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This paper addresses several issues involved for routing in Field-Programmable Gate Arrays
(FPGAs) that have both horizontal and vertical routing channels, with wire segments of
various lengths. Routing is studied by using CAD routing tools to map a set of benchmark
circuits into FPGAs, and measuring the effects that various parameters of the CAD tools
have on the implementation of the circuits. A two-stage routing strategy of global followed
by detailed routing is used, and the effects of both of these CAD stages are discussed, with
emphasis on detailed routing. We present a new detailed routing algorithm designed specif-
ically for the types of routing structures found in the most recent generation of FPGAs, and
show that the new algorithm achieves significantly better results than previously published
FPGA routers with respect to the speed-performance of implemented circuits.

The experiments presented in this paper address both of the key metrics for FPGA routing
tools, namely the effective utilization of available interconnect resources in an FPGA, and
the speed-performance of implemented circuits. The major contributions of this research
include the following: 1) we illustrate the effect of a global router on both area-utilization
and speed-performance of implemented circuits, 2) experiments quantify the impact of the
detailed router cost functions on area-utilization and speed-performance, 3) we show the
effect on circuit implementation of dividing multi-point nets in a circuit being routed into
point-to-point connections, and 4) the paper illustrates that CAD routing tools should ac-
count for both routability and speed-performance at the same time, not just focus on one
goal.
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1. INTRODUCTION

Over the past several years, Field-Programmable
Gate Arrays (FPGAs) have become widely accepted
as an attractive means of implementing moderately
large digital circuits in a customized VLSI chip. A
number of different styles of FPGAs are commer-
cially available and one of the most important types
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is the array-based architecture, which consists of
rows and columns of logic blocks with horizontal
routing channels between the rows and vertical chan-
nels separating the columns. First introduced by Xil-
inx, in [1] and later in [2] and [3], variations of the
array-based architecture are also found in FPGAs
produced by AT&T [4], and QuickLogic [5].



276 S. BROWN et al.

Array-based FPGAs are available with very high
logic capacities, approaching the equivalent of
15,000 logic gates (a logic gate is usually defined as
the 4-transistor cell that is the basic building block in
some Mask-Programmable Gate Arrays; in simpler
terms, it can be thought of as a NAND-gate). With
such large devices, the design of the interconnect in
the routing channels has a crucial impact on both the
percentage of the chip’s logic capacity that can be
effectively utilized and the speed-performance of cir-
cuits implemented in the FPGA. In early array-based
FPGAs [1] [2], interconnect comprised mostly short
wire segments that spanned the length or width of a
single logic block, and longer wire segments were
available only by interconnecting the short segments
via programmable routing switches. While such ar-
chitectures allow for efficient utilization of the wire
segments in terms of area (since short connections
never waste area by using long wire segments), re-
quiring that long connections pass through several
routing switches in series severely impairs speed-
performance. This follows because routing switches
are user-programmable and hence have significant se-
ries resistance and parasitic capacitance. To address
these issues, recent architectures contain segmented
routing channels that comprise a mixture of both
short and long wire segments. If CAD tools carefully
utilize these variable-length segments when imple-
menting circuits, segmented routing channels can
greatly enhance speed-performance [6].

It is clear that implementing any non-trivial circuit
in a complex FPGA requires sophisticated Computer-
Aided Design (CAD) tools. A typical design system
[7] 18] [9] would include support for the following
CAD steps: initial design entry, logic optimization,
technology mapping, placement, and routing. This
paper focuses on the final stage of the CAD process,
investigating most of the important issues associated
with routing for array-based FPGAs. Routing is stud-
ied by using CAD routing tools to implement a set of
benchmark circuits in FPGAs, and measuring the ef-
fects that various parameters of the CAD tools have
on the implementation of the circuits. In the experi-
ments, both of the key metrics for routing tools are
studied, namely 1) the effective utilization of the

available interconnect resources in the FPGA, and 2)
the speed-performance of the final result.

The overall routing strategy used is the traditional
two-stage approach in which global routing is fol-
lowed by detailed routing. The global router assigns
each of the required connections in a circuit to spe-
cific routing channels, and then the detailed router
allocates the FPGA’s wire segments and routing
switches within the channels to complete the connec-
tions. Since global routing for FPGAs is similar to
that for other technologies, it is considered only
briefly in this paper, but detailed routing, which for
FPGAs requires a novel approach, is discussed at
length. In fact, we present a new detailed routing al-
gorithm that has been developed specifically for the
types of routing architectures found in the most re-
cent generation of array-based FPGAs'.

The rest of this paper is organized as follows. Sec-
tion 2 provides background information on the cate-
gory of FPGA used in this study. Section 3 gives an
overview of the CAD tools used for implementing
circuits and describes in detail the global and detailed
routing algorithms (most of the focus is on detailed
routing). Section 4 presents experimental results that
explore the effects of the routing tools on both the
area-utilization of FPGA routing resources as well as
the speed-performance of implemented circuits, and
Section 5 summarizes our research contributions.

2. BACKGROUND INFORMATION

This section provides background information in two
areas: it describes the model of array-based FPGAs
used for this study, and it defines the CAD routing
problem for this type of FPGA. Also, previous re-
search on routing algorithms is discussed.

