
CS 1762—Fall, 2011 1 Introduction to Parallel Algorithms

Introduction to Parallel Algorithms
ECE 1762 Algorithms and Data Structures

Fall Semester, 2011

1 Preliminaries

Since the early 1990s, there has been a significant research activity in efficient parallel algorithms and novel
computer architectures for problems that have been already solved sequentially (sorting, maximum flow,
searching, etc). In this handout, we are interested in parallel algorithms and we avoid particular hardware
details. The primary architectural model for our algorithms is a simplified machine called Parallel RAM

(or PRAM). In essence, the PRAM model consists of a number p of processors that can read and/or write
on a shared “global” memory in parallel (i.e., at the same time). The processors can also perform various
arithmetic and logical operations in parallel.

The PRAM model was proposed to simplify architectural details of parallelism in the 1980s. Multiprocessor-
based computers have been around for decades and various types of computer architectures [2] have been
implemented in hardware throughout the years with different types of advantages/performance gains de-
pending on the application. Nevertheless, there has not been any single model of parallelism that has been
widely adopted by vendors and the scientific community. Today a trend of parallelism has been established
through the use of multi-core processors and dynamic multithreading. Unlike static threading, where the
operating system gives an illusion to the programmer of the existence of many “virtual processors”, dynamic
multithreading allows programmers for multi-core computers to specify a certain level degree of parallelism
in applications withour worrying about communication protocols, load balancing and processor sharing [4].
In this handout, we are interested in a different paradigm for parallel programming. Whereas modern tech-
niques execute programming tasks (loops, nested statements) in a concurrent manner, here we are interested
to learn how to break a task into sub-tasks that can be executed in parallel. Not surprisingly, the PRAM
model we use for this demonstration, it has a lot of similarities with the multi-core architecture in modern
computers.

Depending on the underlying architecture (as we shall see, it has a significant impact on the performance
and flexibility of the algorithm) a PRAM machine can allow or do not allow concurrent reads/writes on the
shared memory cells. As such, a concurrent-read algorithm is a PRAM algorithm during whose execution
multiple processors can read from the same location of shared memory at the same time. An exclusive-read

algorithm is a PRAM algorithm in which no two processors ever read the same memory location at the same
time. We can make similar distinction with respect to whether or not multiple processors can write into the
same memory location at the same time generating new classes of PRAM algorithms: concurrent-write and
exclusive-write. With all these in mind, the type of parallel algorithms that we will encounter are classified
as follows:

• EREW: exclusive-read and exclusive-write,

• CREW: concurrent-read and exclusive-write,

• ERCW: exclusive-read and concurrent-write, and

• CRCW: concurrent-read and concurrent-write.

Of these types of algorithm models, the two extremes (EREW and CRCW) also happen to be the more
popular. In this handout we will consider some simple algorithms running on this shared PRAM memory
model. We will also discuss interesting techniques we should keep in mind when designing parallel algorithms.
Throughout our discussion, we assume that all processors execute the same lines of code on, possibly, different
data (SIMD machine). Instructions are executed by all processors synchronously.



CS 1762—Fall, 2011 2 Introduction to Parallel Algorithms

1.1 Terminology

Fix some PRAM algorithm. Throughout our presentation, we use the following terminology:

• The total time (total number of parallel steps) is denoted with T (n) and it is a function of the input
size n.

• The number of processors is denoted with P (n), also dependent on the input size.

• The cost of the computation is Cost(n) = P (n)× T (n).

• The work performed by the algorithm, Work(n), is the total number of operations actually performed
from all processors during all parallel steps.

Note that Cost(n) ≥ Work(n), since P (n) processors working for T (n) time can only perform at most
P (n)× T (n) operations.

1.2 The Complexity of PRAM algorithms

Fix some PRAM algorithm. Then the following statements are equivalent.

1. The algorithm requires T (n) time with P (n) processors.

2. The algorithm has cost Cost(n) and time T (n).

3. The algorithm uses time O(Cost(n)
p ) for any number of processors p ≤ P (n).

4. The algorithm uses time O(Cost(n)
p + T (n)) for any number of processors p.

Proof:

(1⇒ 2) Trivial since the cost Cost(n) is equal to T (n) · P (n) by definition.

