and adds a FF on each net driving the LUT to preserve
circuit latency. However, if one of these nets has fanout greater
than 1, then it is necessary to apply push-back operation to all
LUTs that net drives. This can potentially affect an entire circuit.
A similar effect occurs in a push-forward operation.

On the other hand, the algorithm presented here only needs to
ensure that any FF-to-FF path contains at most one negative edge
triggered FF. The process of insertion therefore becomes a local
operation and need not affect the rest of the circuit, and the cost of
inserting an nFF is limited to the power dissipated by that FF.

7. CONCLUSION
This paper addressed glitches post-routing, where it is possible to
use post-routing delay data to identify nets in the circuit prone to
glitching. We presented an algorithm for reducing glitches by
inserting a negative edge triggered FFs at the output of LUTs that
produce glitches thereby preventing the unnecessary logic
transitions from propagating to the general routing network and
subsequent LUTs.

The algorithm is successful in reducing power by an average of
7%, and up to 25%, on a commercial FPGA device, the Altera
Stratix II. The algorithm has an advantage over pipelining in that
the latency of the circuit remains unchanged. Also, in contrast to
retiming our algorithm only affects a small portion of a circuit at a
time, specifically the source of a net, whereas retiming can cause
a cascade of push-back/forward operations. Finally, because the
insertion of a negative edge triggered FF does not affect the
logical operation of the circuit, this technique can be used in
tandem with other power optimization techniques.

8. ACKNOWLEDGEMENTS
The authors thank Altera Corporation for assistance during the
course of this work and funding this research.

9. REFERENCES
[1] F. Li, D. Chen, L. He, J. Cong, "Architecture Evaluation for

Power-Efficient FPGAs," ACM/SIGDA Int. Conf. On
FPGAs, 2003, pp.175-184.

[2] N.R. Mahapatra, S.V. Garimella, A. Takeen, "Efficient
techniques based on gate triggering for designing static
CMOS ICs with very low glitch power dissipation", Proc. Of
the Int. Symp. On Circ. & Sys., 2000, vol. 2, pp. 537-540.

[3] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey and
R. Brodersen, "Optimizing Power Using Transformations,"
IEEE Trans. on CAD of Int. Circ. and Sys., Vol. 14, No. 1,
Jan. 1995, pp. 12-31.

[4] A. Shen, A. Ghosh, S. Devadas and K. Keutzer, "On
Average Power Dissipation and Random Pattern Testability
of CMOS Combinational Logic Networks," Proc. Of Conf.
On CAD, 1992, pp. 402-407.

[5] KIW Kim, T Kim, TT Hwang, SM Kang, CL Liu, "Logic
Transformation for Low-Power Synthesis," ACM Trans. on
Des. Auto. of Electronic Systems, 2002, pp. 265-283.

[6] D. K. Pradhan, M. Chatterjee, M. V. Swarna and W. Kunz,
"Gate-Level Synthesis for Low-Power Using New
Transformations," Proc. Of Int. Symp. On Low Power
Electronics and Design, California, 1996, pp. 297-300.

[7] J. H. Anderson and F. N. Najm, "Power-Aware Technology
Mapping for LUT-based FPGAs," Proc. Of Field-Prog.
Tech. Conf., Hong Kong, 2002, pp. 211 - 218.

[8] C. Yeh, C.-C. Chang and J.-S. Wang, "Power-driven
technology mapping using pattern-oriented power
modelling," IEE Proc.-Comp. Digit. Tech., Vol. 146, No. 2,
March 1999, pp. 83-89.

[9] A.H. Farrahi and J. Sarrafzadeh, "FPGA Technology
Mapping for Power Minimization," Int. work. on
Field-Programmable Logic, 1994, pp. 66-77.

[10] J. Leijten, J. van Meerbergen, J. Jess, "Analysis and
reduction of glitches in synchronous networks," Proc. of the
European Design and Test Conf., Paris, 1995, pp. 398-403.

[11] J. H. Anderson and F. N. Najm, "Switching Activity
Analysis and Pre-Layout Activity Prediction for FPGAs,"
ACM/IEEE Workshop on SLIP, 2003, pp. 15 - 21.

[12] F. Najm, "Transition Density: a new measure of activity in
digital circuits," IEEE Transactions on CAD of Integrated
Circuits and Systems, February 1993, Vol. 12, pp. 310-323.

[13] C. Tsui, M. Pedram and A. M. Despain, "Efficient
Estimation of Dynamic Power Consumption under Real
Delay Model," IEEE Int. Conf. On CAD, 1993, pp. 224-228.

[14] Altera Quartus University Interface Program 5.0 package.
URL: http://www.altera.com/education/univ/research/unv-
quip.html. Last Accessed March 1, 2006.

[15] Altera Stratix II datasheet, URL: http://www.altera.com/
literature/lit-stx2.jsp

[16] J. Monteiro, S. Devadas and A. Ghosh, "Retiming
Sequential Circuits for Low Power," Proc. of ICCAD, 1993,
pp. 398-402.

[17] M. Hashimoto, H. Onodera and K. Tamaru, "A Practical
Gate Resizing Technique Considering Glitch Reduction for
Low Power Design," Proc. Of the 36th ACM/IEEE Conf.
On Design Automation, 1999, pp. 446-451.

329

