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ABSTRACT
This paper presents a technology mapping algorithm that
can be used to evaluate the robustness of any FPGA pro-
grammable logic block (PLB). This algorithm, named
SATMAP, uses Boolean satisfiability (SAT) to determine
if a logic cone can be implemented in a given PLB. This al-
gorithm is a fundamental tool needed to study the utility of
any proposed FPGA logic block. Our approach is the first
tool of its kind that allows radical new features of FPGA
logic blocks to be evaluated in a rigorous scientific way.

1. INTRODUCTION
Field-Programmable Gate Arrays (FPGAs) are reconfig-

urable integrated circuits that are characterized by a sea
of programmable logic blocks (PLBs) surrounded by a pro-
grammable routing structure. Most modern PLBs are based
on the K-input lookup table (K-LUT) where a K-LUT con-
tains 2K truth table configuration bits so it can implement
any K-input function. Figure 1 illustrates a 2-LUT. There
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Figure 1: An example 2-LUT.

has been a great deal of research exploring both PLB [4, 6,
10] and interconnect structures for FPGAs [3]. Most of this
literature has shown the 4-LUT to be the “best” PLB in
terms of balancing area efficiency and realizing good timing
performance.
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To our knowledge, all previous works on PLB architec-
tures for FPGAs have fallen into one of the three categories
below:

• A K-LUT structure is assumed as the basic config-
urable element with experiments evaluating area and
delay tradeoffs for various values of K [10].

• A specialized PLB is proposed and a customized map-
ping algorithm is implemented to map benchmark cir-
cuits using the proposed element [6].

• Specialized Boolean matching techniques are devel-
oped to decompose a logic function in such a way so
that it matches the structure of the proposed PLB [4].

A limitation of these approaches is their lack of gener-
ality. To search for the optimal FPGA PLB, we must be
able to answer the following fundamental question: Given
a PLB with an arbitrary structure, how beneficial is this
PLB for implementing circuits? The method for answering
this question must be general and automated so that we can
quickly examine a number of different PLBs. In our work,
we present a tool named SATMAP (satisfiability mapping)
that will answer this question.

The rest of this paper is organized as follows. Section 2
provides some brief background information on existing K-
LUT techmappers. Section 3 describes our PLB evaluation
technique. In Section 4 and 5, we show a detailed description
of the SATMAP algorithm. Section 6 shows results of the
SATMAP algorithm for evaluating a number of different
PLB structures. Section 7 describes the scalability issues
of the SATMAP algorithm and possible solutions. Finally,
we provide concluding remarks and describe our future work
in this area.

2. TECHNOLOGY MAPPING
The technology mapping step in the FPGA CAD flow con-

verts a gate-level network consisting of primitive gates into
the PLBs that are present in the target FPGA architecture.
The goal of the technology mapping step is to reduce area,
delay, or a combination thereof in the network of PLBs that
is produced. In this work, delay is proportional to the depth
of a circuit where the depth of a node is defined as is the
longest path from the node to a primary input. A node can
be thought as any primitive element in the circuit network,
such as a logic gate, and a primary input is a node that has



no inputs from other nodes in the network, such as an input
pin.
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Figure 2: Technology mapping as a covering problem.

The process of technology mapping is often treated as a
covering problem. For example, consider the process of map-
ping a circuit into LUTs as illustrated in Figure 2. Figure 2a
illustrates the initial gate level network, Figure 2b illustrates
a possible covering of the initial network using 4-LUTs, and
Figure 2c illustrates the LUT network produced by the cov-
ering. In the mapping given, the gate labeled x is covered
by both LUTs and is said to be duplicated. Techniques that
map for depth use large amounts of duplication to obtain so-
lutions of reduced depth while techniques that map for area
limit the use of duplication as it often increases the area of
the mapped solutions.

2.1 Technology Mapping for LUTs
There has been a large body of work exploring technology

mapping for LUTs. This work is still applicable for PLBs, so
long as heuristics are used to ensure the final decomposition
of the circuit will map to the PLB architecture.

One of the earliest works to study the depth minimization
problem in LUT mapping showed that the depth-optimal
mapping solution can be obtained in polynomial time using
a dynamic programming procedure [13].

In contrast to the depth minimization problem, the area
minimization problem was shown to be NP-hard for LUTs
of size four and greater [15]. Thus, heuristics are necessary
to solve the area minimization problem.