(2⇒ 3) We use the p processors to simulate the P (n) processors, p at a time. Every step of the original
algorithm now takes dP (n)/pe time.

(3⇒ 4) When p ≤ P (n) we have time O(Cost(n)
p ). But when p ≥ P (n), we can’t do any better than T (n)

time (since we haven’t specified how to use the additional processors that are available). So the time is

O(max(Cost(n)
p , T (n))) = O(Cost(n)

p + T (n)).

(4⇒ 1) Take p = P (n) in (4).

1.3 Optimality of a PRAM Algorithm

Fix a problem and let Tseq(n) and Workseq(n) be the time and work for an optimal sequential algorithm
for this problem, respectively. We obviously have Tseq(n) = Workseq(n) and Workseq(n) ≤Work(n), for
any parallel algorithm that solves the problem. We say a parallel algorithm is optimal for this problem if

Cost(n) = Θ(Tseq(n))

Equivalently, we say that the parallel algorithm has optimal speedup if

P (n) = O(
Tseq(n)

T (n)
)



CS 1762—Fall, 2011 3 Introduction to Parallel Algorithms

Let optimal parallel algorithm A that uses P (n) processors. Then, by the discussion above, we can construct
a new algorithm A′ that can be executed in time Tp(n) = Cost(n)/p with p ≤ P (n) processors. The speedup

— the ratio of sequential time to parallel time using p processors — of this new algorithm is O(
Tseq(n)
Tp(n) ) = p

(why?) and this is also an optimal speedup. Equivalently, A′ is also optimal.

An algorithm is strongly optimal if it is optimal, and its time T (n) is minimum for all parallel algorithms
solving the same problem. For example, assume we have a problem that needs Workseq(n) = O(n) for an
optimal single processor algorithm. If X and Y are two parallel algorithms for this problem and X runs in
O(log n) time with O(n/ log n) processors while Y runs in O(1) time with O(n) processors, then both X and
Y are optimal, however, Y is strongly optimal.

1.4 The Complexity Class NC

The complexity class NC plays the same role in parallel computation that P —defined later in this class—
plays in sequential computation. A problem is, at least in theory, considered to be efficiently parallelizable

if it can be shown to belong in NC. NC stands for Nick’s Class from Nick Pippenger who invented it.

Formally, NC is the collection (or class) of problems that can be solved on some PRAM machine in (log n)O(1)

or polylogarithmic time using nO(1) or polynomially many processors.

We should emphasize that the question NC
?
= P is analogous to the P

?
= NP question that we will consider

during our presentation of NP–completeness.

2 Brent’s Scheduling Principle (Brent’s Theorem)

Assume that we are given a PRAM algorithm doing Work(n) work in T (n) time for some number of

processors. Assume that we have p processors available. If, for each parallel step i of the algorithm,

1. we can compute in constant time the number of operations performed at step i, and

2. we can allocate the available processors to these tasks in constant time,

then we can run the algorithm with p processors in O(T (n) + Work(n)
p ) time.

Proof. Let Worki(n) be the number of operations of the algorithm at each parallel step i. We can compute

Worki(n) and allocate the p processors to do these operations in 1 + Worki(n)
p time. So the total time

required by the modified algorithm, using p processors, is

T (n)
∑

i=1

(

1 +
Worki(n)

p

)

= T (n) +
1

p

T (n)
∑

i=1

Worki(n) = T (n) +
Work(n)

p

as stated.

Informally, Brent’s Theorem says that whenever conditions (1) and (2) of the theorem are met, we can design
an algorithm in the following way. Use as many processors as you want to find an algorithm that runs in
time T (n) and performs total work Work(n). Recall that for any parallel algorithm Work(n) ≤ Cost(n).
Now by taking p = Work(n)/T (n), Brent’s Theorem says that the algorithm can be modified to run using
p processors in time

Tp(n) =
Work(n)

p
+ T (n) = T (n) + T (n) = O(T (n)) .

