1

Homework 5

ECE 1762 Algorithms and Data Structures Fall Semester, 2016

Due: December 13, 2016, 3:30PM (sharp) (in box)

Unless otherwise stated, for each algorithm you design you should give a detailed description of the idea, proof of correctness, termination, analysis and proof of time and space complexity. If not, your answer will be incomplete and you will miss credit!

- 1. [NP Completeness, 15 Points] Problem 34.5-2, (CLRS 2nd edition page 1017) (CLRS 3rd edition page 1100)
- 2. [NP Completeness, 10 Points] The low degree spanning tree (LDST) problem is as follows. Given a graph G and an integer k, does G contain a spanning tree such that all vertices in the tree have degree at most k? Prove that the LDST is NP-hard with a reduction from HAM-PATH.¹
- 3. [Approximation Algorithms, 15 Points] Given a connected, weighted, undirected graph G = (V, E) and a subset $R \subseteq V$ (of "required" vertices), a minimum Steiner tree of G is a tree of minimum weight that contains all the vertices in R. (It may or may not contain the remaining vertices).

Finding a minimum Steiner tree is NP-hard in general. Consider a class of approximation algorithms that uses the following heuristic strategy:

- (a) Compute the complete distance graph $G_1 = (R, R \times R)$ between vertices in R; each edge (u, v) in G_1 is weighted with the length of the shortest path from u to v in G.
- (b) Compute a minimum spanning tree G_2 of G_1 .
- (c) Map the graph G_2 back into G by substituting for each edge of G_2 a corresponding shortest path in G. Call the resulting graph G_3 .
- (d) Compute a minimum spanning tree G_4 of G_3 .
- (e) Iteratively delete all leaves in G_4 that are not vertices in R.

Of all the minimum Steiner trees for G and R, let T_{opt} be the one with the minimum number of leaves. Let T_{approx} be the Steiner tree obtained using the strategy outlined above. If w(T) denotes the total cost of a tree T (i.e. the sum of all its edge weights), prove that $w(T_{approx}) \leq 2(1-\frac{1}{l})w(T_{opt})$, where l is the number of leaves in T_{approx} .

Hint: Consider a clockwise circular traversal of T_{opt} ; such a traversal will start and end at the same vertex and will go along each edge in T_{opt} exactly twice.

¹For the purposes of this problem you may assume that HAM-PATH, defined analogously to HAM-CYCLE, is NP-complete.