Sense Amplifier Offset Characterization and Test Implications for Low-Voltage SRAMs in 65 nm

WATERLOO

ELECTRICAL AND COMPUTER ENGINEERING ece.uwaterloo.ca Dhruv Patel, Derek Wright, Manoj Sachdev Electrical and Computer Engineering University of Waterloo Waterloo, Ontario, Canada

Agenda

Motivation and Introduction

Sense Amplifier Operation and Offset

Bitcell Marginal Faults and Non-Ideal Sensing

Model Development and Simulation Results

Test Chip Design

Measurement Setup and Results

- Yield Calculation and Test Implications
- Conclusion and Discussion

Agenda

- Motivation and Introduction
 - Sense Amplifier Operation and Offset
- Bitcell Marginal Faults and Non-Ideal Sensing
 - Model Development and Simulation Results

Test Chip Design

- Measurement Setup and Results
- Yield Calculation and Test Implications
- Conclusion and Discussion

Motivation

SRAM SA offset is not scaling with technology Crucial for memory testing and reliability

Motivation

SRAM SA offset is not scaling with technology Crucial for memory testing and reliability

To develop a parametric yield model based on SA offset, Weak cell, Column leakage

Introduction

SRAMs often occupy significant SoC area

- Contribute to quantitative & qualitative issues in SoC testing
- March tests for quantitative test issues
- Special DfT techniques for qualitative tests, e.g., weak cells

Introduction

SRAMs often occupy significant SoC area

- Contribute to quantitative & qualitative issues in SoC testing
- March tests for quantitative test issues
- Special DfT techniques for qualitative tests, e.g., weak cells

Offset voltage in SA is a known problem

 Results in lower yield, lower performance and is a barrier to LV SoC operation

7

Introduction

SRAMs often occupy significant SoC area

- Contribute to quantitative & qualitative issues in SoC testing
- March tests for quantitative test issues
- Special DfT techniques for qualitative tests, e.g., weak cells

Offset voltage in SA is a known problem

 Results in lower yield, lower performance and is a barrier to LV SoC operation

2018-07-19

Fig. 2. Minimum required V_{bl} versus σ_{offset} at a constant yield target (97% for 16Mb).

Abu-Rahma, CICC 2011

8

SRAM SA amplifies small differential i/p to full swing o/p

2018-07-19

9

SRAM SA amplifies small differential i/p to full swing o/p

□ CLSA, VLSA are popular SA configurations

2.5

Q/QB VLSA

2018-07-19

Time (ns)

3.0

3.5

SAE

SRAM SA amplifies small differential i/p to full swing o/p

0.4

0.3

0.1

0.0

1.0

ER ENGINEERING

1.5

Q/QB CLSA

2.0

Voltage (V) 0.2

AND COMPUT

CLSA, VLSA are popular SA configurations

SRAM SA amplifies small differential i/p to full swing o/p

□ CLSA, VLSA are popular SA configurations

- V_T mismatch of the sensing transistor is the main contributor to the offset
 - Cause for incorrect SA evaluation
 - Voltage and current mode sense amplifiers are equally affected
 - Increase in area is not a viable solution

Agenda

Motivation and Introduction

Sense Amplifier Operation and Offset

Bitcell Marginal Faults and Non-Ideal Sensing
 Model Development and Simulation Results

Test Chip Design

- Measurement Setup and Results
- Yield Calculation and Test Implications
- Conclusion and Discussion

Cell Marginal Faults and SA Offset

□ I_{oN} and V_{os} exhibit Gaussian distributions $\Delta V_{BL} = \frac{I_{ON}\Delta t}{C_{BL}} \Rightarrow \Delta V_{BL}$ has Gaussian distribution □ Normally, $\Delta V_{BL} >> \Delta V_{OS}$

Cell Marginal Faults and SA Offset

 ΔV_{BI}

1

BLB

ION

SAE -

Cell Marginal Faults and SA Offset

Cell Marginal Faults and SA Offset - Solution

■ I_{ON} and V_{OS} exhibit Gaussian distribution $\Delta V_{BL} = \frac{I_{ON}\Delta t}{C_{BL}} \Rightarrow \Delta V_{BL}$ has Gaussian distribution ■ Normally, $\Delta V_{BL} >> \Delta V_{OS}$ However, finite and \uparrow probability of $\Delta V_{BL} \le \Delta V_{OS}$ Can cause read, read stability, intermittent faults SA have varying V_{OS}

Yes, but – Leakage Current!