2.1. FPGA Model Used in This Study

The model for FPGAs assumed in this paper is sim-
ilar to that in other studies on FPGA architecture [6]
[10] [11] [12] and CAD algorithms [13] [14]. As il-
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lustrated in Figure 1, the FPGA consists of a rectan-
gular array of N X M logic blocks with both horizon-
tal and vertical routing channels. In terms of commer-
cially available devices, the structure depicted in the
figure is most similar to that found in Xilinx FPGAs
[1] [2] [3], but it is more general. For the small ex-
ample in Figure 1, the FPGA has two pins on each
side of a logic (L) block and three tracks per channel.
For this paper, no assumptions are necessary about
the internal details of the logic blocks, except that
each block has some number of pins that are con-
nected to the channels by routing switches. The chan-
nels comprise two kinds of blocks, called Switch (S)
and Connection (C) blocks, described below. The S
blocks hold routing switches that can connect one
wire segment to another, and the C blocks house the
switches that connect the wire segments to the logic
block pins. Because of its widespread use, being of-
fered in FPGAs manufactured by Xilinx, Altera [15],
and AT&T, this paper assumes that routing switches
are pass-transistors controlled by StaticRAM cells?.
Note that the blocks in Figure 1 are numbered along
the left and bottom sides for later reference as a
means of describing connections to be routed.

The general nature of an S block is illustrated in
Figure 2a. Since wire segments in the routing chan-
nels may be of various lengths, some tracks pass
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straight through the S block, while other tracks are
broken by routing switches. There are two represen-
tations for switches in the figure, either as a dotted
line for connecting the ends of two wire segments, or
as an X for a wire segment that passes straight
through the S block. For the example in the figure,
the S block switches allow the horizontal tracks num-
bered 1, 2, and 3 to connect to the vertical tracks with
the same numbers. Although Figure 2a provides a
specific example, the FPGA model treats the S block
as a general four-sided switch block that can be con-
figured in any way.

There are two parameters of the FPGA architecture
that determine the layout of routing switches in an S
block. The first is the segmentation of the channels;
by allowing customizing of the S blocks, the model
supports virtually any channel segmentation scheme
(for the CAD routing tools described later in this pa-
per, the user can specify channel segmentation by any
number of “groups” of tracks that have specific seg-
mentation lengths or a probability distribution of
lengths). The second architectural parameter affecting
an S block is called its flexibility and is set by a
parameter, F,, which defines the number of other wire
segments that a wire segment that ends at an S block
can connect to. For the example shown in Figure 2a,
the wire segment at the top left of the S block can
connect to three others and so F| is 3. Note that F;
alone does not determine the number of routing
switches in an S block, since tracks that pass uninter-
rupted through the block have fewer associated
switches.

Figure 2b illustrates a C block. The tracks pass
uninterrupted through the C block and can be con-
nected to the logic block pins via a set of switches.
The flexibility of a C block, F,, is defined as the
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number of wire segments in the C block that each
logic block pin can connect to. For the small example
shown in the figure each pin can be connected to 2
vertical tracks, and so F, is 2 (in a C block, routing
switches are drawn as an X). Our FPGA model al-
lows complete customizing of the C block.

The main advantage provided by the FPGA model
described above is its generality, which supports a
wide range of routing architectures by changing the
number of tracks per channel and the contents of the
C and S blocks. Since the CAD routing tools are
based on this general model, they provide a research
vehicle for studying the architecture of FPGAs. Stud-
ies based on our earlier CAD tools examined the ef-
fects of the F.. and F, parameters, and can be found in
[10] [11] and [12]. A recent architectural study on
channel segmentation has been carried out using the
tools described in Section 3 of this paper, and is re-
ported in [6].

2.2. The Routing Problem in Array-based FPGAs

Since numerous routing algorithms for VLSI chips
have been created over the years, it is prudent to ex-
plain why array-based FPGAs with segmented chan-
nels represent a new type of routing problem. To be-
gin with, routing in FPGAs with any style of routing
architecture can be more difficult than classical de-
tailed routing [7] [8] because the segments available
for routing are already in place and connections be-
tween segments are possible only where routing
switches exist. To illustrate the issues involved, con-
sider the example described below.

Figure 3 shows three views of a section of a rout-
ing channel in an array-based FPGA (note that, for
clarity, the vertical channels are not shown in the pic-
ture). In each view, the figure illustrates the routing
options available in this channel for three different
connections, called A, B, and C. In the figure, a wire
segment in the channel is shown as a solid horizontal
line, and a wire segment that is usable for a particular
connection is highlighted as a bold line. A routing
switch that joins two horizontal wire segments is
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FIGURE 3 An Example of an FPGA Routing Problem.

drawn as a dashed line, and a switch that joins a
horizontal segment to a logic (L) block pin is shown
as an X. Finally, logic block pins are drawn as verti-
cal lines. As depicted in Figure 3, the routing archi-
tecture in this FPGA has three tracks and the routing
switches are distributed such that only tracks 2 and 3
can connect the required logic block pins for Connec-
tion A, and only tracks 1 and 2 can be used for Con-
nections B and C. The discussion below considers
this routing problem, first from the perspective of just
completing all three connections, and then also con-
sidering the usage of the wire segments according to
their lengths.

Assume that a router completes connection A first.
If it chooses to route Connection A on track 2, then
one of B and C will fail because they both rely on a
single remaining option, namely track 1. On the other
hand, if the router had chosen track 3 for A, then B
could use track 1 and C track 2, or vice-versa. This
simple example illustrates that, even when there are
only three connections involved, routing decisions
made for one connection can unnecessarily block oth-
ers. Such conflicts for routing resources are the main
reason why detailed routing for FPGAs can be more
difficult than classical detailed routing.
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The above routing solution satisfies the goal of
completing all three connections, but only one of the
two choices for B and C makes the best use of the
available wire segments. Specifically, it is clear from
examining the routing channels that Connection B
should be assigned to track 2, since the wire segment
there exactly matches the connection’s length. This
also leads to the best solution for Connection C since
it requires only one wire segment in track 1 but
would need two segments in track 2. Matching the
lengths of wire segments to connections is a new
problem that does not exist for classical mask-
programmed technologies, where there is complete
flexibility to create metal wires of any length. While
Figure 3 shows only connections within one small
routing channel, the problem is much more complex
where many connections compete for wire segments
and when both horizontal and vertical channels are
involved.

