
FPGA Logic Synthesis using Quantified Boolean

Satisfiability

Andrew Ling1, Deshanand P. Singh2, and Stephen D. Brown2

1 University of Toronto, Toronto ON, Canada,
aling@eecg.toronto.edu

2 Altera Corporation, Toronto Technology Centre, Toronto ON, Canada,
{dsingh|sbrown}@altera.com

Abstract. This paper describes a novel Field Programmable Gate Ar-
ray (FPGA) logic synthesis technique which determines if a logic function
can be implemented in a given programmable circuit and describes how
this problem can be formalized and solved using Quantified Boolean Sat-
isfiability. This technique is general enough to be applied to any type of
logic function and programmable circuit; thus, it has many applications
to FPGAs. The applications demonstrated in this paper include FPGA
technology mapping and resynthesis where their results show significant
FPGA performance improvements.

1 Introduction

FPGAs are integrated circuits characterized by two distinct features: programmable
logic blocks and programmable interconnect structures. Sec. 1.1 describes a
simplified version of the logic block used in most modern FPGA architectures
and Sec. 1.2 describes different topologies used to implement the FPGA’s pro-
grammable interconnect structure.

1.1 Programmable Logic Blocks

An example of a programmable logic block (PLB) is shown in Fig. 1(a). The logic
block is composed of a 4-input lookup table (4-LUT) that is capable of imple-
menting any arbitrary boolean function of 4 variables. The LUT is implemented
with a set of 24 = 16 static RAM (SRAM) bits that are programmed with the
truth-table values for the function to be implemented. The 4 inputs (A,B,C,D)
feed a multiplexer that selects the appropriate truth-table value from the SRAM
bits. Furthermore, Fig. 1(a) shows that the LUT output can either be sent di-
rectly to the PLB output, or it can be registered.

In general, many modern PLBs are based on the k-input lookup table (k-
LUT) which contains 2k SRAM bits. Although the k-input LUT is very flexible,
it is usually beneficial to add dedicated non-programmable logic to the PLB
such as adders and XOR/AND-gates [1, 16]. These features increase the number
of functions that can be implemented by a PLB without the power, speed, and
area costs associated with programmable logic. However, because this reduces the
flexibility of the PLB, optimal mapping of functions to these non-programmable
components is difficult.

2

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

Configuration IN

Configuration OUT

16:1 D Q

R

LE Out

A

D

B
C

Reset
Clock

SRAM BIT

LUT

PLB CLB CLB

CLB CLB CLB

CLB CLB CLB

PLB PLB

PLBPLBPLB

PLB PLB PLB

(a) Programmable Logic Block (b) Routing Structure

Fig. 1. Simplified FPGA.

1.2 Programmable Interconnect

Fig. 1(b) shows a popular implementation of the programmable interconnect
known as the segmented interconnect structure [16]. The horizontal and verti-
cal routing channels consist of a set of prefabricated metal segments that can
be connected together with programmable routing switches. In Fig. 1(b), all of
the metal segments only span the length of one PLB but a wider distribution
of segment lengths is typically used in commercial architectures [1, 16]. Connec-
tions between PLBs are made by “connecting” the appropriate programmable
switches. Fig. 1(b) highlights an example connection between two PLBs.

1.3 Motivation

The cost of implementing a circuit in an FPGA is directly proportional to the
number of PLBs required to implement the functionality of the circuit. FPGAs
are sold in a number of pre-fabricated sizes. Decreasing the number of PLBs
may allow a circuit to be realized in a smaller FPGA. Typical pricing is roughly
linear to the number of PLBs in the FPGA device [8].

The technology mapping step of the FPGA CAD flow takes a gate-level
representation of a circuit and produces a netlist of PLBs which implements
the same functionality as the gate-level description. Technology mapping has
a significant impact on the number of PLBs required to realize a particular
circuit. In this paper we will show how methods based on Quantified Boolean
Satisfiability can be used to significantly improve state-of-the-art technology
mapping algorithms.

3

2 Background

2.1 Technology Mapping

The goal technology mapping step is to reduce area, delay, or a combination
thereof in the PLB network that is produced. Often existing literature on tech-
nology mapping uses the term depth to refer to delay. We also adopt this termi-
nology.