In other words, we get an algorithm with time T (n) and processors P (n) = Work(n)/T (n). Note that
Work(n) = P (n)T (n) = Cost(n), that is, the new algorithm does not underutilize the processors.



CS 1762—Fall, 2011 4 Introduction to Parallel Algorithms

2.1 Brent’s Theorem: Optimal Prefix Sums in Arrays

This example illustrates Brent’s Theorem with an optimal algorithm for prefix sums in an array, not in
linked lists, as we discussed before. Since it takes O(n) time to do it with a single processor, here we present
how this theorem helps us develop an O(logn) time algorithm with O(n/logn) processors.

Let A be an array of n integers stored in shared memory locations T [n], . . . , T [2n− 1] and let n processors
P1, . . . , Pn. For simplicity assume that n is a power of 2. We want to develop an optimal parallel algorithm
to compute the sum of the numbers in A. A single processor algorithm does the job in O(n) time (work).
Therefore, for the optimal parallel algorithm we should have Cost(n) = T (n)P (n) = O(n) according to the
discussion in subsection 1.3. We will develop such an algorithm for the CREW PRAM machine.

We build a complete binary tree, with all n integers being the leaves, using an array T of size 2n− 1. Every
location in the array represents a node of the tree: T [1] is the root, with children at T [2] and T [3]. For any
other node T [i], its children are at T [2i] and T [2i + 1]. Observe that the leaves of the tree T correspond to
locations T [n], . . . , T [2n− 1].

Now each processor Pi executes the following program synchronously:

— Pi copies the ith array elements into the ith leaf of the tree.

T [(n− 1) + i]← A[i]

— Now fill in values at the internal nodes, one level at a time.

for h = 1 to log2 n do
— At the hth step, only the first n/2h processors are active.

if i ≤ n/2h then
— Set the value at an internal node to the sum of its children.

T [i]← T [2i− 1] + T [2i]

— The sum is now in T [1], the root of the tree.

With P (n) = n processors, this algorithm does exactly log n parallel steps, therefore, T (n) = O(log n). The
total cost of the algorithm is

Cost(n) = P (n) · T (n) = O(n log n)

but the total number of operations (total work) is

Work(n) =

log n
∑

h=1

n

2h

= 2n− 1

= O(n)

since there are only n/2h processors active at every step h = 1, . . . , logn. Since the cost is more than the
work done by a single processor machine, the algorithm is not optimal.

By Brent’s Scheduling Principle, the algorithm can be modified to run with only O(n/ log n) processors in
O(n/(n/ log n)+T (n)) = O(log n) time. This new algorithm is optimal since Cost(n) = O(n/ log n)O(log n) =
O(n) = (work of sequential algorithm). It can be shown [1] that this algorithm is also strongly optimal for
the CREW PRAM.

As a final step, we need to show that both conditions of Brent’s Theorem are satisfied. This is true, because
(1) We know that there are exactly n/2h operations at each step h. (2) We know exactly which array



CS 1762—Fall, 2011 5 Introduction to Parallel Algorithms

positions in T are affected in each step (which level of the binary tree). These are just contiguous elements
in an array. So given p processors, we process these array locations in groups of p.

In this case, we do not really need to go to Brent’s Theorem to solve the problem of finding an optimal
algorthm. Instead we could do it like this. Suppose we have only n/ logn processors. Now partition the
original array A into n/ logn blocks of size log n. Assign one processor to each block. Each processor can
sum up the elements in its block sequentially in time O(log n). This leaves us with n/ logn partial sums,
and n/ logn processors. Now we can use the non–optimal binary tree based algorithm and find the sum of
all numbers in

O(log(n/ logn)) = O(log n− log log n) = O(log n)

time. What we really did is to replace the first log log n levels of the tree with a sequential computation 1.
This algorithm runs in O(log n) total time using n/ logn processors.

3 Pointer Jumping

3.1 List Ranking

Among the more interesting, yet simple, PRAM algorithms are those that involve pointers. Our first algo-
rithm operates on linked-lists. Suppose that we are given a linked list L with n objects and wish to compute
for each object in L its distance from the end of the list. More formally, if next is a pointer field, we want
to compute a value d[i] for each object i such that d[i] = d[next[i]] + 1 if next[i] 6= NIL, and d[i] = 0 if
next[i] = NIL. We call this the list-ranking problem.