A key issue illustrated by the above example is that
routing algorithms for FPGAs must consider not only
the successful completion of all required connections,
but must also account for the number of wire seg-
ments allocated per connection. The former of these
goals is concerned with the routability, or area-
performance of circuits implemented with the routing
algorithms, and the latter goal determines the speed-
performance of circuits.

In terms of previous research, common approaches
for detailed routing in other types of devices are not
suitable for FPGAs. Classic Maze routing [16] is in-
effective because it is inherently sequential and so,
when routing one connection, it cannot consider the
side-effects on other connections. The example in
Figure 3 illustrates why this is important. Channel
routers [17] are not appropriate for array-based FP-
GAs because it is very difficult to subdivide the
routing problem into independent channels. Channel
routing algorithms are used in [18] and [19] for row-
based FPGAs [20] [21]. This is possible for these
types of FPGAs because the logic blocks are ar-
ranged in rows separated by routing channels and the
routing switches are such that each logic block pin
can connect to all the wire segments in the channels

above and below it and each horizontal wire segment
can connect to all the vertical wire segments that
cross it. This routing flexibility cannot be assumed
for array-based FPGAs (like those from Xilinx), and
so it is not clear how channel routing algorithms
could be adopted for such devices.

There is a limited number of previous publications
concerning routing for array-based FPGAs. The ear-
liest [13] [14] is the predecessor of the detailed rout-
ing algorithm described in this paper. The earlier al-
gorithm addressed the problem of considering the
side-effects that routing one connection has on others.
However, it was intended for routing architectures
consisting of short wire segments only and so it did
not have the ability to properly utilize wire segments
of variable lengths according to the lengths of con-
nections to be routed. While this is not especially
important for achieving good routability, it can have
significant effects on speed-performance. In Section
4, we contrast the routing results, in terms of the
speed-performance of resulting circuits, produced by
the router in [14] to the new algorithm described in
this paper. Alternative approaches to routing in array-
based FPGAs can be found in [22], [23] and [24]. No
direct comparison is available to [22] or [23], but
[24] shows similar area-performance results to [14]
and this is about the same as the area-performance
results from the new router described in this paper.
[24] describes a multi-point, as opposed to two-point,
router and shows that it uses fewer wire segments
than the router in [14]; however, the effect of this
optimization on speed-performance is not measured.

3. IMPLEMENTATION PROCEDURE

This section describes the CAD tools that are used in
this research to implement a set of benchmark cir-
cuits in array-based FPGAs. The next subsection pro-
vides an overview of the entire CAD system, after
which the global and detailed routers are described in
greater depth. At the end of this section, we describe
the method that it used to measure the speed-
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performance of a circuit after it has been imple-
mented by the CAD tools.

3.1. Overview of CAD Tools

To implement the benchmark circuits described later
in the paper, the following CAD steps, which would
be included in any typical FPGA development system
[9], were involved: 1) the benchmark circuits, which
were originally targeted for standard cell implemen-
tation, were technology mapped into FPGA logic
cells using the Chortle algorithm [25], 2) the logic
cells in the multi-point netlist resulting from technol-
ogy mapping were placed into specific locations in
the FPGA using an implementation of the min-cut
algorithm [26], 3) finally, the logic cells were inter-
connected during routing. The approach used for
routing is the traditional [8] two-stage method of glo-
bal routing followed by detailed routing, allowing the
separation of two distinct problems: balancing the
densities of the routing channels, and assigning spe-
cific wire segments to each connection.

The CAD stages preceding routing were performed
only once for each benchmark circuit, but routing
was performed multiple times, for different parame-
ters of the global and detailed routers. The results
after routing were evaluated in two ways: 1) were the
routing tools able to successfully complete 100 per-
cent of the required connections for the circuit?, and
2) if all of the connections were successfully routed,
what is the speed-performance of the final result? The
answer to question 1) is easily obtained from the de-
tailed router, and to answer question 2) we estimate
routing delays of signals using the method that will
be described in Section 3.4. The following subsec-
tions provide more details on the global and detailed
routing algorithms.

3.2. The Global Router

Since global routing does not necessarily require de-
tailed knowledge of the contents of the routing chan-
nels, it is possible to adapt algorithms from previous

technologies for use with FPGAs. The global router
employed in this study is an adaptation of the Locus-
Route global routing algorithm for standard cells
[27]. This global router divides multi-point nets in the
circuit being routed into two-point connections (the
implications of this step are discussed later in this
section) and finds minimum distance paths through
the routing channels for each connection. The algo-
rithm’s main goal is to distribute the connections
among the channels so that the channel densities are
balanced. Intuitively, this is a sensible goal for FP-
GAs, because the capacity of each channel is strictly
limited. In addition to balancing the channel usage,
the global router can also (optionally) minimize the
number of bends that each of the two-point connec-
tions incurs [12]. A bend occurs at an S block where
a connection has to turn to reach its destination. Re-
ducing bends is important because connections are
better able to utilize longer wire segments if they
travel further along a single channel before turning.
The results in Section 4 will show that bend reduction
can have a significant effect on the speed-
performance of routed circuits.

An example of the output of the global router,
which is called a coarse graph [8], G, for a single
connection routed in a very small FPGA is illustrated
on the left-most side of Figure 4. The vertices and
edges in G are identified by the coordinates shown in
the figure for the FPGA and define the sequence of
channels that the global router has chosen to connect
the logic block at location (0,4) to the one at (4,0).