The process of technology mapping is often treated as a covering problem.
For example, consider the process of mapping a circuit into LUTs as illustrated
in Fig. 2. Fig. 2a illustrates the initial gate level network, Fig. 2b illustrates a
possible covering of the initial network using 4-input LUTs, and Fig. 2c illustrates
the LUT network produced by the covering. In the mapping given, the gate
labeled x is covered by both LUTs and is said to be duplicated. Techniques that
map for depth use large amounts of duplication to obtain solutions of reduced
depth while techniques that map for area limit the use of duplication as it often
increases the area of the mapped solution.

a b c d e

f g

a b c d e

f g

a b c d e

f g

LUT LUT

(a) (b) (c)

x x

Fig. 2. (a) the initial netlist. (b) possible covering. (c) the mapping produced.

Technology Mapping for LUTs Due to the popularity of LUT-based FPGA
architectures [1, 16], a large body of existing work has studied area-driven LUT
mapping algorithms. We review some of the key literature here.

The area minimization problem was shown to be NP-hard for LUTs of in-
put size four and greater [9]. Thus, heuristics are necessary to solve the area
minimization problem in a reasonable amount of computation time. Early work
considered the decomposition of circuits into a set of trees which were then
mapped for area [10]. The area minimization problem for trees is much simpler
and can be solved optimally using dynamic programming. However, real cir-
cuits are rarely structured as trees and tree decomposition prevents much of the
optimization that can take place across tree boundaries.

In a duplication-free mapping, each gate in the initial circuit is covered by a
single LUT in the mapped circuit. The area minimization problem in duplication-
free mapping can be solved optimally by decomposing the circuit into a set of

4

maximum fanout free cones (MFFCs) which are then mapped for area [4]. Al-
though the area minimal duplication-free mapping is significantly smaller than
the area minimal tree mapping, the controlled use of duplication can lead to
further area savings. In [6], heuristics are used to mark a set of gates as du-

plicable. Area optimization is then considered within an extended fanout free
cone (EFFC) where an EFFC is an MFFC that has been extended to include
duplicable gates.

2.2 Terminology

The remainder of this paper uses standard nomenclature for describing FPGA
technology mapping algorithms. This is as follows: The combinational portion of
a LUT network can be represented as a directed acyclic graph (DAG). A node
in the graph represents a LUT, primary input (PI), or primary output (PO). A
directed edge in the graph with head u, and tail v, represents a signal in the
logic circuit that is an output of node u and an input of node v.

A cone of v, Cv, is a subgraph consisting of v and some of its non-PI pre-
decessors such that any node u ∈ Cv has a path to v that lies entirely in Cv .
Node v is referred to as the root of the cone. At a cone Cv, the set of input
edges is the set of edges with a tail in Cv and the set of output edges is the
set of edges with v as a head. The fanin size of a cone is the number of input
edges. A cone with n input edges is known to be n-feasible and can be trivially
implemented with an n-LUT. A fanout free cone (FFC) is a cone with output
edges only originating from the root of the cone. A maximum fanout free cone
(MFFC) is a FFC maximizes the number of nodes contained in the FFC.

2.3 Quantified SAT

As stated in Sec. 1, the main contribution of this work is to examine the use of
Quantified Boolean Satisfiability for use in FPGA technology mapping. Quanti-
fied SAT is the problem of determining if a quantified Boolean formula (QBF),
F = Q1x1...Qnxnf(x1...xn) where Qi ∈ {∃, ∀}, has an assignment to its vari-
ables, x1...xn, such that F evaluates to 1. If so, F is said to be satisfiable, oth-
erwise it is unsatisfiable. This differs from the SAT problem since SAT seeks a
single assignment to its variables to satisfy the Boolean formula. Quantified SAT,
however, seeks all assignments to its universally quantified variables to satisfy
a QBF. For example, consider the expressions in Equ. 1. The first expression
shows a satisfiable Boolean formula with its associated satisfying assignment.
In contrast, simply by adding quantifiers to it, the QBF shown in the second
expression is unsatisfiable due to the universally quantified variable x2.

