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Homework 2
ECE 1762 Algorithms and Data Structures

Fall Semester, 2016

Due: October 21, 4PM in box (near SF B560)

Unless otherwise stated, all page numbers are from 2001 edition of Cormen, Leiserson, Rivest and Stein
(parentheses contain page numbers from the 1990 edition). Unless otherwise stated, for each algo-
rithm you design you should give a detailed description of the idea, proof of correctness,
termination, analysis and proof of time and space complexity. If not, your answer will be
incomplete and you will miss credit. You are allowed to refer to pages in the textbook.
When requested, do not give C code but explain your algorithm briefly with pseudocode!

1. [Sorting, 20 points]. We consider n elements in an array. The goal is to sort the array in increasing
order (or rather, nondecreasing order, since equal elements are possible). The basic operation is to
compare the elements in two cells and to exchange them if they are out of order. An swap sorting
algorithm works by performing a sequence of basic comparisons. The algorithm is oblivious if the
sequence of pairs considered is independent of the input. A comparison is primitive if it compares 2
adjacent cells. There are n− 1 different primitive comparisons (compare cell i with cell i + 1, with
i = 1, . . . , n− 1). Consider the following algorithm:

for j=1 to n-1

for i equal to 1,..., n-1, taken in any arbitrary order

perform the i-th primitive comparison,

swapping the elements if necessary

(a) Show that this algorithm sorts the input array.

You may use the following fact called the 0-1 Principle: If an oblivious sorting algorithm sorts all
sequences of where each element is 0 or 1, then it sorts all sequences of arbitrary values.

Now suppose that the comparisons are performed on pairs taken at random. More precisely: while
the array is not yet sorted, choose a pair of consecutive cells at random (each of the n− 1 is equally
likely) and compare and swap if necessary.

(b) Give an upper bound on the expected number of comparisons performed by the algorithm until
they array becomes sorted. Hint: Use (a).

2. [Order Statistics, 15 points] Let Ai[1 . . . n], i = 1, 2, be two arrays, each containing n numbers in
sorted order. Devise an O(lg n) algorithm that computes the kth largest number of the 2n numbers
in the union of the two arrays. Do not just give pseudocode—explain your algorithm and analyze
its running time.

3. [Searching, 15 points] Consider a sorted linked list that is stored in an array. The list can be
traversed in increasing order by traversing the links (there is a pointer from each cell to the next
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in the list, and the head and tail of the list are known). We consider the problem of searching for
an element that is in the list. Note that since the list elements do not necessarily appear in sorted
order acording to the linear ordering of the cells in the array, the array indices of the cells cannot
be used to perform a fast O(log n) binary search in the list.

(a) Argue precisely that a deterministic algorithm cannot do better than Ω(n) running time to
search in this list.

Consider now a deterministic algorithm that starting at each of the first
√
n cells searches for the

query element from there (following the list pointers). We are interested in the expected running
time of this algorithm over all the different n! permutations of the n elements in the array.

(b) Show that the expected running time of this algorithm is O(
√
n).

This expected running time is over all possible permutations. But introducing randomization, we
can achieve the same running time for a fixed input. Consider the following algorithm: get a random
sample of
√
n items, determine the interval in the sample that contains the query and then follow the pointe

rs. The expected length of the latter search is O(
√
n). In this exercise you are asked to do t he

precise calculations.

Let L = {x1 < x2 < · · · < xn} be an ordered list of n keys, and let q be a fixed query key not in
L. Let R = {xi1 < · · · < xir} be a random sublist taken from L and let xis be the predecessor of
q in R (for convenience, let x0 = xi0 = −∞). Let X be the number of keys in L between xis and
q. Compute exactly the expected value of X in the following sampling model (try to simplify the
expression if possible):

(c) R is formed by taking each element of L into R with probability p independently, with a fixed
0 < p < 1.

4. [Leftist Heaps, 25 points]. Fill in the missing details of a heap based data structure known as
leftist heaps or mergeable heaps.

The mathematical objects involved are multi-sets of items of type ItemType. (A multi-set is a
collection of items in which there may be multiple copies of a single item.) Every item has a key,
of type KeyType, and these keys are linearly ordered by the relation �. We support the following
operations.

• MakeHeap(h) returns a new empty heap.

• Insert(x,h) inserts the item x into the heap h.

• FindMin (h) returns the item in heap h with the �-smallest key.

• DeleteMin (h) is like FindMin, but also deletes this item from the heap.