Early work considered the decomposition of circuits into
a set of trees which were then mapped for area [16]. The
area minimization problem for trees is much simpler and can
be solved optimally using dynamic programming. However,
real circuits are rarely structured as trees and tree decompo-
sition prevents much of the optimization that can take place
across tree boundaries.

In a duplication-free mapping, each gate in the initial
circuit is covered by a single LUT in the mapped circuit.
The area minimization problem in duplication-free map-
ping can be solved optimally by decomposing the circuit
into a set of maximum fanout free cones (MFFCs) which
are then mapped for area [14]. Although the area mini-
mal duplication-free mapping is significantly smaller than
the area minimal tree mapping, the controlled use of dupli-
cation can lead to further area savings. In [17], heuristics
are used to mark a set of gates as duplicable. Then area
optimization is considered within an extended fanout free

cone (EFFC) where an EFFC is an MFFC that has been
extended to include duplicable gates.

3. PLB ROBUSTNESS
Another way to look at technology mapping is as a cone

selection problem. A cone is defined as the network or sub-
graph formed by taking a root node, v, and some of its
predecessors, u, such that for every node u in the cone there
exists a path from u to v that lies entirely in the cone. The
subcircuits highlighted in Figure 2b are a examples of cones.

Technology mapping seeks to find the best set of cones
that can be mapped to the current PLB architecture. “Best”
is determined by the optimizing goal, such as area, speed,
or power. If the FPGA architecture consists solely of K-
LUTs, mapping from cones to K-LUTs is a direct process
since any cone with K-inputs or less can be implemented in
a K-LUT. A cone with K-inputs or less is known to be K-
feasible. Thus, the circuit simply has to be decomposed into
a set of K-feasible cones. However, if the FPGA architecture
consists of generic K-input PLBs, mapping from cones to
PLBs is much more difficult since PLBs cannot implement
all possible K-feasible cones. For example, consider the PLB
shown in left and side of Figure 3, which consists of a 2-
LUT feeding an OR gate. An example cone that cannot be
implemented in this PLB is a 3-input AND gate shown in
the right hand side of Figure 3. Due to this limitation,
when technology mapping to generic PLBs, heuristics are
necessary to either decompose the circuit such that it can
directly map to the PLB architecture or have a selection
process that can discard cones that cannot map into the
PLB.
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Figure 3: PLB limitations example.

Although PLBs seem much more limited then fully pro-
grammable K-LUTs, programmable logic is expensive in
terms of area, speed, and power. Thus, PLB non-program-
mable components can be useful in many cases. Further-
more, in general only a small subset of K-feasible cones will
appear in most logic circuits. Thus, so long as the PLB can
capture most K-feasible cones that occur in real circuits, the
benefits of having non-programmable logic will outweigh the
area, power, and speed costs of solely using LUTs. PLB de-
signers come up with clever PLB designs to accomplish this.
One way to aid in this design process is to extract a set of
K-feasible cones from a set of circuits and determine how
many of these cones can fit into a given PLB. A high fit per-
centage implies that the non-programmable components of
the PLB are usually not going to waste and the PLB archi-
tecture will be useful. The tool SATMAP does this exact
task, which will be described in the following section.

4. AN OVERVIEW OF SATMAP
SATMAP has two modes of operation: technology map-

ping and PLB evaluating. In both modes, SATMAP reads
in a description of the PLB architecture. As a technology



mapper, SATMAP finds a feasible circuit mapping to that
architecture; and as a PLB evaluator, SATMAP will de-
termine a cone fit percentage when given a set of circuits.

4.1 PLB Technology Mapper

1 GenerateCones()
2 RemoveNoFitCones()
3 for i ← 1 upto MaxI
4 TraverseFwd()
5 TraverseBwd()
6 end for

7 ConesToPLBs()

Figure 4: A overview of the SATMAP algorithm.

We base our work on IMap [8], an iterative K-LUT tech-
nology mapping algorithm. For a detailed description of
IMap please refer to [8], which shows that IMap produces
amongst the best area results of any known technology map-
per. The basic framework for the SATMAP algorithm is
presented in Figure 4. First, a call to GenerateCones gen-
erates a subset of most K-feasible cones for each node in the
graph, where K is the input size of the PLB. Next, a call
to RemoveNoFitCones discards all cones that cannot fit
into the PLB architecture. This decision process uses SAT
and will be described in the following section. Once a set of
valid cones is found, a series of forward and backward graph
traversals is started to select the best cover of the graph.
The cost of the cover is measured in terms of area and depth.
The forward traversal, TraverseFwd, selects a cone for
each node, and the backward traversal, TraverseBwd, se-
lects a set of cones to cover the graph. Iteration is beneficial
because every backward traversal influences the behavior of
the forward traversal that follows it.