(x1 + x2) · (x1 + x2) satisfiable → [x1 = 0, x2 = 1]

∃x1∀x2 (x1 + x2) · (x1 + x2) unsatisfiable → [x1 = 0, x2 = {0, 1}]
unsatisfiable → [x1 = 1, x2 = {0, 1}]

(1)

5

For all practical purposes, Quantified SAT only deals with QBFs in Conj-
unctive-Normal-Form (CNF). Thus, the problem of Quantified SAT can be
rephrased to: Given a QBF, F = Q1x1...Qnxnf(x1...xn) where Qi ∈ {∃, ∀},
find an assignment to its variables, x1...xn, such that each clause in f(x1...xn)
has at least one literal that evaluates to 1.

3 Quantified SAT Applied to FPGA Technology Mapping

The goal of FPGA technology mapping is to map logic functions into the FPGA
architecture in an optimized way. Although there are many issues encountered
when reaching this goal, the underlying question asked to solve FPGA technology
mapping is as follows:
Given an n-variable Boolean function, Ffunction(x1, x2, ..., xn), does there exist
a programmable configuration to a circuit such that the output of the circuit will
equal Ffunction(x1, x2, ..., xn) for all inputs? This question is difficult to answer
since FPGAs consist of PLB arrays, which are not able to implement any k-input
logic function. Hence robust heuristics are necessary to map logic functions in
the FPGA programmable fabric.

3.1 Formalizing FPGA Technology Mapping

Assuming that a programmable circuit can be represented as a Boolean function
Gcircuit = G(x1..xn, L1..Lm, z1..zo) where xi, Lj , zk, Gcircuit represent the input
signals, configuration bits, intermediate circuit signals, and output function of
the circuit respectively, the problem of function mapping into programmable
logic can represented formally as a QBF as follows.

∃L1...Lm∀x1...xn∃z1...zo(Gcircuit ≡ Ffunction) (2)

A satisfying assignment to Equ. 2 implies that Ffunction can be realized in the
programmable circuit.

In order to derive Equ. 2, the proposition (Gcircuit ≡ Ffunction) must be
represented as a CNF Boolean formula. This can be done using a well known
derivation technique that converts logic circuits into a characteristic function

in CNF [11]. This CNF formula describes all valid inputs, output, configuration
bits, and internal signal vectors for the configurable circuit. For example, consider
Fig. 3. It shows the basic CNF formula for an AND gate, followed by the CNF
formula of two chained AND gates.

Equations 3 and 4 will be satisfied if and only if the variables representing
each input, output, and internal wires hold a feasible logic representation. For
the single AND gate, this includes all input and output combinations that are
consistent with the AND function (e.g. (A = 0, B = X,Z = 0), (A = X,B =
0, Z = 0) or (A = 1, B = 1, Z = 1). Similarly, for the cascaded AND structure
its characteristic function can only be satisfied with values such as (A = 1, B =
1, C = 0, Z = 1, Y = 0).

6

A
Z

B

F1(A,B, Z) = (A + Z) · (B + Z) · (A + B + Z) (3)

Y
C

B
Z

A

F2(A, B, C, Z, Y) = (A + Z) · (B + Z) · (A + B + Z)

· (Z + Y) · (C + Y) · (Z + C + Y)
(4)

Fig. 3. AND gate CNF formulae

The previous conversion technique for the cascaded AND structure can be
extended to much larger circuits such as PLBs. This creates a characteristic
function, Ψ , dependent on variables x1, ..., xn, L1, ..., Lm, z1, ..., zo, and G which
represent the inputs, programmable bits, intermediate wires, and output of the
circuit respectively. Thus, the proposition (Gcircuit ≡ Ffunction) can be formed
by substituting all instances of the output variable G in Ψ by the expression rep-
resenting Ffunction. This is shown in Equ. 5 where the notation [G/F (x1, ..., xn)]
indicates that all instances of G have been replaced by F (x1, ...xn). Sections fol-
lowing this will use similar notation to represent the substitution operation.

[Gcircuit ≡ Ffunction] ≡ Ψ [G/F (x1, ..., xn)]

≡ ∃L1...Lm∀x1...xn∃z1...zoψ [G/F (x1, ..., xn)]
(5)

3.2 Removing Quantified Variables

Although Quantified SAT solvers have shown initial promising results, it is often
still faster to solve a QBF by removing the universal quantifiers and converting it
to a SAT problem [15]. Removing the universal quantifiers eliminates the need to
find multiple SAT instances for all universally quantified variable assignments,
thus saving time; however, in doing so, the size of the Boolean formula increases
substantially. To remove the universal quantifiers in a QBF, F , its proposition,
f , is replicated to explicitly enumerate all possible assignments of the univer-
sally quantified variables. These replicated formulae are then conjoined with the
logical AND operator to form a Boolean function that can be solved with SAT.