Since the global router splits all multi-point nets
into two-point connections, the coarse graphs always
have a fan-out of one. However, some connections
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that are part of the same net might overlap within a
routing channel, and this could lead to wasted wire
segments after the entire circuit is routed. The results
in Section 4 will show that by decomposing multi-
point nets into two point connections the global router
can adversely affect speed-performance. In Section
3.3, we describe a method that can be used during
detailed routing to “re-construct” the multi-point nets
that are broken by the global router.

3.3. The Detailed Router

A new detailed routing algorithm has been developed
for this study and is called SEGA, for SEGment Al-
locator. Designed specifically for array-based FPGAs
with segmented channels, SEGA includes novel fea-
tures that allow it to produce a routing result that is
optimized either for the best achievable area-
utilization of the FPGA’s routing resources, or the
best achievable speed-performance of the imple-
mented circuit. SEGA is parameterized to support
any FPGA architecture that fits the general array-
based model that was illustrated in Figure 1. In terms
of its overall organization, SEGA is similar to a pre-
viously published detailed router described in [14].
However, the new algorithm is fundamentally differ-
ent from its predecessor in the treatment of wire seg-
ments according to their lengths. By properly ac-
counting for the lengths of wire segments during all
stages of routing, SEGA is able to achieve a signifi-
cantly better result (as much as 25%) than the earlier
algorithm with respect to the speed-performance of
implemented circuits.

To route a circuit, SEGA first creates a representa-
tion of the FPGA, from a set of user-specified param-
eters, and then reads the output from the global
router. A coarse graph is created in an internal data-
structure for each required connection. Detailed rout-
ing then proceeds in two main phases: in phase 1, the
router examines the wire segments and routing
switches present in the FPGA and enumerates all of
the alternatives for the detailed route of each coarse
graph. Then, in phase 2, specific routing decisions are
made for each connection. The decisions taken in

phase 2 are driven by cost functions (to be described
in Section 3.3.2) that reflect either the routing delay
associated with each choice, or the effect that each
alternative would have on the routability of the over-
all circuit.

3.3.1. Phase 1: Enumerating the Detailed Routes

During phase 1, SEGA enumerates all of the detailed
routes that are available in the FPGA to implement
each global route. The alternative detailed routes for
each coarse graph, G, are recorded in an expanded
graph, called D. As illustrated in Figure 4, each edge
in D represents specific wire segments (one or more)
that can be used to implement the corresponding edge
in G. As the figure shows, D has the same vertices as
G, but there is one instance of each vertex for each
path in the FPGA that leads from the root vertex to
the leaf vertex. The edges of D are drawn as shaded
lines to indicate that they are not simple edges. Each
edge, e, in D may imply the use of multiple wire
segments, in which case multiple shaded lines are
shown. It is important to realize that the length of a
wire segment referenced in e is not necessarily the
same as the length of the corresponding edge in G,
since a wire segment may be either longer or shorter
than the edge itself. Each e has associated with it one
or more labels, one for each wire segment that it ref-
erences. The labels identify the corresponding wire
segments in the FPGA, examples of which are indi-
cated by the two curved lines pointing from wire seg-
ments in the FPGA to edges in D.

3.3.2. Phase 2: Path Selection

After phase 1, each D may contain a number of alter-
native paths. SEGA places all of the expanded graphs
into a single connection-list. Based on cost functions
(defined shortly), the router then selects a path to de-
fine the detailed route for each connection in the list.
Because SEGA expands all the coarse graphs before
making any routing decisions, when optimizing for
routability it can consider the side effects that a deci-
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sion made for one connection has on others. For rea-
sons given in Section 2, this is important in FPGAs.
Alternatively, if speed-performance is the primary
goal the router can base its decisions on the lengths
of the wire segments represented in D as they com-
pare to the lengths of the edges in G. Phase 2 pro-
ceeds as follows (the basis for sorting the connection-
list and the method for evaluating the cost of a path
will be defined shortly):

put all connections (expanded graphs) into a single
connection-list
while the connection-list is not empty do {
sort the connection-list; select the connection
at the head of the list
route the selected connection, using the path
with lowest cost
mark the connection as routed, and remove
all paths in this connection from the
connection-list
find all paths that would conflict with the se-
lected path (i.e. all paths that are part of
different nets but reference the wire seg-
ments just allocated to the selected path)
and remove them as alternatives for the
corresponding connections. If a connec-
tion loses its last remaining path, that
connection is deemed unroutable*
update the cost of all affected paths

Two key details are not explained in the above
pseudo-code: the metric used to sort the connection-
list, and the definition of the cost function that as-
sesses the cost of a path. In both cases, this depends
on whether SEGA is being used to 1) optimize for
area or 2) optimize for speed, as follows. For area
optimization, SEGA first sorts (note: in this paper,
sort means to scan through the list from head to tail
and make a selection based on some metric) the con-
nections according to the number of possible alterna-
tives (number of paths in each expanded graph), so
that connections that have fewer possible routes will
be given priority. Once a connection has been se-

lected by this sorting procedure, SEGA uses a cost
function called Demand(p), described below, to eval-
uate the cost of each available path, p, and chooses
the path with the minimum cost (if more than one
connection ties for having the fewest alternatives af-
ter sorting, SEGA evaluates the costs of the paths in
all of these connections). In speed-performance
mode, SEGA first sorts the connections according to
their lengths (so as to prioritize long connections and
enable them to take advantage of long wire seg-
ments), and then makes the path selection based on a
cost function called Delay(p). The cost functions De-
mand(p) and Delay(p) will now be described.

