University of Toronto
ECE-345: Algorithms and Data Structures

Solutions to Midterm Examination (Fall 2007)

. (a) A(n) = O(nl2:®))

(b) We can draw a recursion tree like we did in class. At one part of the tree goes n/5-th of the work while
on the other part it goes 4n/5 of the work for the recurrence. Clearly, at each level we do ©(n) work while
the number of tree levels is logs 4n = ©(logn). Therefore, B(n) = ©(nlogn)

. (a) Function foo is similar to quicksort, except that it recurs in only one of the two subarrays formed by
partition. The call foo(a,1,N,k) will return the k-th smallest number in the array. Namely, after each
partitioning, element a[é] is in its final place. If k = 4, we are done. Otherwise, the k-th smallest number
must be in a[l], a[l+1], - ,a[i —1] if k <4, and in a[i+1],a[i+2], - ,alr] if k > 4, so that we can recursively
solve the problem by searching in the proper subarray.

(b) The worst-case time complexity occurs when & = 1 and the array is already sorted. In this case,
all the possible branches in a recurrence tree will be visited. Terefore the worst-cast time complexity is
ON+(N—-1)+---+1)=0O(N?).

Base Case: n = 1 can be represented as 2°.

Inductive hypothesis: Suppose n = k, can be represented as
(a) n =2+ ..+ 2! when k is even.
(b) n=2"+ ..+ 2% when k is odd.

Induction Step:

(a) When n = k+1, 1 can be represented as 2° and from hypothesis k can be represented as 2°+ .. +21,
hence n = k + 1 can be represented as n = 2* + .. + 21 4+ 20

(b) When n = k+1, 1 can be represented as 2% and from hypothesis k can be represented as 2¢+ ..+ 2V.
Adding 2° to this k, causes lowest missing power of 2 to increment by one and all other lower power
terms of 2 to vanish e.g., consider adding 2° to 2! 4 2°: lowest missing power of 2 is 22 so the sum
would be 22 and all lower powers i.e., 2! and 2° vanish.

. Let us call the original heap H. The idea is to generate a separate heap called F; of the “frontiers” of H,
which at the ¢’th step of our algorithm will always have all the candidates for the i’th largest number of H.
The algorithm functions recursively as follows: to create F; we extract the maximum number from F;_; and
insert its two children from H into the resulting heap (we can think of the nodes of F' as pointers to nodes
of H in order to make this computation efficient). The number extracted from F;_; would be the i — 1’th
largest number in H.

For example, F} would trivially be the root of H. When we extract it and look at its children in H, we
get the candidates for the second largest number of H. Similarly, once we extract the largest number of Fb
and look at its children in H, we have a heap of all possible candidates for the third largest number of H.
Altogether, computing F; from F;_; requires 1 extract-max and 2 insert operations and some constant
overhead. We are inserting at most 2k elements, bounding the size of of F' as O(k). Since both of these
heap operations require O(log k) time on heaps of size O(k), we have an overall running time of O(klogk).

. (a) OPT(i,v) is the maximum prize that can be collected with a connected subtree rooted at v if at most i
nodes can be selected.

(b) If no nodes can be selected, then the maximum prize is always 0 (first case). If at least one node can
be selected, then a leaf can be selected, so we can get p, from it (second case). If i + 1 > 1 nodes can be



selected from a subtree rooted at an internal node v, then this must include the node v itself, to maintain
connectivity. The remaining ¢ nodes can be distributed in any way between the two subtrees. The optimum
solution distributes them in the best possible way, hence it gets the maximum over all legal distributions.

(c) We simply output OPT (k,r), the maximum prize that can be selected with any connected subtree rooted
at r selecting at most k nodes.

(d) We fill in a table of size O(nk). Each update goes over at most O(k) different divisions, so a bottom up
implementation takes O(nk?).