During the forward traversal, the algorithm updates the
depth and the area flow for every node and edge encoun-
tered. Area flow is a heuristic for estimating the area of the
mapping solution below a node or an edge where minimizing
it leads to smaller mapping solutions [8]. At each internal
node v, a cone rooted at v is selected to cover v and some of
its predecessors in a mapping solution. The quality of the
mapping solution is determined by the selection procedure
and thus the set of cones selected.

During depth-oriented mapping, on the first mapping it-
eration, the cone with the lowest depth is selected. The first
forward traversal establishes the optimal mapping depth,
ODepth , which can then be used in subsequent iterations to
bound the depth of cones selected at every node. Using the
optimal depth and the height of a node v, a bound can be
defined on the depth of a cone Cv as follows

depth(Cv) ≤ ODepth − height(v). (1)

The height of a node or cone is defined as the longest path
from that node or cone to a primary output of the circuit.
A primary output is any node that does not feed anything
else in the circuit, such as a output pin. Cones that meet
the bound requirement are preferred and among a set of
cones that meet the bound requirement, cones with lower
area flows are selected. This selection strategy ensures that
the mapping solutions will still achieve the optimal depth
selected while minimizing area.

During area-oriented mapping, the cone with the lowest
area flow is selected and if cones are equivalent in area flow,
then the one with the lowest depth is selected.

During the backward traversal, internal nodes of the graph
are visited in the reverse topological where a cover of cones is
produced. During this traversal, the height(v) of all internal
nodes are updated to the height of the cone covering it. This
is for use in Equation 1 in the next forward traversal. If v
is found in several cones, the largest height is used.

Finally, a call to ConesToPLBs converts the cones se-
lected by the final backward traversal into PLBs.

4.1.1 Generating k-Feasible Cones
A version of the algorithm described in [17] is used to

generate and store all K-feasible cones in the graph. The
K-feasible cones are generated as the graph is traversed in
topological order from primary inputs to primary outputs.
At every internal node v, new cones are generated by com-
bining the cones at the input nodes. In contrast to the
original IMap algorithm which combined the cones in every
possible way, in our work, the cone generation algorithm
combines cones if they have no more (k + e) inputs in to-
tal. As long as e was set to a sufficiently high number (2
in the experiments), this heuristic sped up the cone gener-
ation process without significantly impacting the quality of
the mapping solution.

4.2 PLB Evaluate

1 X ← GenerateCones()
2 Y ← RemoveNoFitCones()
3 FitPercent← (X − Y )/X

Figure 5: A overview of the PLB Evaluator.

As stated previously, PLBs that can capture the function-
ality of most cones found in real circuits are desired since
their non-programmable components will not be wasted. In
order to help find such PLBs, SATMAP can be used to
return a PLB cone fit percentage where a high fit percent-
age is preferred. This fit percentage can be found by taking
a subset of steps from the technology mapping algorithm.
In PLB evaluate mode, SATMAP generates a set of K-
feasible cones extracted from a list of circuits given to it.
Next, it removes the set of cones that cannot fit into the
current PLB architecture using our SAT based decision pro-
cess. Recording the number of cones generated and discared,
a fit percentage for various PLB architectures can be found
as shown in Figure 5, line 3.

5. CONE FITTING USING SAT
In order to determine if a cone can fit into a PLB, we

adapt a technique used previously in [19]. In [19], the au-
thor formulates the cone fitting problem as a SAT problem.
The SAT problem seeks an assignment to the variables of a
Boolean function, F , such that F will evaluate to true. If
this assignment is possible, F is said to be satisfiable. SAT
solvers are tools used to solve the SAT problem [9]. In gen-
eral, SAT solvers only work on Boolean functions expressed
in Conjunctive-Normal-Form (CNF), where the expression
consists of a conjunction of clauses and each clause consists
of a disjunction of literals. Figure 6 is an example Boolean



function in CNF. In CNF, the SAT problem seeks an as-
signment to the variables of F such that each clause has
at least one literal evaluating to true. When relating this
to our cone fitting problem, a satisfiable assignment implies
that the cone will fit into the PLB architecture, otherwise,
a fit is not possible.