• Merge(h1,h2) returns a single heap containing all of the elements of heaps h1 and h2.

Each heap is a binary tree. The nodes of this tree are items of type ItemType. For any item x in
such a tree, left(x) denotes its left child, right(x) its right child, and key(x) its key. In addition,
we define the rank of a node of a tree to be the length of the shortest path from that node to a leaf.
Equivalently, we define rank recursively as follows:
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• If the node x is a leaf then rank(x) = 0.

• If the node x is not a leaf, then

rank(x) = 1 + min{rank(left(x)), rank(right(x))}

This is useful in describing and maintaining the balance of leftist heaps.

We maintain two properties of these trees.

Order. The trees are partially ordered or heap-ordered. Recall this means that for every node x,
key(x) � key(left(x)) and key(x) � key(right(x))

Balance. The trees are leftist. This means that for every node x, the shortest path from x to a leaf
is the rightmost path (the path you get by following x, right(x), right(right(x)), etc. to
a leaf. This “leftist” bias can also be expressed in terms of the rank of a node. Now, for every
node in a leftist tree either (1) the left and right children have the same rank, or (2) the right
child has the smaller rank. In other words, rank(x) = 1 + rank(right(x)), for every node x.

We also assume that we have stored in some field of each node its current rank. We can refer to this
field by writing rank(x) for any item x in the heap.

The easiest operations to implement are MakeHeap and FindMin. MakeHeap requires only the con-
struction of an empty tree. To do a FindMin, we just return the item at the root of the tree. This
works because the trees are partially ordered, so the operation is essentially no different than a
FindMin on the Heaps presented in class.

The most interesting operation is the Merge. Once the Merge is implemented, we can use it to
define Insert and DeleteMin in a natural way. We merge two leftist heaps by first merging their
rightmost paths. The rightmost path of a tree h is the path we follow when visiting the nodes h,
right(h), right(right(h)), etc. Remember that every path in a partially ordered tree is sorted by key.
So we can use the familiar algorithm for merging sorted lists to merge these paths as the MERGE
procedure described in the textbook.

Call these two heaps we want to merge h1 and h2. First we compare the first elements of h1 and
h2 (their roots). The first element (root) of the merged path is the least of these—that is, the
one with the smallest key-value. Remove this element from the appropriate rightmost path (so
we remove the root and its left subtree from the appropriate hi), and then recursively merge the
resulting rightmost paths. The left children of these nodes are unaltered; only the right children of
nodes on the rightmost path are modified. Now the merged list is just the smallest element followed
by the recursively merged path. For example, if key(h1) � key(h2) then the first element of the
merged path is h1 (the root of tree h1) and the rest of the merged path is gotten by recursively
merging the rightmost paths right(h1) and h2. Merging of right paths in the manner described
above guarantees that the resulting tree is partially ordered.

Unfortunately, after merging two trees, the resulting data structure may no longer be a leftist heap
because the balance invariant may be violated. The balance invariant is the one which guarantees
an expected O(log n) time for both DeleteMin and Insert operations, therefore we must rearrange
the new tree in a way such that the resulting data structure is a leftist heap.

We recompute the ranks along the rightmost path of this new tree. We start at the bottom of the
tree, let it be x. x has no right child, its rank should be 0. Let x := parent(x) and check left(x)
and right(x). If the rank of lef(x) is smaller than the rank of right(x) we swap left and right
subtrees to guarantee that the child with the smallest rank is always to the right. Set the rank of x



ECE 1762—Fall, 2016 4 Homework 2

to 1+rank(right(x)). We recursively continue rearranging the children/ranks of the nodes along
the righmost path of the data structure until we reach the root of the tree.

(a) Show that the rank of the root is O(log n) (this is equivelant to saying that the length of the
rightmost path (from the root) is O(log n)).

(b) Prove that merging two partially ordered trees h1 and h2 by merging their rightmost paths
takes O(log n) time and that it yields a partially ordered tree (that is, the order invariant is
maintained).

(c) Show that when the rightmost paths of two trees are merged, the rank of a node x might change
if and only if x is on the rightmost path.

(d) Prove that Merge of leftist heaps h1, h2 with the addition of the above rank update step,
results to a new valid leftistheap h (that is, prove that h maintains both invariants). Analyze
its overall running time.

(e) Show how to implement DeleteMin and Insert for leftist heaps such that each of them runs
in O(logn) time. Explain your algorithms, analyze their correctness and asymptotic running
times.


