3B2v8.06a/w (Dec 52003).51c

VLSI: 745 [ProdTypefTP]

+ model

pp.1—7(col.fig.:2—10,12)

ED:SwarnaR.
PAGN:Raj SCAN:Global

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

ELSEVIER

Available online at www.sciencedirect.com

science (@homeer:

INTEGRATION, the VLSI journal I (1111) INR-—ER

INTEGRATION
theVLSI journal

www.elsevier.com/locate/vlsi

An area-efficient timing closure technique for FPGAs using Shannon’s
expansion

Deshanand P. Singh®, Stephen D. Brown

Department of Electrical and Computer Engineering, University of Toronto, Canada M5S3G4

Abstract

This paper presents a technique to optimize the speed performance of circuits implemented in FPGAs. After synthesis, technology
mapping and placement are complete, we apply Shannon’s expansion to the most critical sections of the circuit. This approach allows us
to precompute the values of functions that depend on late-arriving critical signals and use a multiplexer to quickly select the appropriate
value when the signal arrives. Any new logic elements created by this technique are incrementally placed in a minimally disruptive fashion
to ensure convergence between the circuit optimization and the netlist placement. Experimental results show that this technique can
improve the performance of circuits by 11% on average, and up to 30% in some cases.

© 2006 Published by Elsevier B.V.

Keywords: B; H; R

1. Introduction

FPGA designers are increasingly facing the dilemma that
their designs are dominated by the connection delays
routed along the programmable interconnect. Traditional
solutions to this problem involve improvements to auto-
mated placement and routing algorithms; however, we can
now go one step further by restructuring the circuit itself to
better cope with the interconnect delays.

This alternative, and perhaps orthogonal, strategy
involves tightly coupling timing-driven circuit optimiza-
tions with the placement step of the CAD flow. Within the
placement phase there is still the freedom to add new
elements to the netlist of logic elements, and the routing
delays can be accurately approximated for many architec-
tures. In this manner, critical portions of the circuit can be
restructured to account for the routing delays. We know of
no reported work that can simultaneously optimize a
general circuit and produce a legal placement that respects
the many constraints that exist in modern FPGA
architectures. Thus, we have adopted a three-step approach
to the coupling of placement with netlist optimizations as

*Corresponding author.
E-mail addresses: singhd@eecg.toronto.edu (D.P. Singh), brow-
n@eecg.toronto.edu (S.D. Brown).

0167-9260/$ - see front matter © 2006 Published by Elsevier B.V.
doi:10.1016/§.v1s1.2006.02.009

shown in Fig. 1. Concepts like this three-step flow have
been explored for ASIC implementations in academia [1-3]
and industry [4-0].

The first step executes the conventional FPGA CAD
flow of HDL — synthesis — techmapping — placement. In
the second step, routing delays for every connection are
estimated by calculating their fastest possible route. Any
timing-driven netlist optimization technique can then be
applied to perturb the circuit to reduce the critical path(s).
The estimation and optimization techniques are collectively
referred to as layout-driven optimizations since the layout
of the logic elements directly affects how the circuit is
perturbed. In this paper, we will focus on the use of
Shannon’s expansion as our netlist optimization technique,
although other optimizations such as sequential retiming
have be used in this flow [7]. Every additional logic element
introduced in the circuit is given a preferred placement
location. These preferred locations ignore even the most
fundamental architectural constraints of the programmable
device under consideration but are chosen strictly on the
basis of improving timing. These preferred locations could
form an illegal placement, but we rely on a subsequent
fixup stage to remove the illegalities. This concept relaxes
the problem of simultanecously optimizing a circuit and
producing a legal placement. Our netlist optimization

59

61

63

65

67

69

71

73

75

77

79

81

83

85

www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2006.02.009
mailto:brown@eecg.toronto.edu
mailto:brown@eecg.toronto.edu

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

VLSI : 745

2 D.P. Singh, S.D. Brown | INTEGRATION, the VLSI journal 1 (1111) 111-10R

—

(CEr=m)lo —

—

f

—

—

X—p

Technology Mapping
—
—
Detailed Placement
—
1)
(Timing—Driven Circuit Restructuring) @ — f
—
—
Incremental Placement —
® p
—
—
Routing 0_— , X

Fig. 1. Three-step approach.

techniques need only restructure the netlist and produce an
approximately legal “preferred” placement. Our experi-
mental results will show that the use of these preferred
locations is key to producing a quality result.