3.3.2.1. Routability (or Area)-based Cost Function

The area-based Demand(p) cost function was origi-
nally defined in an earlier router for array-based
FPGA:s, called CGE [13] [14]. Its purpose is to allow
the router to select a path for one connection such
that it has the least negative effect on other connec-
tions from a routability point of view. For SEGA, this
cost function engenders successful routing of 100%
of the connections in a circuit using a minimal num-
ber of tracks per channel. Demand(p) is defined by a
summation that calculates the ‘demand’ among the
connections in a circuit for each wire segment asso-
ciated with p. To calculate the demand for an individ-
ual wire segment, w, SEGA counts the number of
instances of w that are in expanded graphs for other
nets. However, some instances are less likely to be
selected when the corresponding connection is routed
because there are alternative wire segments in paral-
lel with w. Thus, if a path p contains a wire segment
w that has j other instances (w,, Wase o W)), then De-
mand(w) is given by:

J

1
Demand(w) = z alt (0) (H

i=1

where alt (w)) is the number of wire segments in par-
allel with w,. Demand(p) is then the summation of
Demand(w) for all wire segments in p.
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3.3.2.2. Speed-Performance-based Cost Function

The purpose of the Delay(p) cost function is to allow
SEGA to select whichever path represents the best
choice in terms of speed-performance. Different paths
may incur larger or smaller delays because they
might have different numbers of wire segments or
their wire segments may be of different lengths. For
the purpose of comparison, two methods for evaluat-
ing Delay(p) can be used in SEGA. The first method
considers the number of wire segments assigned to
each connection and the lengths of those segments,
while the second method employs an analytical
model to estimate real routing delays (the analytic
model is described in Section 3.4). When measuring
Delay(p) based on the number and lengths of wire
segments in a path, Delay(p) is calculated as follows:

Delay(p) = ¢, X NumSeg (p) + ¢, X SegLen (p)

where NumSeg(p) is similar to the cost function de-
fined in [18] and [19] and its purpose is to minimize
the number of wire segments assigned to a connec-
tion. The cost terms are normalized so that they range
from O to 1, and thus NumSeg(p) is defined as the
quotient of “the actual number of segments in p mi-
nus the minimum possible®” divided by “the actual
number of segments in p”. SegLen(p) is similar to
the function used in [19]. Its purpose is to minimize
the wastage due to assigning long wire segments to
short connections. Thus, SegLen(p) is defined as the
quotient of “the total wasted length of the wire seg-
ments in p”” divided by “the total length of wire seg-
ments in p”. The ¢, and ¢, factors in Equation (2) are
binary weights used to turn either term on or off.

Equation (2) provides one way of measuring De-
lay(p), using cost functions defined in previous pub-
lications [18] [19]. A different approach to assessing
the speed-performance of paths is to use an analytic
model to estimate real propagation delays, rather than
counting segments and segment lengths. When mea-
suring Delay(p) based on real propagation delays,
Delay(p) is defined as:

Delay(p) ActualDelay(p) — MinimumDelay 3
elay(p) = ActualDelay(p) ©)

where ActualDelay(p) represents the total routing de-
lay that would be seen by the corresponding connec-
tion if routed using path p. MinimumDelay is the the-
oretical minimum routing delay for the connection, if
it were routed using the fastest possible routing re-
sources in the FPGA. Both ActualDelay(p) and Mini-
mumDelay are calculated by using the mathematical
model described in Section 3.4.

3.3.2.3. Modifying SEGA to Route Multipoint Nets

SEGA produces good results for both area and
speed-performance with the above algorithm and cost
functions. However, some improvements should be
possible if the algorithm considered which connec-
tions are part of multi-point nets, rather than just
routing two-point connections. We have performed
extensive experiments to investigate this issue and
have found that it is not particularly important when
optimizing for routability, because the Demand(p)
cost function tends to merge two-point connections
that are part of the same net if they overlap. However,
for speed-performance accounting for multi-point
nets can have a significant effect, due to the extra
RC-load that is added to these nets when their con-
stituent two-point connections overlap but do not
share wire segments. The key issue is that it is advan-
tageous for SEGA to “share” wiring resources among
connections that are electrically part of the same
multi-point net. To address this issue, the following is
a modified version of SEGA that can be used instead
of the above algorithm when optimizing for speed-
performance:

Phase 2: Path Selection

put all connections (expanded graphs) into a single
connection-list
group connections in the connection-list by nets
while the connection-list is not empty do {
sort the comnnection-list according to net
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length®; select the longest net
sort connections in the selected net accord-
ing to their lengths; select the longest
connection
while there are unrouted connections for the
current net do {
if this is the first connection routed for
the net then
route the connection with the fast-
est available path
else {
route the connection using the
path that has the maximum
number of shared segments
with the already routed part
of the net
if such a path is not available then
route the connection with the
fastest available path
}
mark the connection as routed, and re-
move all paths in this connection
from the connection-list
find all paths that would conflict with
the selected path (i.e. all paths that
are part of different nets but refer-
ence the wire segments just allo-
cated to the selected path) and re-
move them as alternatives for the
corresponding connections. If a
connection loses its last remaining
path, that connection is deemed un-
routable
update the cost of all affected paths
}

mark the net as being routed

S. BROWN et al.

The key idea behind the above pseudo-code is that
it tries to maximize the sharing of wire segments
among connections that are part of the same net. Re-
ferring to the code, for this scheme SEGA routes all
of the connections in a particular net before moving
on to another net. The nets are sorted by length, so
that long nets can take advantage of long wire seg-
ments. Once a net has been selected, its individual
connections are further processed by length so that
long connections have the most opportunity to use
long wire segments. Referring to the inner-most
“while” loop in the code, the first connection routed
for each net is mapped to its fastest available path
according to Equation (2) or (3). Any subsequent
connections, however, will be routed using the path
that has the maximum number of shared segments
with the already routed part of the net, if such a path
exists. Otherwise, the graph will be routed using its
fastest possible path. In Section 4, we will show that
since the above algorithm tends to minimize resistive
and capacitive loading on nets, it results in significant
speed-performance improvement. Finally, experi-
ments have shown that SEGA requires the same
amount of time (about 40 msecs per connection on a
SUN/4 model ELC) whether routing by nets or two-
point connections.

