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Abstract We demonstrate the DSP-based feed-forward and decision-feedback equalization require-
ments in 2.5D co-packaged CMOS optical receivers. Experimental results confirm optical reception up
to 160-Gb/s/λ PAM-4 and 90-Gb/s/λ NRZ signaling with a bandwidth-limited prototype comprised of a
TIA in 16-nm FinFET CMOS co-packaged with a commercial photodiode.

Introduction
Ethernet standards, such as PAM-4 800G-DR8
and 400G-DR4/FR4 for intra-data center links
with intensity-modulation direct-detection (IM/DD)
systems, require the design of energy-efficient
and low-cost optical receivers supporting data
rates exceeding 100 Gb/s/λ[1],[2]. While SiGe BiC-
MOS technologies offer high gain and low noise
optical receivers[3],[4], advanced CMOS technolo-
gies allow the integration between the optical re-
ceivers and the host SerDes on the same chip
while offering good switching characteristics with
high energy efficiency[5]. This can be lever-
aged in the design of low-cost and high-density
receivers that use equalization implemented in
digital-signal-processing (DSP) to achieve higher
data rates[6],[7]. Such optical receiver comprising
a transimpedance amplifier (TIA) followed by ADC
and DSP are shown in Fig. 1.

Traditional optical receivers with TIA in the
front-end are designed to have bandwidths (BWs)
in the range of 0.5−0.7× of baud rate. How-
ever, at data rates exceeding 150 Gb/s, achiev-
ing the required BW comes with the cost of
heavily reduced transimpedance. This leads to
degraded sensitivity, higher thermal noise, and
higher power[8]. To overcome this trade-off, the
TIA BW can be intentionally limited to below 0.5×
baud rate, allowing for increased transimpedance
at the cost of the intersymbol interference (ISI)[9].
ISI can then be removed with widely adapted,
DSP-compatible, and CMOS suitable equaliza-
tion techniques that are the feed-forward equal-
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Fig. 1: Block diagram of a CMOS optical receiver system.

izer (FFE) and the decision feedback equalizer
(DFE)[10]. Several state-of-the-art CMOS optical
receivers[11],[12] have used such approach but the
equalization taps were limited to a few. Many
recent works have also demonstrated 100+Gb/s
with sophisticated DSP approaches which can
entail much higher silicon area and power[13]–[15].
However, the study of DSP requirements and its
full potential with simple equalization strategies
such as FFE and DFE are not yet clear[16], espe-
cially in co-packaged CMOS optical receiver sys-
tem performing at such high data rates.

For higher data rate operation with a limited-
BW receiver, it is crucial to appropriately select
the number and the combinations of FFE (i.e. pre-
cursors and post-cursors) and DFE taps. This
work, demonstrates up to 160 Gb/s PAM-4 opti-
cal data reception with a co-packaged CMOS op-
tical receiver with a limited BW of 32 GHz while
reporting the DSP-based FFE and DFE equaliza-
tion requirements.
Simulated Equalization Requirements
To highlight the FFE/DFE requirements at such
datarates, we study the vertical-eye-opening
(VEO) across various combinations of FFE and

0 Tap DFE

2 Tap DFE

10 Tap DFE

64 Tap DFE+1 Pre-cursors FFE
2 Pre-cursors FFE
3 Pre-cursors FFE

0 Pre-cursors FFE

Fig. 2: Simulated VEO as a function of the total number for
FFE taps across various combinations of FFE pre-cursor taps

and DFE taps at 160 Gb/s PAM-4.
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Fig. 3: Measurement setup to study the FFE/DFE equalization requirements in 2.5D co-packaged CMOS optical receivers.

DFE taps. Fig.2 shows the simulated worst-case
VEO as a function of total number of FFE taps
across various combinations of pre-cursor FFE
taps and DFE taps at 160 Gb/s PAM-4. Worst-
case VEO is computed using peak-distortion
analysis[17] after processing the pulse response
through in-software FFE/DFE with optimized tap
coefficients. The pulse response is obtained from
the measured transimpedance response from our
recent work[18]. As can be seen with the case
of 0 tap DFE, having more pre-cursor FFE taps
leads to significantly improved VEO with dimin-
ishing return after 2 pre-cursor taps. Moreover,
adding more DFE taps for a given number of FFE
taps always leads to improved VEO. We further
demonstrate this study with measurements.
Experimental Setup
Fig .3 shows the optoelectrical measurement
setup. A lensed single-mode fiber tip is used