F = (x1 + x2������� ) · (x2 + x3 + x4)� ��� � ·(x2)

literal clause

Figure 6: An example Boolean function in CNF.

A detailed derivation of converting our cone fitting prob-
lem into a SAT problem is shown in [19]. We use an ex-
ample to describe the basic mechanism for determining if a
K-feasible cone can be implemented in a general K-input
PLB.
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Figure 7: Example PLB.

Figure 7 shows an example of a PLB that is more com-
plicated than a simple LUT. It consists of a 2-LUT followed
by an AND gate (2-LUTAND). The bits L1 . . . L5 represent
the configuration bits for this PLB.

The function of this PLB f(x1, x2, x3) can be described in
terms of its configuration bits (L1 . . . L5), inputs (x1x2x3),
output (f), and wire connections (M, N) to form a char-
acteristic function. The characteristic function describes a
valid input-output behaviour of the circuit. Thus, by set-
ting the output variables to match the function in question,
a satisfiable assignment will imply that there is a valid set of
input vectors and configuration bits to realize this function.
For small SAT instances, modern SAT solvers (Chaff [9]) can
be used to efficiently solve the problem. In fact, these solvers
are routinely used on SAT problems that have thousands of
Boolean variables.

5.1 Constructing CNF Expression
To derive the characteristic function of the current PLB

architecture, we use a conversion process as described in [7].
This produces a CNF formula which describes all valid in-
puts, output, configuration bits, and internal signal vectors.
For example, consider Figure 8. It shows the characteris-
tic function for an AND gate, followed by the characteristic
function of two chained AND gates.

Note that Equations 2 and 3 will be satisfied if and only
if the variables representing each input, output, and inter-
nal wires hold a feasible logic representation. For the single
AND gate, the CNF can only be satisfied for input and out-
put combinations that are consistent with the AND function
(e.g. (A = 0, B = X, Z = 0), (A = X, B = 0, Z = 0) or

A
Z

B

F1(A, B, Z) = (A + Z) · (B + Z) · (A + B + Z) (2)

Y
C

B
Z

A

F2(A,B, C, Z, Y ) =(A + Z) · (B + Z) · (A + B + Z)

· (Z + Y ) · (C + Y ) · (Z + C + Y )
(3)

Figure 8: AND gate characteristic functions.

(A = 1, B = 1, Z = 1). Similarly, the CNF for the cas-
caded AND structure can only be satisfied with values such
as (A = 1, B = 1, C = 0, Z = 1, Y = 0). [7] and [19] have a
more detailed explanation on how to derive these logic cir-
cuit characteristic functions. A PLB characteristic function
can be used for PLB legality checking by first constraining
the input and output variables according to a given cone
truth table under consideration. Next, the CNF formula is
run through a SAT solver to determine if there is a valid
combination of configuration bits and intermediate signals
that can achieve the combination of inputs and outputs. For
example, let us consider input

�
of Figure 8 to be a con-

figuration bit. To check if the constraint ABY = 111 is
feasible, we attempt to find if F2(A = 1, B = 1, C, Z, Y = 1)
is satisfiable. Clearly, this will return true with C = 1.

The previous example only shows that Y = 1 is possible
if AB = 11. This does not determine if all possible assign-
ments to AB can yield a given 2-input function. To check if
a 2-input function can be implemented with our simple cir-
cuit, all assignments to AB need to be explored. This can
be thought as adding a universal quantifier to the variables
AB. In informal terms, function fitting is the problem of
determining if there exists a configuration to C such that
for all values to AB, output Y is equivalent to some func-
tion f . Stating the cone fitting problem in this way forms a
quantified Boolean formula (QBF) as shown in Figure 9 1.
To model this such that the problem still can be solved us-

∃C ∀AB(Y ≡ f) (4)

Figure 9: QBF representation of cone fitting prob-

lem.

ing SAT, its CNF is replicated 2n times to form a new CNF
equation, where n represents the input size of the cone be-
ing mapped. Each replecant of the basic PLB CNF equation
represents one entry in the cone’s truth table (i.e. one pos-
sible assignment to variables AB). SAT is performed on the
new CNF formula to check if the function can fit into the
PLB where a satisfying assignment implies that there exists
an assignment to the configuration variables such that the
PLB can implement a given function f .