In order to give better understanding to the previously described ideas, an
example is given. Assume that the function listed in Fig. 4 needs to be im-
plemented in the adjacent programmable circuit. The circuit in Fig. 4 consists
of a 2-LUT which feeds into a 2-input AND gate. In order to test if Fig. 4 can
implement a given function, the following steps are taken.

7

i
���

Fi

0 000 0
1 001 1
2 010 0
3 011 0
4 100 0
5 101 1
6 110 0
7 111 1

L1

L2

L3

L4

x1 x2 x3

f

2-LUT

AND-GATE

VccL5
0 1

00

01

10

11

M

N

Fig. 4. Example Programmable Circuit

Step 1: Create CNF for individual elements in programmable circuit.

GLUT = (x1 + x2 + L1 + z1) · (x1 + x2 + L1 + z1)·

(x1 + x2 + L2 + z1) · (x1 + x2 + L2 + z1)·

(x1 + x2 + L3 + z1) · (x1 + x2 + L3 + z1)·

(x1 + x2 + L4 + z1) · (x1 + x2 + L4 + z1)

(6)

GMUX = (L5 + x3 + z2) · (L5 + x3 + z2) · (L5 + z2) (7)

GAND = (z1 + G) · (z2 + G) · (z1 + z2 + G) (8)

Step 2: Formulate the programmable circuit CNF from equations 6, 7, and 8.

Gcircuit = GLUT ·GMUX ·GAND (9)

Step 3: Replication of equation 9 to remove quantified variables. This formulates
GTotal where a satisfiable assignment to GTotal implies F can be realized in the pro-
grammable circuit.

GTotal = Gcircuit[
�

/
�

0, G/F0, z1/z3, z2/z4] · Gcircuit[
�

/
�

1, G/F1, z1/z5, z2/z6]·

Gcircuit[
�

/
�

2, G/F2, z1/z7, z2/z8] ·Gcircuit[
�

/
�

3, G/F3, z1/z9, z2/z10]·

Gcircuit[
�

/
�

4, G/F4, z1/z11, z2/z12] · Gcircuit[
�

/
�

5, G/F5, z1/z13, z2/z14]·

Gcircuit[
�

/
�

6, G/F6, z1/z15, z2/z16] · Gcircuit[
�

/
�

7, G/F7, z1/z17, z2/z18]
(10)

Note that in equation 10, the configuration bits are represented by the same
variables (L1−5) in each Gcircuit(X � , fi) instance, where as all other signals are
unique variables in each instance. This ensures that only one configuration will
exist for all entries of the truth table.

4 Quantified SAT FPGA Applications

4.1 Application 1: General Technology Mapping

The technology mapping problem for general PLBs can be solved using similar
techniques described in the Sec. 2.1. However, unlike k-LUTs, not every k-feasible

8

cone can be implemented in a k-input PLB. Thus, a legality check using our
Quantified SAT technique must be done before a function is mapped into a k-
input PLB. To explore this idea, we developed a tool called SATMAP which
is a general PLB technology mapper.

1 GenerateCones()
2 for i ← 1 upto MaxI
3 TraverseFwd()
4 TraverseBwd()
5 end for

6 ConesToPLBs()

Fig. 5. A high-level overview of the SATMAP algorithm.

An Overview of SATMAP SATMAP is based upon IMap [12], an iterative
k-LUT technology mapping algorithm. We present a high level overview of the
algorithm here. For a detailed description of IMap please refer to [12], which
shows that IMap produces amongst the best area results of any known technol-
ogy mapper. The basic framework for the SATMAP algorithm is presented in
Fig. 5. The key difference between SATMAP and IMap is the function Gener-

ateCones. This generates the set of all k-feasible cones for each node in the
graph. In contrast to IMap, SATMAP adds a legality check to every cone where
cones that cannot fit into the PLB structure are discarded.

After GenerateCones, a series of forward and backward graph traversals
is started to select the best cover of the graph. The cost of the cover is measured
in terms of area and depth. The forward traversal, TraverseFwd, selects a
cone for each node, and the backward traversal, TraverseBwd, selects a set of
cones to cover the graph. Iteration is beneficial because every backward traversal
influences the behavior of the forward traversal that follows it.