 ΔV_{BL}

BL

OFF

WL₀

WL₁

WL₁₋₁

BLB

ON

SAE 🖵

OUT

Increase signal development time less effective
 Can lead to intermittent, data dependent failures

Yes, but – Leakage Current!

 ΔV_{BL}

BL

WL₀

WL₁

WL₁₋₁

BLB

ON

SAE 🖵

OUT

Increase signal development time does not help
 Can lead to intermittent, data dependent failures

Yes, but – Leakage Current!

 ΔV_{BL}

BL

WL₀

WL₁

WL₁₋₁

BLB

′sae ∟

OUT

Increase signal development time does not help
 Can lead to intermittent, data dependent failures

Model for Marginal Bitcell and Non-ideal SA

- Model considers V_{OS}, I_{ON}, and I_{OFF} to predict parametric yield
- But, we need to get model parameters from:
 - Measurement

ERLOO

Simulation

Agenda

Motivation and Introduction

Sense Amplifier Operation and Offset

Bitcell Marginal Faults and Non-Ideal Sensing

Model Development and Simulation Results

Test Chip Design

- Measurement Setup and Results
- Yield Calculation and Test Implications
- Conclusion and Discussion

65 nm Test Chip Design, Measurement Setup

Arrays 32x16 VLSAs & CLSAs Each SA individually addressed ΔV_{BL} is driven by input pads with 1 mV step

65 nm Test Chip Design, Measurement Setup

Test Stimuli, Measurement Results

Hysteresis and Staircase patterns to discount potential SA memory effect

 $\Box \Delta V_{BL}$ is increased successively

Test Stimuli, Measurement Results

Hysteresis and Staircase patterns to discount potential SA memory effect

Improved Model Parameters

Model for Marginal Bitcell and non-ideal SA

Model takes into consideration V_{os}, I_{ON}, and I_{OFF} to predict parametric yield

Model for Marginal Bitcell and non-ideal SA

Model takes into consideration V_{os}, I_{ON}, and I_{OFF} to predict parametric yield

Model for Marginal Bitcell and non-ideal SA

Model takes into consideration V_{os}, I_{ON}, and I_{OFF} to predict parametric yield

30

SA Offset – CLSA vs. VLSA

SA offset from testchip is included in the model

 $\sigma_{\text{os-VLSA}}$ = 11 mV; $\sigma_{\text{os-CLSA}}$ = 18 mV

SA Offset – CLSA vs. VLSA

SA offset from testchip is included in the model

 $\sigma_{\text{os-VLSA}}$ = 11 mV; $\sigma_{\text{os-CLSA}}$ = 18 mV

 Model suggest increased σ_{os-CLSA} contributes increased

 parametric yield loss

 WATERLOO

 ENGINEERING

 ELECTRICAL AND COMPUTER ENGINEERING
 2018-07-19

Test Implications

Worst case for testing SA offset and weak cells

Lower V_{DD}, higher temperature

Half selected column cell leakage can help in providing debug/diagnostic resolution between SA offset and weak cell failures

Agenda

Motivation and Introduction

Sense Amplifier Operation and Offset

Bitcell Marginal Faults and Non-Ideal Sensing

Model Development and Simulation Results

Test Chip Design

Measurement Setup and Results

Yield Calculation and Test Implications

Conclusion and Discussion

Concluding remarks

- Sense Amplifier offset is an impediment to LV, LP SRAM operation
- A parametric yield model based on SA offset, column leakage, temperature is developed
 - Model is able to provide debug resolution between SA offset and weak cells
- **Galaxie Future work**
 - □ Impact of timing, power supply noise