A detailed example of this procedure using the PLB shown
in Figure 7 follows. Notice the internal wires have been
marked with variable names (M, N) for the purpose of CNF
construction. In the following steps, f represents the func-
tion of the cone under consideration for mapping, ��� rep-

1The full expression is ∃C ∀AB ∃Z(Y ≡ f); innermost ex-
istential quantifiers do not to be explicitly shown.



i ��� fi

0 000 0
1 001 0
2 010 0
3 011 0
4 100 0
5 101 0
6 110 0
7 111 1

Table 1: Truth Table describing f .

resents input vector x1x2x3 = i, and fi = f( ��� ).
Step 1: Create CNF for individual elements in the PLB.

GLUT = (x1 + x2 + L1 + M) · (x1 + x2 + L1 + M)

· (x1 + x2 + L2 + M) · (x1 + x2 + L2 + M)

· (x1 + x2 + L3 + M) · (x1 + x2 + L3 + M)

· (x1 + x2 + L4 + M) · (x1 + x2 + L4 + M)

(5)

GMUX = (L5 + x3 + N) · (L5 + x3 + N) · (L5 + N) (6)

GAND = (M + f) · (N + f) · (M + N + f) (7)

Step 2: Formulate the PLB CNF from Equations 5, 6,
and 7. Note that Equation 8 is an expression dependent
on the PLB inputs and output (x1−3,f), intermediate wire
variables (M, N), and configuration variables (L1−5).

GPLB( ��� , fi) = GLUT ·GMUX · GAND (8)

Step 3: Replication of Equation 8 and constrain inputs and
output according to function f( � ).

GTotal = GPLB( � 0, f0) · GPLB( � 1, f1)

· GPLB( � 2, f2) ·GPLB( � 3, f3)

· GPLB( � 4, f4) ·GPLB( � 5, f5)

· GPLB( � 6, f6) ·GPLB( � 7, f7)

(9)

Although not explicitly shown in Equation 9, the config-
uration bits are represented by the same variables (L1−5)
in each GPLB( � � , fi) instance, where as all other signals
(M, N) are replaced by unique variables in each instance.
This preserves the meaning of the existential quantifier ap-
plied to the configuration bits when in QBF form. The
existential quantifier ensures only one configuration will be
returned. As a last step, Equation 9 is passed into a SAT
solver which will find a satisfying assignment if the cone fits
in the PLB structure.
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Figure 10: Virtual Multiplexers.

Finally, we note that the pins in the previous example
PLB are not permutable. Given the labeling convention in
Figure 7, the function f = (x1+x2)·x3 can be implemented,
but the function f = (x1 + x3) · x2 cannot. However most
FPGA routing structures are flexible, which allow the input
labels in Figure 7 to be permuted. To model this, we use
virtual multiplexers controlled by virtual configuration bits
V1 . . . V9, as shown in Figure 10. Thus, if we wished to
map f = (x1 + x3) · x2 into this network then the virtual
multiplexers would force x1 and x3 onto the first two pins
of the 2-LUTAND and x2 to the third pin feeding the 2-
AND gate to generate a satisfiable solution. Adding virtual
multiplexors can be easily incorporated into the previous
example by first adding the virtual multiplexer characteristic
functions to Step 1 then following the rest of the steps as
shown previously.

6. RESULTS

6.1 Evaluation of Various PLBs
To show the power of the SATMAP algorithm, sev-

eral unrelated PLB architectures were evaluated. Figure 11
shows the five different PLB architectures used for evalu-
ation. PLB (a) is derived from Altera’s Apex20k archi-
tecture [2], where as the other structures are derived for
research purposes only. To evaluate the versitility of each
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Figure 11: PLB architectures.