During the forward traversal, the algorithm updates the depth and the area

flow for every node and edge encountered. Area flow is a heuristic for estimating
the area of the mapping solution below a node or edge, where minimizing area
flow leads to smaller mapping solutions [12]. At each internal node v, a cone
rooted at v is selected to cover v and some of its predecessors in a mapping
solution. The quality of the mapping solution is determined by the selection
procedure and thus the set of cones selected.

During depth-oriented mapping, on the first mapping iteration, the cone with
the lowest depth is selected. The first forward traversal establishes the optimal
mapping depth, ODepth, which can then be used in subsequent iterations to
bound the depth of cones selected at every node. Using the optimal depth and
the height of a node v, a bound can be defined on the depth of a cone Cv as
follows

depth(Cv) ≤ ODepth − height(v). (11)

9

Cones that meet the bound requirement are preferred and among a set of cones
that meet the bound requirement, cones with lower area flows are selected. This
selection strategy ensures that the mapping solutions will still achieve the opti-
mal depth selected while minimizing area.

During area-oriented mapping, the cone with the lowest area flow is selected
and if cones are equivalent in area flow, then the one with the lowest depth is
selected.

During the backward traversal, internal nodes of the graph are visited in the
reverse topological where a cover of cones is produced. During this traversal, the
height(v) of all internal nodes are updated to the height of the cone covering it.
This is for use in Equ. 11 in the next forward traversal. If v is found in several
cones, the largest height is used.

Finally, a call to ConesToPLBs converts the cones selected by the final
backward traversal into PLBs.

Generating k-Feasible Cones A version of the algorithm described in [6] is
used to generate and store all k-feasible cones in the graph. The k-feasible cones
are generated as the graph is traversed in topological order from PIs to POs.
At every internal node v, new cones are generated by combining the cones at
the input nodes. In contrast to the original IMap algorithm which combined the
cones in every possible way, in our work, the cone generation algorithm combines
cones if they have no more (k + e) inputs in total. As long as e was set to a
sufficiently high number (2 in the experiments), this heuristic sped up the cone
generation process without significantly impacting the quality of the mapping
solution. During the generation, a cone legality check is performed using the
function fitting technique described in Sec. 3.1. If a cone does not fit into the
PLB architecture, it is discarded, leaving a legal set of cones for the forward and
backward traversals of SATMAP.

4.2 Application 2: Area-driven mapping for k-LUTs

When mapping a LUT network for area, one must attempt to reduce the number
of LUTs in the network yet maintain the original functionality. The more LUTs
that can be removed, the farther the original circuit is from the optimal mapping.
This can be achieved by resynthesizing smaller subcircuits and applying this in
a sliding window fashion over the larger circuit. These subcircuits form a cone,
therefore by resynthesizing several cones, this will reduce the LUT count of the
overall LUT network. This is simply a logic fitting problem where a logic function
is extracted from a cone consisting of X k-input LUTs and then is checked if
it can fit into a programmable structure containing less than X k-input LUTs.
This can be solved using our Quantified SAT technique.

To illustrate this process, consider Fig. 6. The original cone 6a consists of
three 2-LUTs which implements a three input function. Since only three inputs
enter the cone, it may be possible to resynthesize 6a into 6b to save one LUT.

To determine if resynthesis from 6a to 6b is possible, 6b is converted into
a CNF expression as described in Sec. 3 and the function extracted from 6a is

10

2-LUT

2-LUT

2-LUT

2-LUT2-LUT

(a) Original Cone (b) Resynthesized Cone

Fig. 6. Resynthesis of three-input cone of logic.

tested using Quantified SAT to see if it fits into 6b. If the expression is satisfiable,
resynthesis can occur.

5 Results

5.1 Technology Mapping to Apex20k PLB

The results of SATMAP for PLB technology mapping are shown here. The
PLB of choice was the 5-input Altera Apex20k PLB which consists of a 4-LUT
feeding into a 2-input AND gate. A simplified view, shown in Fig. 7, is used in
our experiments. Although a simplified PLB was used, routing constraints were
maintained. These constraints required the PLB AND-input to come from an
adjacent PLB as illustrated in Fig. 7. This constraint disallows many situations
such as a PLB fanout to multiple PLB AND-inputs or an IO-pin that directly
feeds a PLB AND-input.