The final step of our three-step flow occurs after the
preferred locations have been generated. The job of the
incremental placement (ICP) engine is to perturb the
preferred locations as little as possible to ensure that the
final placement respects all FPGA architectural con-
straints. These constraints include features such as the
limited number of logic elements/inputs/secondary signals
per clustered logic block. A detailed description of the
incremental placement algorithm used in this study is
presented in [8]. For the purposes of this paper, ICP can be
abstracted as an algorithm that takes in a possibly illegal
placement described by the preferred locations, and
legalizes the solution while disrupting the length of the
critical path and total wirelength as little as possible.
Ideally, the netlist contains a number of non-critical logic
elements that can be moved from their preferred locations
to resolve illegalities, while truly critical elements stay at
their preferred locations for delay and area reasons.

The remainder of this paper is organized as follows. First
we describe Shannon’s decomposition theorem and show
how it can be applied to arbitrary critical portions of logic.
We then motivate the reasons that Shannon’s expansion
should be applied post placement. Next, we examine
methods to select the groups of logic where Shannon’s
decomposition can be effectively applied. Finally, we detail
an iterative application of this decomposition technique, its
integration with the incremental placement algorithm and
present results on a number of large benchmark circuits.

2. Shannon’s theorem
Consider an n-input function f(xg, X1,...,Xi,...,Xn).

Shannon’s decomposition theorem [9] allows us to express
the function as

Fig. 2. Physical realization.

s Xiy ey Xp) = Xif (X0,...,0,...,x,)
+ X/ (X0, ... 1,00 X5). (1)

This means that we can precompute the function values for
x; =0 and x; = 1 and then select the appropriate value
depending on the value of x;.

This theorem has powerful implications for restructuring
critical portions of combinational logic after placement.
Fig. 2 shows an example of the realization of Shannon’s
theorem. This example shows a simple logic function, with
a single late arriving input x. Most likely, the signals used
to generate x incur significant routing delays or x itself may
be located far from its fanout logic. Shannon’s decomposi-
tion allows the tradeoff of the number of levels of logic that
must be experienced in paths that are influenced by the
signal x for extra area. In this example instead of going
through two levels of logic, the paths emanating from x
now only experience one level of logic delay. Hence, we can
compensate for long routing delay components in certain
paths by reducing the amount of logic delay on these paths.
Notice that by reducing the depth of the signals emanating
from x, many other paths may have been increased by an
additional logic level. This is the tradeoff that we have to
consider when applying Shannon’s theorem.

Sf(xo,..

3. Post-placement optimization

The application of Shannon’s expansion is performed
after placement so that the circuit can cope with routing
delays. One of the natural questions concerning these
techniques is: how necessary is it that they be applied as a
post-placement step rather than as part of LUT-level
synthesis? Our implementation of Shannon’s expansion
relies heavily on finding critical sections of logic. Here we
show that it is extremely difficult to predict the post-
placement critical connections from a LUT-level netlist. In
this experiment, we refer to a connection as being critical if
its criticality is greater than 0.9. Two different statistics are

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

(O8]

(V)]

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

VLSI : 745

D.P. Singh, S.D. Brown | INTEGRATION, the VLSI journal 1 (1il1) 11111 3

(a) Prediction

(b) Mis-Prediction

Fig. 3. Post-placement optimization; Prediction and mis-prediction rates.

considered. These are depicted graphically in Fig. 3(a). The
first is the prediction rate. This is the ratio of connections
that are critical in both the LUT-level netlist (highlighted in
blue in Fig. 3) and the post-placement netlist (highlighted
in red) divided by the number of critical connections in the
post-placement netlist. The critical connections in the
LUT-level netlist are computed by only considering the
logic delay and assuming 0 delay routing connections. If
the prediction rate is low, then the circuit restructuring
techniques may be applied to the wrong paths and not help
the true critical paths that exist post-placement. This
statistic attempts to quantify how much of the timing
critical region of the circuit can be predicted before the
place and route process. Mathematically, this can be
expressed in the following manner:

e Let L represent the critical connections in the LUT-level
netlist.

® Let P represent the critical connections in the post-
placement netlist.