3.3.3. Summary of SEGA Cost Functions

The preceding sub-sections have described several
cost functions that are available in the SEGA detailed
router. In Table I, these functions are summarized and
assigned a name for reference later, in Section 4.

Table I SEGA'’s Cost Functions.

Cost Function

Description

Area

Seg_Len

Num_Seg

Seg_Len + Num_Seg
Analytic_Model
Net_Routing

optimize for routability only
minimize lengths of wire segments used
minimize the number of wire segments used
combination of the above two cost functions
use an analytic model to find delays

optimize for speed, but also focus on re-use of wire segments for connections on same net
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3.4. Delay Model for Estimating
Speed-Performance of Routed Circuits

For this research, there are two purposes for which it
is necessary to measure the propagation delays of
routed connections in FPGAs. Firstly, and most im-
portantly, once a circuit has been fully implemented
we need to measure the speed-performance of the fi-
nal result in order to assess the quality of the solution
produced by the CAD tools. Secondly, when using
the Analytic_Model cost function, the detailed router
calculates actual routing delays of alternative paths in
order to make routing decisions. For both of these
situations, we use an efficient analytic modelling
technique to quickly and accurately estimate signal
propagation delays.

To estimate routing delays in FPGAs, an adapta-
tion of the analytic modelling technique presented in
[28] is used, in which MOS transistors are modelled
as constant RC-elements. Although the original pub-
lication [28] stated that the model is not applicable
for pass-transistors, in [29] we show that by carefully
choosing values of resistance and capacitance it is
possible to use it for that purpose. The input to the
analytic model is an RC-tree, in which resistors rep-
resent routing switches that signals pass through in
series, and capacitors correspond to parasitic capaci-
tance due to both routing switches and wire seg-
ments. As output, the model produces an estimate for
the delay from the source node of the network to each
of the sink nodes, where the source-to-sink delay is
defined as the time it takes for an ideal step input at
the source to reach half its value at the sink®. In Fig-
ure 5, two examples of RC-trees for detailed routes,
called “path #1” and “path #3”, connecting from the
L block at the lower left of the figure to the block at
the upper right are shown. Referring to the FPGA
channels in the figure, note that each routing switch
in series with a detailed route (path) contributes both
a resistor and capacitor to the RC-tree, and wire seg-
ments in the path as well as routing switches that
"hang off” the wire segments add capacitance. Figure
5 also shows that a source resistance and capacitance,
as well as a load capacitance are included for each
net.
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FIGURE 5 Examples of RC-trees for Connections Routed in
FPGAs.

For the results presented later in this paper, R and
C are calculated assuming a 0.8-micron BiCMOS
process. The particular values used can be found in
[29], and are summarized as follows: R for an "ON"
switch is 915 ohms, C for an “ON” switch is 25 fF, C
for an “OFF” switch is 13 fF, and C for a wire seg-
ment is 3 fF per unit length. Using these parameters,
the speed-performance of individual nets can be cal-
culated directly by the analytic model. The delay of a
net is defined as the largest delay from the net’s
source to any of its sinks. We then define the speed-
performance of an entire circuit implemented in an
FPGA as the average of the net delays in the circuit.

4. EXPERIMENTAL RESULTS

This section presents experimental results that illus-
trate the effects of various parameters of both the glo-
bal and detailed routers on the implementation of cir-
cuits. Following the procedure outlined in Section 3,
the experiments are based on a set of benchmark cir-
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cuits summarized in Table II. The table shows the
name of each circuit and its size in terms of the num-
ber of logic blocks, number of nets, and number of
two-point connections. All of the circuits (except the
largest one) are from the MCNC benchmark suite.

4.1. Effect of the Global Router on
Implementation of Circuits

Recall from Section 3 that besides balancing channel
densities, the global router can also minimize the
number of bends that connections pass through. In
this section, we will show that this is an important
goal that can affect circuit implementation.

With a reduced number of bends, connections
traverse longer distances in a routing channel before
turning at an S block. To quantify this effect, we
routed each benchmark circuit twice: once with the
bend reduction feature of the global router turned off,
and then with bend reduction turned on. For each
routed circuit, we measured the lengths of the straight
sections of connections, called section length. Table
IIT gives the average section length for the connec-
tions in each benchmark circuit and shows that the
average length is 22% greater when bend reduction is
turned on.

To evaluate the effect of bend reduction on area
utilization, we used SEGA to perform detailed rout-
ing of each global router solution using the Area (see
Table I) cost function'®. The purpose of the experi-
ment was to determine the minimum number of

tracks per channel needed to successfully route the
circuits with and without bend reduction for a range
of different channel segmentations in the FPGA.
Thus, for each circuit, the methodology used was to
set the number of tracks per channel, W, in the FPGA
to a small value (equal to the maximum channel den-
sity after global routing) and attempt detailed routing
with SEGA. As long as detailed routing failed, W
was incremented by one until eventually 100% of the
connections in the circuit were routed. This was per-
formed for different segmentation lengths in the
FPGA ranging from 1 to 8. In each case, all tracks
had the same segment lengths. The results are shown
in Figure 6, in which the horizontal axis represents
segment length and the vertical axis shows the num-
ber of tracks needed to route the circuits, on average,
above the channel densities.