4-LUT

Apex 20K PLB

4-LUT

Fig. 7. Two Apex20k PLBs with routing constraints shown.

Tab. 5.1 shows the total depth and area costs for the largest 20 MCNC
benchmark circuits where only the 10 largest circuits have been shown in detail.
The results clearly show that SATMAP 3 is an effective tool for technology
3 SATMAP was incorporated with the Berkeley MVSIS project [3]

11

mapping to PLBs as it outperforms any 4-LUT technology mapper. For depth
the unit delay model is used and for area cost each 4-LUT is given a cost of
1. Area cost uses the assumption that the area of an AND gate is insignificant
compared to the area of a 4-LUT. The upper table show results when depth was
the primary optimizing goal and the lower table show results when area was the
primary optimizing goal. Ratio show is the Total ratio when compared against
SATMAP for each respective goal.

Table 1. Comparing SATMAP to IMap, FlowMap-r3, and ZMap with k = 4.

Depth Orientated k = 4
SATMAP IMap FlowMap-r0 ZMap

Circuit Area Depth Area Depth Area Depth Area Depth

apex2 1173 8 1236 8 1468 8 1400 8
clma 4689 15 5032 14 5359 15 5297 15
dsip 1367 4 1144 4 1591 4 1144 4
elliptic 2094 16 2239 16 3560 16 2708 16
ex1010 2180 8 2639 8 2684 8 2657 8
frisc 2275 21 2397 21 3396 21 2858 21
pdc 1829 10 2180 10 2216 10 2147 10
s38417 4228 10 4296 10 3992 10 3720 10
s38584.1 3963 10 4124 11 4437 10 4176 10
spla 1271 8 1380 8 1612 8 1549 8

Total 35073 203 37856 206 42219 204 39043 203
Ratio 1.000 1.000 1.079 1.015 1.204 1.005 1.113 1.000

Area Orientated k = 4
SATMAP IMap FlowMap-r3 ZMap

Circuit Area Depth Area Depth Area Depth Area Depth

apex2 1222 13 1173 11 1290 10 1308 13
clma 4261 22 4476 20 4950 17 5014 26
dsip 1146 5 1144 4 1145 4 1367 5
elliptic 2009 22 2204 23 2133 18 2342 22
ex1010 1995 13 2138 14 2397 11 2325 14
frisc 2152 29 2353 33 2659 24 2624 29
pdc 1773 15 1755 17 1907 12 1928 17
s38417 4039 15 4084 13 3803 12 3586 14
s38584.1 3929 14 4018 16 3921 12 3762 16
spla 1287 11 1284 12 1412 11 1403 12

Total 33364 298 34859 307 35950 243 35883 295
Ratio 1.000 1.000 1.045 1.030 1.078 0.815 1.076 0.990

5.2 Resynthesis Results

For the resynthesis application, we performed resynthesis on circuits produced by
the ZMap techmapper — one of the best publically available FPGA area-driven
techmappers developed by J. Cong et al. at UCLA [5]. Given a set of circuits,

12

we used ZMap to technology map these circuits to 4-LUTs. After some post
processing done by RASP [5] to further improve area, we ran our resynthesizer 4

on these LUT networks.

4-LUT4-LUT

(a) 7-input Cone

4-LUT 4-LUT4-LUT

(b) 10-input Cone #1

4-LUT

4-LUT

4-LUT

(c) 10-input Cone #2

Fig. 8. Resynthesis Structures

The number of resynthesis structures is countless; however, considering that
the size of the CNF equation is exponential to the number of resynthesis structure
inputs, for practical purposes, our work dealt with cones of fanin size 10 or less.
This limits the number of resynthesis structures to the ones shown in Fig. 8.

Fig. 8a is applied for cones with a fanin size of seven or less and containing
more than two 4-LUTs; Fig. 8b and 8c are applied for cones with a fanin size
of 10 or less and containing more than three 4-LUTs. Resynthesis checking was
done using the Chaff SAT solver developed by M. W. Moskewicz et al. [13].