PLB, a set of cones were extracted from a list of circuits
taken from the MCNC benchmark suite [20] (approximately
1000 K-input cones per circuit, where K was the input size
of the PLB). These cones were tested for PLB fitting using
the Chaff [9] SAT solver. The circuits used were unrelated
to generate a large set of dissimilar cones. Table 2 shows the
PLB fit percentage of cones per circuit. The last row shows
the total percentage of all cones that fit. Note that the cone
fit percentage varies wildly for all PLBs depending on the
circuit. This shows that PLB usefulness is dependent on the
application of the circuit. Interestingly, PLB (b) failed for
all circuits except the ALU circuit (C2670). A reason for
this is because PLB (b) uses an XOR gate and XOR gates are



Circuit a b c d e
C2670 27.9 1.59 41.8 0.00 0.00
ex5p 91.4 0.00 49.7 0.00 0.00
clma 61.5 0.00 40.5 1.29 1.29
dalu 78.2 0.00 38.5 0.00 0.00
des 12.2 0.00 72.6 0.00 0.00
i9 87.4 0.00 18.8 0.00 0.00
x3 21.5 0.00 38.9 20.2 20.1
f51m 21.7 0.00 18.0 0.00 0.00
misex3 70.2 0.00 45.4 11.8 12.9
mm30a 20.8 0.00 0.20 0.00 0.00
mult16b 2.91 0.00 0.00 0.00 0.00
% Fit 46.0 0.151 36.4 3.34 3.44

Table 2: Percentage of Cones that Fit into PLB.

very rare in most control circuits and are generally used for
arithmetic logic.

6.2 Technology Mapping to Apex20k PLB
The results of the SATMAP technology mapper are

shown here. The PLB of choice was the 5-input Altera
Apex20k PLB. A simplified view, shown in Figure 11a, is
used in our experiments. Although a simplified PLB was
used, routing constraints were maintained. These constraints
required the PLB AND-input to come from an adjacent PLB
as illustrated in Figure 12. This can be thought as allowing
at most one fanout per PLB to enter a PLB AND-input. This
constraint disallows many situations such as a PLB fanout
to multiple PLB AND-inputs or an IO-pin that directly feeds
a PLB AND-input.

:<;�=<>@?

:<;�=<>@?

Figure 12: Apex20k PLB Routing Constraints

Table 3 and Table 4 show the total area and depth costs
for the largest 20 MCNC benchmark circuits [20]. In Table 3
depth was the primary optimizing goal and in Table 4 area
was the primary optimizing goal. For depth the unit delay
model is used and for area cost each 4-LUT is given a cost
of 1. Area cost uses the assumption that the area of an AND

gate is insignificant compared to the area of a 4-LUT. The
Ratio is the Total ratio when compared against SATMAP

for each respective goal.
The results clearly show that SATMAP is an effective

tool for technology mapping directly to PLBs as it outper-
forms any 4-LUT technology mapper. The results are not
surprising, since Table 2 shows that the Altera Apex20k
PLB can fit a large percentage of cones for any circuit.

7. SCALABILITY ISSUES
Profiling has shown that SATMAP spends most of its

time generating cones [8] and running SAT. Generating cones
takes approximately 90% of the running time for 5-input
PLBs, while on top of that, each 5-input cone takes approx-
imately 0.01 to 1 second to evaluate using the Chaff SAT
solver [9]. Furthermore, when applied to technology map-
ping, this technique is not scalable to PLBs with 7-inputs
or more. Heuristics in both of these areas are necessary if
any technology mapping should occur for larger PLBs.

7.1 Generating Cones
To reduce the runtime of generating cones, a non-

exhaustive approach must be taken. One such approach in-
volves a top-down method where a cone is grown downwards
starting from the root node. This contrasts with the current
bottom up approach we use, which is described in [17]. This
could effectively make cone generation constant time with
respect to the number of nodes in the network. Heuristics
such as area flow would be used to find cones that mini-
mize area costs. An added benefit of reducing the number
of cones is that SAT would be applied to a much smaller set
of cones, further improving runtime.

7.2 Hardware Acceleration
For the large PLBs evaluated such as Figure 11e, some

cones had SAT running times of more than 10 seconds which
is not practical for technology mapping2. Previous work on
Hardware Accelerated SAT solvers can be applied to SAT
for up to 80 times speedups [1]. Note that the SAT solvers
created in [1] are general SAT solvers, thus their run times
include compilation time of the CNF formulae. Work by
Zhong et al. [11] shows that compilation time has a signifi-
cant effect on overall runtime. Since SATMAP is aware of
the PLB structure before it begins, it can cut out compila-
tion of the CNF formula further increasing the speedup.