PredictionRate = |P N L|/|P]|. 2)

We often find that the prediction rate approaches 100%
for some circuits, but this is because of the situation shown
in Fig. 3(b). In this case the LUT-level netlist predicts too
many connections as being critical. These mis-predictions
are troublesome because it means that we will apply our
optimization techniques to far too many regions of logic
that end up being non-critical after placement, and perhaps
wasting area to improve portions of logic that are not
really critical. In addition, mis-prediction also hurts our
algorithm because it essentially moves delays from critical
to non-critical paths. Since many non-critical paths are
considered critical at the LUT-level, this tradeoff may not
be possible. The mis-prediction rate can be expressed as
follows:

MisPredictionRate = |P N L|/|P|. (3)

Table 1 shows these statistics for a cross-section of
benchmark circuits. Generally the prediction rate is either
extremely low, or the mis-prediction rate is extremely high.
A circuit that exhibits either of these characteristics may
prove challenging to apply restructuring techniques at the
LUT-level. It is these results that motivate the optimization
of critical paths after placement has been completed.

Table 1
Prediction rates

Circuit #LUT Predict (%) Mis-predict (%)
bigkey-menc 1707 100 3675
dsip-mcnc 1370 100 858
diffeq-menc 1497 100 59.3
elliptic-mcnc 3604 0 15.2
frisc-menc 3556 57.8 7.32
$38417-menc 6406 94.2 5703
tseng-mcnc 1047 97.3 27.2
hell-oc 3877 94.3 15
des-fip 15509 0 329
sisc8 1434 66.1 0.41

4. Definitions

The algorithms described in subsequent sections rely
heavily on being able to manipulate critical regions of
logic. This section presents definitions that will allow us to
easily express how critical regions of logic can be
manipulated.

First the most critical nodes and connections in the
netlist must be established. These critical elements can be
represented by an e-graph which contains elements that are
within ¢ of being critical. The value of ¢ is typically a small
number that determines the threshold of what logic is
considered critical. If ¢ is too large then Shannon’s
decomposition will be applied to many nodes that do not
affect the path. The net effect is simply a waste of area. If ¢
is too small then decompositions are applied to the critical
path, but are not applied to any of the near-critical paths.

Recall that a combinational circuit, or the combinational
portion of a sequential circuit, can be represented by a
directed acyclic graph G(V, E). Each vertex in the graph
corresponds to a combinational element in the correspond-
ing circuit. The edges represent connections between the
combinational elements. The e-graph G.(V.E;) is a
subgraph of the combinational graph G(V, E). The edge
set E, is defined as the set of edges that are within ¢ of being
critical

E,={Yee E|crite)=1— ¢}. 4)

The critical vertices V', are the set of all vertices that have
any adjacent edge which is within ¢ of being critical.

V.={Yv e V| (3eyust. critl(e)>1 — &)}
U{Vv e V| (Feyst. crit(e)=1 — &)} ®)

By construction, £, C Eand V,C V.
5. Applying Shannon’s theorem

Consider a critical late-arriving signal x that we wish to
transform such that signals affected by x incur less delay
due to logic elements. Assume that x € V, since we are
applying the decomposition techniques to critical signals.
The first step is shown in Fig. 4. We find all critical vertices

59

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

VLSI : 745

4 D.P. Singh, S.D. Brown | INTEGRATION, the VLSI journal 1 (1111) 111-10R

y

Fig. 5. Duplication of the transitive fanouts.

that are affected by the signal x. These vertices can be
found by examining the transitive fanouts of x in the
subgraph G,. A vertex v is a transitive fanout of x if there
exists a path from x—v in the subgraph G,. This
operation is denoted v € TF(x). In Fig. 4, the transitive
fanouts of x in G, are encapsulated in the rounded
rectangle. The signal x affects two critical signals
y(...,x,...) and z(...,x,...). Shannon’s decomposition
can now be applied to these two functions.

Following the identification of the transitive fanout
vertices, the next step is to create two duplicate copies for
each of these vertices. One set of these vertices will be used
to evaluate y and z for x = 0, while the second set will
evaluate these functions for x = 1. Consider a vertex
v € TF:(x). A duplicated version is needed to evaluate for
x = 0; it is denoted vy. Similarly to evaluate for x = 1, the
duplicated vertex is denoted v;. This duplication operation
is shown in Fig. 5. New edges must also be added to wire
the appropriate combinational cells together. For each
vertex v € TF(x) the following procedure is used to create
new edges. For every edge e,, € FANIN(v):

e if u € TF,(x), then create two new edges from uy — vy
and u; — v;. This wires together the intermediate
signals used to compute y and z for x =0 and x = 1.

o if u¢ TF (x), then create two new edges from u — vy and
u — v1. This procedure is used to wire the input signals
into the logic that computes y(...,0,...), y(...,1,...),
z(...,0,..)and z(...,1,...).