Benchmark Circuits In our first set of resynthesis experiments, we focused on
a set of circuits taken from the MCNC and ITC’99 benchmark suites ([17],[7]).
These circuits were optimized using SIS [14] and RASP, technology mapped with
ZMap, and resynthesized with our work. The optimization in SIS is particularly
important since the structure of the gate-level netlist can have a significant im-
pact on the mapped area. The left hand table in Tab. 5.2 shows the results.
The ZMap column indicates the number of 4-LUTs the circuit was technol-
ogy mapped to. The Resynth column indicates the number of 4-LUTs after our
resynthesis.

The results clearly show that ZMap does not achieve optimal results; this
implies that all FPGA techmappers that perform worse then ZMap also have
much room for improvement. Notice that the largest decreases in area are seen
in circuits with 3000 LUTs or more, with the largest decrease of more than
9% (s38584.1). This suggests that the deviation from the optimal solution is

4 Our resynthesizer was incorporated with the Berkeley MVSIS project [3]

13

Table 2. Resynthesis results for benchmark circuits and common logic blocks.

Circuit Resynth ZMap Ratio

clma 4792 5014 0.95
b15 1 4112 4291 0.95
b15 1 opt 3772 3879 0.97
s38584.1 3454 3771 0.91
s38417 3444 3586 0.96
b14 2902 3072 0.94
frisc 2571 2624 0.98
pdc 1875 1928 0.97
misex3 1156 1184 0.98
seq 1162 1182 0.98
alu4 1103 1129 0.98
ex5p 968 993 0.97
i10 764 789 0.97

Total 32075 33442 0.96

Building Block Resynth ZMap Ratio

4:1 MUX 2 3 0.67
16:1 MUX 21 29 0.72
32-Bit Priority Encoder 59 74 0.80
4-Bit Barrel Shifter 8 12 0.67
16-Bit Barrel Shifter 32 48 0.67
6-Bit Set Reset Checker 2 3 0.67
2-Bit Sum Compare Const 2 6 0.33
2-Bit Sum Compare 2 3 0.67
6-Bit Priority Checker 3 6 0.50
8-Bit Bus Multiplexor 16 24 0.67

Total 188 253 0.74

proportional to the size of the circuit. The fact that area driven technology
mapping is NP-hard [9] supports this claim.

Building Block Circuits In our second set of resynthesis experiments, we
focused on common digital circuit logic blocks. We started from Verilog code,
synthesized it using VIS [2], then optimized and techmapped the circuits as
in the benchmark circuit section. For illustration, Module 1 shows one Verilog
circuit description that we synthesized then resynthesized.

Module 1 16-Bit Barrel Shifter Verilog Code

module BarrelShifter16Bit(SHIFT,D,Q)

input[1:0] SHIFT;input[15:0] D;

output[15:0] Q;reg[15:0] Q;

always @ (D or Q or SHIFT)

case (SHIFT)

2’b00 : Q=D;

2’b01 : Q={D[3:0],D[15:4]};
2’b10 : Q={D[7:0],D[15:8]};
2’b11 : Q={D[11:0],D[15:12]};

endcase

endmodule

The right hand table in Tab. 5.2 shows our results, where we achieve a re-
duction as large as 67% and an average reduction of 26%. Since these logic
blocks are common in digital circuits, heuristics can be used to identify them
and technology map them to our optimized circuits.

14

It is interesting to note the dramatic differences in results between the bench-
mark circuits and the results of the individual building blocks. We speculate that
common building blocks are being collapsed with other random or glue logic in
the benchmarks. Since we limit the size of the subcircuit resynthesis procedure,
it is likely that we are missing some key resynthesis opportunities.

QBF vs. SAT In order to show the benefits of removing quantifiers in our
QBF to produce a SAT problem as shown in Sec. 3.2, we ran a few cone fitting
examples using a QBF solver and a SAT solver. The example used a 7-input
function realized with two 4-LUTs as in Fig.8a. An unsatisfiable function was
selected so the entire search space was explored. Furthermore, the configuration
bits were pre-configured to vary the size of the search space. This is shown in
Tab. 3. Config Bits shows the number of unconfigured programmable bits in the
circuit; SAT shows the Chaff SAT solver [13] running times on a Sunblade 150
with 2.5 GB of RAM; and QBF shows the Quaffle QBF solver [18] running times
on the same machine.

Table 3. SAT and QBF solver running times.