Referring to Figure 6, for all segment lengths the
bend reduced circuits result in fewer required tracks
per channel for the detailed router. Also, as segment
length increases the two curves diverge. This makes
intuitive sense, since connections in the bend-reduced
circuits have longer straight sections and so they
waste less area as the segment length increases. This
experiment shows that from an area perspective it is a
clear advantage to reduce the number of bends if the
FPGA'’s channels are segmented.

Having observed the effect of bend reduction on
area utilization, we now wish to study the effect on
routing delays. For this experiment, to ensure that
100% of the connections in each circuit can be com-

Table II Characteristics of Benchmark Circuits

Circuit Name # of Logic Blocks

# of Multi-point Nets

# of Two-Point Connections

9symml 72
too_large 156
apex7 80
example2 120
vda 210
alu2 143
alud 255
term1 56
C1355 110
C499 110
C880 120
k2 360
z03D4 586

79 259
186 519
126 300
205 444
225 722
153 511
256 851

88 202
145 360
145 360
174 427
404 1256

608 2135
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Table Il The Average Section Length for all Circuits.

Circuit Name

Section Length with Bend Reduction Off

Section Length with Bend Reduction On

9symml 15
too_large 1.8
apex7 1.7
example2 1.9
vda 2.0
alu2 1.7
alu4 1.9
term1 1.6
C1355 1.8
C499 17
C880 1.8
k2 22
z03D4 1.8
Average 1.8

1.9
2.3
21
25
2.6
2.2
2.5
2.0
24
2.3
24
3.0
2.3
2.3

pleted by the detailed router, the number of tracks per
channel is set to a high value (30). Rather than using
a single segment length for all tracks as was done for
the previous experiment, in this case each channel
contains a mixture of tracks with segments of length
1, 2, or 3. Over many combinations of channel seg-
mentation, the benefits of bend reduction were as-
sessed by detailed routing the global routing solutions
both with and without bend reduction. Also, the ex-
periments were repeated using all of the different cost
functions available in the detailed router. Table IV
provides a summary of the average results for all seg-

Excess Number of Tracks

i
15.00 T T T ] Bend Reduction OFf

| end Reduciion 6n™™ ™"

14.00
13.00
12.00
11.00
10.00

9.00

8.00

Segment Length
2.00 4.00 6.00 8.00

FIGURE 6 Effect of Bend-reduction on Area Performance.

mentation schemes for each detailed router cost func-
tion. Each number in the table represents the average
net delay for the circuits, in nsecs.

Referring to Table IV, enabling bend reduction
clearly produces better speed-performance results,
since for all detailed router cost functions the bend-
reduced circuits provided better speed-performance.
This result occurs because connections in the bend-
reduced circuits have longer straight sections, and
this allows the detailed router to make use of longer
wire segments. Lower propagation delays result be-
cause connections routed with a smaller number of
long wires need to pass through fewer switches than
if they were routed with a larger number of short wire
segments.

From the experiments presented in this section, it
is clear that bend reduction is a good strategy that can
be used to improve both the speed- and area-
performance of implemented circuits. Unless other-
wise stated, for the rest of the experiments presented in
this paper all circuits are bend-reduced.

4.2. Effect of the Detailed Router on
Implementation of Circuits

In this section, our aim is to determine which detailed
router cost function produces the “best” speed-
performance results and which function produces the
“best” area-performance results. From the data al-
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Table IV Effect of CAD Routing Tool Cost Functions on Routing Delays.

SEGA Cost Function

Global Router without Bend Reduction

Global Router with Bend Reduction

Area 16.7
Seg_Len 19.0
Num_Seg 14.9
Seg_Len + Num_Seg 16.4
Analytic_Model 14.8
Net_Routing 13.0

12.8
16.9
11.9
13.3
11.9
10.1

ready presented in Table 1V, it is clear that the de-
tailed router cost function has a significant effect on
speed-performance. Referring to the table, the vari-
ous cost functions in SEGA yield different average
routing delays. The Area cost function shows that fo-
cusing only on routability gives less than minimum
routing delays, as would be expected. The Seg_Len
row indicates that very poor speed-performance re-
sults if the router considers only the lengths of wire
segments. The intent of this function is to prevent the
assignment of long wires to short connections to min-
imize capacitive loading, but comparison to the
Num_Seg row shows this to be a poor strategy. Min-
imizing the number of segments that connections
pass through yields among the lowest delays; this
seems to be the most important goal since combining
it with Seg_Len worsens the results. Since for the
Analytic_Model SEGA calculates accurate estimates
of real delays, comparing Num_Seg to Analytic
_Model shows that the simple cost function that
counts the number of switches traversed by a connec-
tion is a good approach.

Finally, comparing the bottom row in Table IV
with the other rows shows that considering multi-
point nets instead of just two-point connections has
positive effects on speed-performance. This occurs
because when multi-point nets are ignored, the router
may use more wire segments and switches than is
actually needed where two-point connections on the
same net overlap. This results in an increase in para-
sitic capacitance seen by the net and adds to its prop-
agation delays. For Net_Routing, SEGA tries to re-
assemble multi-point nets by focusing on not only
speed-performance (using Analytic_Model), but also
on re-using wire segments for multiple connections

that are part of the same net. The results in Table IV
show that Net_Routing is important because it
achieves the “best” speed-performance results.

