
UofToronto–ECE 1762–Fall, 2013 1 MAX-FLOW/MIN-CUT

MAX-FLOW/MIN-CUT
ECE 1762 Algorithms and Data Structures

Fall Semester, 2013

1. [CLRS Problem 26.2-11, page 731, Solution]

For any two vertices u and v in G, we can define a flow network Guv consisting of the directed
version of G with all edge capacities 1, s = u, and t = v. Let fuv denote a maximum flow in
Guv.

Claim: For any u ∈ V , the edge connectivity k = minv∈V−{u}|fuv|.
The claim follows from the max–flow min–cut theorem and the fact that we chose capacities
so that the capacity of a cut is the number of edges crossing it. Here is the proof of why
k = minv∈V−{u}|fuv|, for any u ∈ V :

• Proof that k ≥ minv∈V−{u}|fuv|:
Let m = minv∈V−{u}|fuv|,. Suppose we remove only m− 1 edges from G. For any vertex
v, by the max–flow min–cut theorem, u and v are still connected. The max flow from
u to v is at least m, hence any cut separating u from v has capacity at least m, which
means at least m edges cross any such cut. Thus at least 1 edge is left crossing the cut
when we remove m− 1 edges.

Therefore, every node is connected to u, which implies that the graph is still connected.
So at least m edges must be removed to disconnect the graph, i.e. k ≥ minv∈V−{u}|fuv|.
• Proof that k ≤ minv∈V−{u}|fuv|:

Consider a v with the minimum |fuv|. By the max–flow min–cut theorem, there is a cut
of capacity |fuv| separating u and v. Since all edge capacities are 1, exactly |fuv| edges
cross this cut. If these edges are removed, there is no path from u to v, and so our graph
becomes disconnected. Hence k ≤ minv∈V−{u}|fuv|.

We can find k as follows:

EDGE CONNECTIVITY(G)
Select any vertex v ∈ V
for each vertex v ∈ V − {u} do (* |V | − 1 iterations *)

set up the flow network Guv as described above
find the maximum flow fuv on Guv

return the minimum of the |V | − 1 max–flow values: minv∈V−{u}|fuv|

2. [CLRS Problem 26-1, page 760, Solution]

(a) Assume given a directed graph G = (V,E) with the vertex and edge capacities constraints.
We, now, construct an equivalent directed graph G′ = (V ′, E′), such that V ′ = {vin, vout :
for all v ∈ V }, E′ = {(uout, vin) : for all (u, v) ∈ E}

⋃
{(vin, vout) : v ∈ V }. And

capacity((vin, vout)) = capacity(v), capacity((uout, vin)) = capacity((u, v)).

UofToronto–ECE 1762–Fall, 2013 2 MAX-FLOW/MIN-CUT

We can see that cost(vin, vout) presents the vertex capacity of vertex v in V , because when
we enter v (from vin), the only way out is to follow edge (vin, vout). Therefore, we can
take care the vertex capacity as well as edge capacity.

For a given undirected graph G, the edges have to duplicate to two copies, one from each
direction. Therefore, (uout, vin) and (vout, uin) are both in E′ if and only if (u, v) is in E.

(b) Essentially, this is a multiple-source, multiple-sink maximum flow problem. First, we take
the starting points (s′ins) as sources and take the boundary points (t′outs) as sinks. Then
we set all of the edge capacity to be 1. After we solve the maximum flow problem for G′,
if the flow is m, then the final residual network gives us the paths; if the flow is less than
m, there is no solution. Now, V ∈ Θ(n2) and E ∈ Θ(n2) and |f∗| ∈ O(n). Depending on
which algorithm you use, you can fill up the time complexcity.