&-0-0-0

nc

()
<

nc
(:) <E<V0> '(> »
1
Fig. 6. Finding the vertices to delete.

The next step in the application of Shannon’s decom-
position is to add multiplexer logic to select from the
cofactors. The multiplexer is controlled by the critical
signal x on which the decomposition was based.

The final step is to remove any vertices that have become
unused. Recall that each vertex v € TF.(x) is duplicated
into two copies vy and v;. Obviously vy and v are used in
place of v so the natural question is: can v be deleted? In
Fig. 5, the non-duplicated logic is no longer needed because
the duplicated versions serve to produce the functions y
and z. However, if any of these vertices v € TF.(x) was
used as an input to another function nc(. . .,v,...) such that
nc¢ TF,(x) then the vertex v cannot be deleted. This
situation is depicted in Fig. 6. It occurs because we apply
Shannon’s decomposition to the e-graph which is a
subgraph of the entire combinational circuit. Hence non-
critical fanouts of v still require the signal produced by v.
This could easily be accomplished by keeping the original
vertex v or by using Xvy + xv;. Keeping the original vertex
is preferable as it does not affect the number of levels of
logic element delay sent to the non-critical fanouts. Thus a
vertex v € TF,(x) is deleted if and only if TF(v) € TF.(v).

6. Selecting logic to expand

Although it would be possible to apply the techniques
described in the previous section to any critical vertex in
G, a method is needed to try to minimize the amount of
duplication produced and to ensure that the decomposition
techniques actually provide timing improvement. These
goals are achieved with a cost function that evaluates the
suitability for applying the decomposition and duplication
techniques to groups of logic.

The first part of the cost function attempts to quantify
the number of critical or near critical paths that a
particular vertex affects. This quantity is denoted with a
label named cpcount for each vertex. These identifiers are
all initially set to zero Vv € V., cpcount(v) = 0.

Fig. 7 graphically depicts the algorithm used. Each path
highlighted in red represents a single critical path traced
backward from a sink vertex. The cpcount value of a vertex,
v, is incremented whenever the traceback goes through v. In
this example there are two nodes that affect four critical

59

61

63

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

VLSI : 745

D.P. Singh, S.D. Brown | INTEGRATION, the VLSI journal I (1il1) 111211 5

Fig. 7. Finding the most critical nodes.

i

\"\A TFy(x)
(]
o .

i
iy ;
i3

Fig. 8. Checking critical fanins.

sinks. If decomposition and duplication techniques are
applied with respect to these nodes, then it may be possible
to quickly reduce a number of paths by applying the
techniques in the previous section. This algorithm is clearly
heuristic in nature as there may be several different near
critical paths that affect a sink vertex, instead of the single
path that is traced backwards.

After a cost has been applied to each vertex, it is still
necessary to check if the decomposition can actually
provide any gain before applying it. Consider the situation
shown in Fig. 8. We wish to perform the decomposition
and duplication techniques with respect to the signal x.
While this technique is beneficial for signals emanating
from x, we have not considered the side effects of this
operation. Consider the fanins labelled iy, iy, i>,i3 in the
figure. After the application of decomposition and
duplication, signals downstream from these connections
experience an extra level of logic delay due to the
multiplexer logic added at the sink nodes. This extra level
of logic delay is acceptable as long as the slack on the
connections iy...#3 is greater than the amount of delay
introduced by the multiplexer logic and the routing delay
needed to wire the logic to the mux. Thus, these paths must
be considered before applying our techniques.

More formally, the side effects can be checked in the
following manner. Let side-input set [represent the fanin
edges of TF,(x) whose source vertex is not an intermediate
variable in TF(x).

I = {¥e,, € FANIN(TF,(x)) | u¢ TF,(x)}. (6)

Fig. 9. Controlling vertex duplication.

Simply stated, I contains all external input edges to TF(x).
The decomposition and duplication technique can be
applied as long as the following condition holds:

Viel, slack(i)=mux delay + routing delay to mux. (7)

7. Controlling duplication

The procedures described so far duplicate each vertex in
TF.(x). However, this set may be arbitrarily large. The
setsize is controlled by redefining the critical transitive
fanout set. Each vertex in v € TF,(x) is associated with a
label /(v) that is set to the maximum number of logic levels
between x and v. The set TF.(x, D) represents all vertices v
where there exists a path from x — v and /(v)<D. The
value of D controls the tradeoff between the amount of
duplication allowed and the number of levels of logic delay
removed from critical paths. Note that the labels /(v) can be
computed using a breadth-first search from vertex x (Fig.
9).