Config Bits SAT (sec) QBF (sec)

47 0.01 4.16
48 0.38 11.3
49 0.93 45.11
50 1.23 375.12
51 1.75 403.67
52 2.56 1366.66
53 2.70 4117.38

6 Conclusion and Future Work

In this work, we have shown a practical application of Quantified Boolean Sat-
isfiability to the problem of cost reduction of FPGA-based circuit realizations.
We have described two different methods:
– A generic technology mapping that is capable of mapping a circuit descrip-

tion to any arbitrary logic block. This allows for the study of architectural
features that can be used to reduce the number of PLBs required to im-
plement a circuit. In particular, we have shown that the use of an extra
dedicated AND-gate can lead to significant area reductions in many cases.

– A method to reduce the number of k-input LUTs required to implement sub-
circuits for LUT-based FPGA architectures. We have shown area reductions
of up to 67% in some cases using these techniques.

In addition to the presentation of QBF applications to FPGAs, we have
shown this class of problem that arises in this work is very difficult for QBF
solvers. In fact, it seems that a naive translation to SAT is a far better approach
than the QBF representation. We hope to provide a number of benchmarks that
will help to drive the development of an efficient QBF solver.

15

References

1. Altera. Component selector guide ver 14.0, 2004.
2. R. K. Brayton and G. D. H. et al. VIS: a system for verification and synthesis. In

Proceedings of the Eighth International Conference on Computer Aided Verification
CAV, pages 428–432, 1996.

3. D. Chai, J. Jiang, Y. Jiang, Y. Li, A. Mishchenko, and R. Brayton. MVSIS 2.0
Programmer’s Manual, UC Berkeley. Technical report, Electrical Engineering and
Computer Sciences, University of California, Berkeley, 2003.

4. J. Cong and Y. Ding. On area/depth trade-off in LUT-based FPGA technology
mapping. In Design Automation Conference, pages 213–218, 1993.

5. J. Cong, J. Peck, and Y. Ding. RASP: A general logic synthesis system for SRAM-
based FPGAs. In FPGA, pages 137–143, 1996.

6. J. Cong, C. Wu, and Y. Ding. Cut ranking and pruning: enabling a general and
efficient fpga mapping solution. In Proceedings of the 1999 ACM/SIGDA seventh
international symposium on Field programmable gate arrays, pages 29–35. ACM
Press, 1999.

7. F. Corno, M. Reorda, and G. Squillero. RT-level ITC 99 benchmarks and first
ATPG results, 2000.

8. A. Electronics.
9. A. Farrahi and M. Sarrafzadeh. Complexity of the Lookup-Table Minimization

Problem for FPGA Technology Mapping. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 13(11):1319–1332, 1994.

10. K. Keutzer. Dagon: Technology binding and local optimization by dag matching.
In DAC, pages 341–347, 1987.

11. T. Larrabee. Test Pattern Generation Using Boolean Satisfiablity. IEEE Transac-
tions on Computer-Aided Design, 11(1):6–22, 1992.

12. V. Manohararajah, S. D. Brown, and Z. G. Vranesic. Heuristics for area minimiza-
tion in lut-based fpga technology mapping. In International Workshop on Logic
and Synthesis (IWLS’04), 2004.

13. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-
gineering an Efficient SAT Solver. In Proceedings of the 38th Design Automation
Conference (DAC’01), 2001.

14. E. M. Sentovich, K. J. Singh, C. M. L. Lavagno, R. Murgai, A. Saldanha, H. Savoj,
P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS: A system for
sequential circuit synthesis. Technical report, Electrical Engineering and Computer
Sciences, University of California, Berkeley, 1992.

15. D. Tang, Y. Yu, D. P. Ranjan, and S. Malik. Analysis of search based algorithms
for satisfiability of quantified boolean formulas arising from circuit state space
diameter problems. In SAT ’04: The Seventh International Conference on Theory
and Applications of Satisfiability Testing, pages 10–13, May 2004.

16. Xilinx. Virtex-ii complete data sheet ver 3.3, 2004.
17. S. Yang. Logic synthesis and optimization benchmarks user guide version, 1991.
18. L. Zhang and S. Malik. Conflict driven learning in a quantified boolean satisfiability

solver. In ICCAD ’02: Proceedings of the 2002 IEEE/ACM international conference
on Computer-aided design, pages 442–449. ACM Press, 2002.