Recall that it was mentioned earlier that SEGA is
an enhanced version of an earlier FPGA router de-
scribed in [14]. Since the earlier algorithm used os-
tensibly the same cost function as SEGA when opti-
mizing for routability, the Area cost function in
SEGA achieves approximately the same results as
that in the earlier algorithm. However, the router in
[14] did not have the ability to optimize for speed, so
a comparison between SEGA’s speed-performance
optimization and that of its predecessor can be made
by contrasting the Area cost function result in Table
IV with the Net_Routing result. The data shows that
SEGA achieves about a 25 percent improvement in
speed-performance over the earlier algorithm.

Table IV gives only average results over a wide
range of different channel segmentations. To provide
a more detailed view, Table V shows the performance
of the detailed router cost functions for specific chan-
nel segmentation schemes. In the table, the horizontal
axis represents the percentage of tracks in the FPGA
that are of length 3, the vertical axis is percentage of
length 2, and the remaining tracks are of length 1.
Each entry in the table represents the average net de-
lay produced by a particular segmentation scheme,
and two of the detailed router cost functions are rep-
resented: the shaded columns show the speed-
performance achieved by the Net_Routing cost func-
tion, and the unshaded columns represent the Area
cost function. Comparing the shaded and unshaded
columns, it is apparent that speed-performance is sig-
nificantly affected by SEGA’s cost functions for all
segmentation schemes.
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Table V' Routing Delays of Segmentation Schemes.

100 92
9 95
80 99
70 10.2
60 10.5
50 10.9
40 11.6
30 121
20 12.7
10 135

0 139

10

8.6
8.9
8.9
9.4
9.8
10.3
50

Tables IV and V show that the detailed router cost
function can significantly affect speed-performance,
but they do not consider the effects on area-perfor-
mance. To illustrate the effects of SEGA’s cost func-
tions on area, Figure 7 compares the area require-
ments of the routability-oriented Area, and speed-
oriented Net_Routing cost functions'!. To obtain the
results shown in the figure, we used single length
segments in the FPGA following the same method
that was described with respect to Figure 6. Figure 7
shows that although the Net_Routing cost function
has the “best” speed-performance results (Table IV),
it produces the poorest area-performance. On the
other hand, though the Area function achieves less
than optimal routing delays (Table IV), it has the best
area-performance results.

Excess Number of Tracks

T T T T~ | Net Routing
1200 —
...............
11.00 —
10.00 —
9.00 —
8.00 (-
7.00 —
6.00 —

500

4.00 —

Segment Length

FIGURE 7 Effect of SEGA’s Cost Functions on Area.

The above area-performance experiment was re-
peated with channels having combinations of seg-
ments of length 1, 2, and 3 and the results appear in
Table VI, which lists the number of excess tracks
above channel density for the same segmentation
schemes in Table V. Consider first only the numbers in
the columns shaded grey in Table VI, which provide the
excess tracks for the same SEGA cost functions used
in Table 5: the shaded columns correspond to
Net_Routing, and the unshaded columns are the Area
cost function results. Referring to the table, as many as
6 extra tracks are needed for Net_Routing; for the
benchmark circuits, this corresponds to a significant
increase in tracks of about 30 percent. Now consider
the unshaded columns in Table VI, which show that
for the Area cost function at most 2 extra tracks are
required. An intuitive conclusion from these results
suggests that a “good” CAD routing tool should con-
sider both speed-performance and area utilization, not
just focus on one goal. This could be accomplished in
practice by having the router use a speed-performance
cost function for nets identified as being time-critical,
and use area optimization for other nets.

5. CONCLUDING REMARKS

This paper has investigated most of the important is-
sues associated with routing for array-based FPGAs
with segmented routing channels. Experiments pre-
sented show that the global router can significantly
affect speed-performance, depending on whether it
selects global routes that traverse short distances



290

S. BROWN et al.

Table VI  Area Penalty for Segmentation Schemes.
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through multiple channels, or travel longer distances
straight along a single channel. We have presented a
new detailed routing algorithm for array-based FP-
GAs and have shown that it achieves much greater
speed-performance of circuits than previously pub-
lished routers. Also, it has been shown that the de-
tailed router cost function can greatly affect both
speed- and area-performance of implemented cir-
cuits. Finally, routing tools for FPGAs should con-
sider both routability and speed-performance, not just
focus on one goal.
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Endnotes

1 The detailed router is called SEGA, for SEGment Al-
locator, and is available via the world-wide web at
http://www.eecy.toronto.edu/Alemieux/sega or via
anonymous ftp from ftp.eecg.toronto.edu in pub/soft-
ware/SEGA. SEGA is written in ANSI-C.

2 Although this assumption does not significantly impact
the CAD routing tools, it does affect the speed-perfor-
mance of implemented circuits, and it dictates the
method used to measure speed-performance (Section
3.4 describes our method for measuring speed-perfor-
mance).

3 The graph expansion procedure is similar to that de-
scribed in [14], except that in [14] all wire segments
are assumed to be of length 1. Explicitly recording the
lengths of wire segments allows SEGA to later make
routing decisions that result in much greater speed-
performance of the final result.

4 It would be desirable for the router to have some
means of trying other alternative solutions when a con-
nection fails to route. For example, the router could

perform another iteration on the problem, trying differ-
ent combinations of the cost function terms (described
shortly) for the channels that contain unrouted connec-
tions.

5 The length of a connection is defined as the number of
logic (L) blocks it spans.

6 The minimum possible is the number of edges (not
including the two L block pins) in the coarse graph.

7 This corresponds to the total length of wire segments
in p minus the total length of the edges in the coarse
graph.

8 The length of a net is defined as the summation of the
lengths of the two-point connections in the net.

9 Since we will assume an NMOS pass transistor switch,
we measure the rising time of signal rather than its
falling time because the former is the “worst case”.

10 Similar relative performance results were obtained for
SEGA'’s other cost functions.

11 Other cost functions produced results that fall between
these two extremes.
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