All of the procedures described previously that use
TF.(x) can easily be replaced by TF.(x, D). Experiments
have shown that this strategy is quite effective as values of
D = 2 or 3 effectively optimize the critical-path delay while
adding a small number of extra logic elements. The
reduction in the number of logic elements has the added
benefit of making the job of the incremental placer easier as
it has to resolve fewer architectural constraints.

8. Integration with ICP

Each of the fundamental operations described previously
must also be tightly integrated with placement. In this way,
we can accurately make decisions about critical regions of
logic that can be optimized by the decomposition and
duplication techniques. Fig. 10 shows an example of how
the preferred locations are derived. The vertices s, ¢, u, v, w
are duplicated into two sets to precompute for x = 0 and 1.
The preferred location of a given vertex vy is simply set to
the current location of v. Similarly the preferred location of
vy 1s also set to the current location of v. Recall that FPGA
logic blocks typically consist of clusters of several logic
elements for each physical cluster location. Hence it is
possible for vertices v, vy, v; to exist at the same physical
location. Hopefully ICP can shift non-critical logic to other
locations if there is not enough space.

59

61

63

65

67

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

VLSI : 745

6 D.P. Singh, S.D. Brown | INTEGRATION, the VLSI journal 1 (1111) 111-101

(x5 ¥)

(xt! yt) (‘xw yv)

298

O—@ @
05 @

1 tl \(21
U w1

(xM’ yll)

Fig. 10. Setting the preferred locations.

procedure optimize(G(V, E))
begin
do
VerticiesAdded = 0,
do
G = TimingAnalyzer(G)
Vv € sinks(Ve), call traceback(v);
select the \best" node = with the largest cpcount(z)
and large side-input slack using sliding window
if 2 = () then exit-loop;
apply decomposition and duplication w.r.t. ;
VerticiesAdded+ =Verticies Duplicated—
VerticiesDeleted,
if VerticiesAdded > Available LUT's then exit-loop;
end loop
if VerticiesAdded = 0 then exit-loop;
call IncrementalPlacement();
end loop
end procedure

Fig. 11. Iterative application.

9. Iterative application

Fig. 12 shows a graphical representation of how vertices
are chosen for the application of Shannon’s decomposition.
The “best” nodes are chosen using a linear cost function
given by

cost(x) = k¢ * cpcount(x) + miln slack(i). (®)
1€

It simply states that we search for nodes with high cpcount
along with large side-input slacks, so that the algorithm
does not end up thrashing by fixing critical paths and then
creating new ones. Searching for these nodes is very much
like moving a small sliding window across the netlist that
encompasses nodes and their transitive fanouts.

Fig. 11 shows how circuit performance can be optimized
through the iterative application of the techniques de-
scribed earlier. Notice that the routine contains two main
loops. The inner loop controls the iterative application of
Shannon’s expansion. It is continued until the chip is full or

Side-Input

| O—

|
\
\

Candidate Node '\
J
Side-Input Sliding Window

Fig. 12. Sliding window search.

there is no longer any benefit from applying Shannon’s
theorem.

The next step is a call to the incremental placement
routine that attempts to map the preferred locations into
legal physical locations on the target device. If the
incremental placement routine succeeds, then the decom-
position and duplication loop is attempted again because
the new placement may perturb the timing characteristics
of the circuit sufficiently so that decomposition may again
be beneficial (Fig. 12).

Briefly, our implementation also includes area recovery
steps such as constant propagation and incremental LUT
mapping to collapse the multiplexer and logic that feeds it
into a single lookup table.

10. Results

Our experiments involved using FlowMap [10] to map
circuits to a netlist of four-input lookup tables. The timing-
driven VPR [11] tool was used to place and route the
design. Each circuit was mapped into a device such that the
chip was not more than 90% utilized. The routing
architecture was also chosen such that there are 20% more
tracks than the minimum needed to route the circuit. This
ensures that the device is not so congested that delays
cannot be predicted from netlist placement.

Table 2 shows the results of the application of the
techniques described in this paper after placement. The
third column shows the speedup vs. the result obtained
through the conventional CAD flow. As shown, the
average speedup is 10.8%. If the incremental placement is
replaced with a complete re-placement, the speedup is
reduced to only 1.2%. In this case, there are no preferred
locations. An optimized netlist is simply passed to the VPR
and another complete placement and routing step is
executed. This result is not unexpected, because there is
no reason to expect that the optimized netlist will
correspond to the new placement. Most practical annealing
algorithms produce very different results even with small
differences in their initial solution. For both of these
experiments, the area penalty was 2.33%.