to free-space couple the modulated optical sig-
nal (λ=1310 nm) onto the back-illuminated PD (30
GHz O-E BW and 0.7 A/W responsivity) with flip-
chip 2.5D co-packaged 16-nm FinFET CMOS TIA
prototype with 32 GHz BW described in our re-
cent work[18]. Differential TIA outputs are electri-
cally probed and captured by a sampling oscillo-
scope which performs the desired FFE and DFE
equalization with optimum tap coefficients mim-
icking the ADC and DSP blocks from Fig. 1.
Experimental Results and Discussions
160 Gb/s PAM-4 measurements are performed
with QPRBS13 pattern with input optical modu-
lation amplitude (OMA) of -4.24 dBm, extinction
ratio (ER) of 1.26 dB, and TIA gain set at 60
dBΩ. Minimum VEO at symbol-error-rate (SER)
of 4.8×10-4 (pre-FEC limit[1]) is measured. Fig .4a
shows the resulting VEO across the total num-
ber of FFE taps for a different number of pre-

(a) (b)
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Fig. 4: Measured VEO at 160 Gb/s PAM-4 with (a) FFE only (b) FFE + DFE. Eye diagrams of (c) TIA output without FFE or DFE

(d) with 16 tap FFE (2 pre-cursor) (e) with 16 tap FFE (2 pre-cursor) + 2 tap DFE.
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Fig. 5: Measured VEO at 90 Gb/s NRZ with: (a) FFE only (b) combinations of FFE + DFE. Measured eye diagrams of: (c) TIA
output without equalization (no FFE/DFE) (d) with 16 tap FFE (2 pre-cursors) (e) with 16 tap FFE (2 pre-cursors) + 10 tap DFE.

cursors. Measurements reveal that at least one
pre-cursor tap is required to open the eye (i.e.,
VEO>0) with diminishing return after 2 pre-cursor
FFE taps. Fig.4b shows the VEO when DFE is
enabled along with FFE. It clearly emphasizes
that having more DFE taps further improves the
VEO, albeit with a diminishing improvement for
DFE taps greater than 10 taps. Resulting eye dia-
grams of the prototype outputs without any equal-
ization is shown in Fig.4c followed by the DSP
processed eye-diagrams after enabling total of 16
tap FFE (2 pre-cursor taps) with no DFE and 16
tap FFE (2 pre-cursor taps) + 2 tap DFE illustrated
in Fig. 4d, and Fig.4e, respectively.

Experiment is further performed for 90 Gb/s
NRZ with required bit-error-rate (BER)<1×10-15

targeted for low-latency optical receivers (i.e. no
forward-error-correction is tolerable). Measure-
ments are executed with a PRBS11 pattern with
-4.37 dBm input OMA, 1.25 dB ER and 63 dBΩ
gain in TIA. As shown in Fig. 5a, for a given num-
ber of FFE taps, as the number of pre-cursor taps
is increased, VEO is improved; again with the di-
minishing return for pre-cursor taps greater than
2. Moreover, adding DFE taps further improves
VEO as shown in Fig.5b. To show this trend, cap-
tured eye diagrams with three different equaliza-
tion settings are shown in Figs.5c, 5d and 5e.

Note that the VEO increases sharply with the
total number of FFE taps up to roughly 12 taps

since ISI is dominant and additional equalization
significantly improves VEO. As the total number
of FFE taps grows beyond 12 taps, all possible
improvement from equalizing BW limitations and
reflections has already been achieved so the VEO
approaches a relatively constant value. Ther-
mal noise then limits the performance resulting in
small variations in measured VEO for total num-
ber of FFE taps more than approximately 12 taps.
Conclusion
We have experimentally demonstrated 160 Gb/s
PAM-4 and 90 Gb/s NRZ optical data reception
while highlighting the importance of pre-cursor
FFE taps, the total number of FFE taps and DFE
taps for a 2.5D co-packaged CMOS optical re-
ceiver prototype with a limited TIA BW of 32 GHz
and a PD BW of 30 GHz. Notably, at least 12 to-
tal FFE taps with minimum of 2 precursor taps in
combination with 2-to-10 DFE taps were required
to achieve near-optimum performance. ADC-
based co-packaged CMOS optical receivers can
leverage this simple digital equalization approach
to achieve data rates required by the 400G/800G
and emerging 1.6T Ethernet standards.
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