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1. (a) False. 23n+1

= 23·3n

= (23)3
n

= 83n

, which is clearly not O(23n

) (compare the limits as n → ∞).

(b) True. Take the limit of n2/ n3

lg n as n → ∞. We get lg n
n , which tends to 0. Therefore, n2 = O( n3

lg n ).

(c) Base case: n = 1 holds easily.

Induction Hypothesis: Assume statement holds for n.

Induction Step: Consider statement for n+1. The LHS of the statement becomes equal to (−1)n+1
(

n(n+1)
2

)

+

(−1)n+2(n+1)2 by Induction Hypothesis. This is equal to (−1)n+2(−k(k+1)
2 +(k+1)2) = (−1)n+2( (k+1)(k+2)

2 ),
which is the LHS of the statement for n + 1. Thus, the statement holds for n + 1.
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(e) Master theorem doesn’t apply here. Draw recursion tree. At each level, do Θ(n) work. Number of levels
is log5/4 n = Θ(lg n), so guess T (n) = Θ(n lg n) and use the substitution method to verify guess.

(f) Apply Master theorem. We have f(n) = n3/2 lg n and nlog
b

a = n2. Since n3/2 lg n = O(n2−ǫ) for
ǫ = 1/4, by case 1 of the master theorem, we have T (n) = Θ(n2).

2. (a) This is easy enough. The difference between the min and max is the largest difference. Finding both
takes O(n) time.

(b) Sort the array using some O(n lg n) sorting algorithm, such as HeapSort or MergeSort. Then do a linear
search on the sorted list, keeping track of the minimum distance between adjacent elements (and the
pair of adjacent elements that give this distance). The search taeks O(n) additional time, so the entire
algorithm uses O(n lg n) time.

3. (a) Not AVL tree because the left and right subtrees of B are of height 2 and 0. To make AVL tree,
right-rotate(A), then left-rotate(A). Any two rotations that make the tree an AVL tree get full mark.

(b) For n > 2, an AVL tree with root of height h contains the root node, and a child of height h − 1.
The other child must have at least height h − 2 so that the balance condition is met. Therefore the
min(h) = 1 + min(h − 1) + min(h − 2).

4. Assume that the points {x1, x2, . . . , xn} are in sorted order, otherwise we start our algorithm by sorting
them. We place the starting point of the first unit interval U1 above x1 and let xi be the rightmost point
covered by U1. Let U2’s starting point be over xi+1 and continue in this fashion until all points are covered.
The above process is clearly a greedy based stategy. It takes O(n) time, and the whole algorithm runs in
O(n) time, if points are given in sorted order, or O(n log n) if they’re unsorted.

To prove that the greedy strategy gives an optimal solution, let S be an optimal solution. Let the first (i.e.
leftmost) unit interval of S to have xj as a leftpoint. If j = 1 it agrees with our greedy method. If not, it
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must be the case that xj < xi and xj is not one of the given n points of our set. If this is the case, then we
simply ”shift” the first interval of S to the right until its starting point is right above x1. Let S′=S - (first
interval of S) + (shifted interval as described above). S′ is still optimal and it agrees with our greedy choise
in the first interval. Remove all points covered by this shifted interval, we are left with a similar but smaller
problem. The same technique can be used to prove that the optimal solution can be restructured in such a
way that it agrees with the greedy choise and still be optimal. Therefore, a greedy choise provides optimal
solution to this problem.
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