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

Table 2

Decomposition and duplication results

VLSI : 745

D.P. Singh, S.D. Brown | INTEGRATION, the VLSI journal 1 (1111) 1IE-11

Circuit Size (#LUTs) Tp (ns), % Speedup T p(ns), % Speedup Area increase (%)
Shannon + ICP Shannon + Replace
bigkey-mcnc 1707 7.68 (+7.8%) 8.24 (+0.5%) 0.35
dsip-mcenc 1370 8.17 (0%) 8.17 (0%) 0
diffeq-menc 1497 17.9 (0%) 17.9 (0%) 0
elliptic-menc 3604 18.5 (+24%) 22.2 (+3.1%) 9.41
frisc-menc 3556 29.4 (0%) 29.4 (+0%) 0
$38417-mcnc 6406 18.3 (+8.5%) 19.9 (—0.2%) 0.64
tseng-menc 1047 17.0 (+3%) 16.3 (+7.2%) 1.43
hell-oc 3877 34.9 (+13%) 36.6 (+8%) 0.52
des-fip 15509 13.0 (+34.7%) 17.7 (—1%) 0.17
sisc8 1434 16.9 (+12.9%) 17.5 (+9.1%) 18.41
clma-mcenc 8383 27.7 (+12.6%) 30.7 (+1.5%) 1.06
ex1010-menc 4598 21.9 (+10.1%) 254 (—=5.3%) 0.33
spla-mcnc 3690 18.7 (+6.9%) 21.9 (—8.7%) 0.24
pdc-menc 4575 16.9 (+12.9%) 22.9 (—0.1%) 0.07
Average (%) +10.8 +1.2 +2.33

11. Summary

This paper has described a physical netlist optimization
based on Shannon’s decomposition theorem. This techni-
que in concert with incremental placement algorithms
described previously produce average speedups of 11% and
as much as 30%. As the complete re-placement flow shows,
even with complete knowledge of criticalities, the flow of
netlist optimization followed by complete placement
cannot compete with our incremental approach. In
addition, by focusing only on the timing critical logic
elements, our average area penalty is extremely small.

References

[11 Y. Jiang, A. Krstic, K. Cheng, M. Marek-Sadowska, Post-layout
logic restructuring for performance optimization, DAC, 1997.

[2] Y. Lian, Y. Lin, Layout-based logic decomposition for timing
optimization, ASPDAC, 1999.

[3] G. Stenz, B. Riess, B. Rohfleisch, F. Johannes, Timing driven
placement in interaction with netlist transformations, ISPD, 1997.

[4] Cadence, Cadence Physically Knowledgeable Synthesis, (http://
www.cadence.com/datasheets/dat_pdf/pks101801.pdf).

[5] L. Kannan, P. Suaris, H. Fang, A methodology and algorithms for
post-placement delay optimization, DAC, 1994.

[6] Mentor Graphics, Physical Implementation with: TeraPlace, Ter-
aOptimize, TeraCTS, (http://www.mentor.com/teraplace/
teraplace_ds.pdf).

[7] D. Singh, S. Brown, Integrated retiming and placement for FPGAs,
FPGA 2002.

[8] D. Singh, S. Brown, Incremental placement for layout-driven
optimizations on FPGAs, ICCAD 2002.

[9] C. Shannon, The synthesis of two-terminal switching circuits, Bell
Syst. Tech. J. 28 (1) (1949).

[10] J. Cong, Y. Ding, FlowMap: an optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA
designs, IEEE Trans. CAD, 1994.

[11] V. Betz, J. Rose, A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs, Kluwer Academic Publishers, Dordrecht, 1999.

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

http://www.cadence.com/datasheets/dat_pdf/pks101801.pdf
http://www.cadence.com/datasheets/dat_pdf/pks101801.pdf
http://www.mentor.com/teraplace/teraplace_ds.pdf
http://www.mentor.com/teraplace/teraplace_ds.pdf

	An area-efficient timing closure technique for FPGAs using Shannonaposs expansion
	Introduction
	Shannonaposs theorem
	Post-placement optimization
	Definitions
	Applying Shannonaposs theorem
	Selecting logic to expand
	Controlling duplication
	Integration with ICP
	Iterative application
	Results
	Summary
	References