8. CONCLUSIONS AND FUTURE WORK
This paper has presented a method for evaluating the effi-

ciency of an arbitrary FPGA PLB. We have shown how our
techniques can be applied to several existing FPGA logic
structures. In particular, the SATMAP algorithm was able
to produce significant area savings using the Apex20k PLB
structure that contains a 4-input lookup table followed by a
2-input AND gate.

This work represents only the first step in the search
for the optimal FPGA PLB. Our research will progress in
two distinct areas. The first is hardware acceleration for
SATMAP. SAT is NP-complete and thus takes a large
amount of computation time even with advanced heuristics.
The use of specialized hardware acceleration circuitry should
speed up our technology mapping time by an order of mag-
nitude or more for very complex PLB structures.

Our second area of research involves an automatic method
of chosing the FPGA PLBs to explore. We are exploring
a genetic algorithm that can create candidate PLBs from
primitive elements such as lookup tables, basic gates, mul-
tiplexers and adder structures.

Finally, we must note that the choice of PLB cannot be
explored in complete isolation from routing architectures.
Issues such as PLB-pin permutability can have a significant

2Experiments run on a Sunblade 150 with 1.5GB of RAM.



Depth Orientated k = 4
SATMAP IMap FlowMap-r0 ZMap

Circuit Area Depth Area Depth Area Depth Area Depth
alu4 1003 7 1045 7 1244 7 1204 7
apex2 1173 8 1236 8 1468 8 1400 8
apex4 997 7 1131 6 1131 6 1113 6
bigkey 1145 4 1586 3 1362 3 1698 3
C6288 814 24 1023 26 539 25 546 25
clma 4689 15 5032 14 5359 15 5297 15
des 1128 6 1239 6 1522 6 1359 6
diffeq 904 13 1025 12 1420 12 1013 12
dsip 1367 4 1144 4 1591 4 1144 4
elliptic 2094 16 2239 16 3560 16 2708 16
ex1010 2180 8 2639 8 2684 8 2657 8
ex5p 983 6 991 7 1055 7 1051 7
frisc 2275 21 2397 21 3396 21 2858 21
i10 811 14 914 15 953 14 867 14
misex3 1117 6 1115 7 1293 7 1244 7
pdc 1829 10 2180 10 2216 10 2147 10
s38417 4228 10 4296 10 3992 10 3720 10
s38584.1 3963 10 4124 11 4437 10 4176 10
seq 1102 6 1120 7 1385 7 1292 6
spla 1271 8 1380 8 1612 8 1549 8
Total 35073 203 37856 206 42219 204 39043 203
Ratio 1.000 1.000 1.079 1.015 1.204 1.005 1.113 1.000

Table 3: Comparing SATMAP to IMap, FlowMap-r0, and ZMap when performing depth-oriented mapping

with k = 4.

Area Orientated k = 4
SATMAP IMap FlowMap-r3 ZMap

Circuit Area Depth Area Depth Area Depth Area Depth
alu4 1002 9 1020 9 1144 9 1129 11
apex2 1222 13 1173 11 1290 10 1308 13
apex4 978 9 1011 10 1099 8 1115 9
bigkey 920 5 1034 4 1254 4 1145 4
C6288 765 34 972 44 549 25 562 27
clma 4261 22 4476 20 4950 17 5014 26
des 1103 10 1161 9 1237 8 1194 9
diffeq 921 18 1049 16 931 14 941 14
dsip 1146 5 1144 4 1145 4 1367 5
elliptic 2009 22 2204 23 2133 18 2342 22
ex1010 1995 13 2138 14 2397 11 2325 14
ex5p 906 11 923 10 956 9 993 11
frisc 2152 29 2353 33 2659 24 2624 29
i10 785 23 899 22 774 17 779 21
misex3 1062 10 1078 9 1185 9 1184 10
pdc 1773 15 1755 17 1907 12 1928 17
s38417 4039 15 4084 13 3803 12 3586 14
s38584.1 3929 14 4018 16 3921 12 3762 16
seq 1109 10 1083 11 1204 9 1182 11
spla 1287 11 1284 12 1412 11 1403 12
Total 33364 298 34859 307 35950 243 35883 295
Ratio 1.000 1.000 1.045 1.030 1.078 0.815 1.076 0.990

Table 4: Comparing SATMAP to IMap, FlowMap-r3, and ZMap when performing area-oriented mapping

with k = 4.



impact on the overall area of the FPGA even if we are able to
reduce the total number of PLBs required to map a circuit.
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