In the following discussion, we assume that there are n processors allocated to the problem, that is, one for
each node in the linked list. A parallel EREW solution requiring only O(logn) time that uses the technique
of pointer-doubling is given by the following pseudo-code:

— initialize

for each processor i in parallel do
if next[i] = NIL then

d[i] = 0
else

d[i] = 1
while there exists a node i where next[i] 6= NIL do

for each processor i in parallel do
if next[i] 6= NIL then

d[i] = d[i] + d[next[i]]
next[i] = next[next[i]]

Figure 1 shows the operation of the algorithm to compute the distances. Each part of the figure shows the
state of the list before an iteration of the while-loop. Part (a) of the figure shows the list after initialization
and before the while-loop. The result after the first iteration of the while-loop is shown in Figure 1(b). It
can be also shown in Figure 1(b) (Figure 1(c)), that in the second (third) iteration of the loop, there are
only four (two) objects with non-NIL pointers. The final distances are shown in Figure 1(d).

Clearly, this EREW algorithm takes O(logn) time to terminate. Since n processors are used, the total
amount of work required comes to be O(nlogn). Since a single processor can calculate the result in O(n)
time by simply traversing the list twice, the presented algorithm is sub-optimal. Although this algorithm is

1We will formalize this idea in subsection 4.5.



CS 1762—Fall, 2011 6 Introduction to Parallel Algorithms

1 1 1

1

1 1

1

1

1

0

0

0

0

2222

4 4 3 2

5 3 2

b)

c)

d)

a)

Figure 1: List Ranking Example

presented due to its simplicity, we should note that there exist optimal parallel algorithms for this problem
that run in O(logn) time with O(n/logn) processors but we do not examine them here.

3.2 Parallel Prefix Computation

What if the numbers contained in the nodes are not single-unit distances? The technique of pointer jumping
extends well beyond the application of list ranking. A prefix computation is defined in terms of a binary
associative operator ⊗. The computation takes as input a sequence < xn, xn−1, . . . , x2, x1 > and produces
an output sequence < yn, yn−1, . . . , y2, y1 > such that y1 = x1 and

yk = yk−1 ⊗ xk = x1 ⊗ x2 ⊗ . . .⊗ xk

In other words, each yk is obtained by using the operation ⊗ in the first k elements of the sequence, hence
the term “prefix”.

The algorithm to compute a prefix computation is identical to the one we presented for the list ranking
problem. We simply replace the line d[i] = d[i] + d[next[i]] with d[i] = d[i] ⊗ d[next[i]]. As an example of
applying this algorithm, Figure 2 shows the result of prefix sums, that is, the operator ⊗ is a simple addition.
Prefix sums are important because in arithmetic hardware circuits, a “prefix” computation can be used to
perform addition faster when using a carry-lookahead adder. Nevertheless, the details of this implementation
[3] extend beyond the context of the class.

1 1

b)

c)

d)

a) 3 4 5 2

4 5 9 6 3 2

13 11 12 8 3 2

16 13 12 8 3 2

Figure 2: Prefix Sums Example



CS 1762—Fall, 2011 7 Introduction to Parallel Algorithms

4 Finding the Maximum

In the remaining of this handout, we will consider the problem of designing an efficient parallel algorithm
that returns the maximum of n numbers stored in an array A. A single processor can return an answer in
O(n) time. As we explained earlier, this also gives a tight bound for the total cost of the optimal parallel
algorithm.

We will first present and analyze some simple algorithms to solve the problem. The section will conclude with
the presentation of a strongly optimal deterministic parallel algorithm and illustrate a powerful technique
used in the design of parallel algorithms, accelerating cascades. We will also have the opportunity to
investigate some of the differences of various PRAM models.

4.1 A Simple Optimal Algorithm

Suppose that we want to develop an algorithm for finding the maximum of n elements that runs on a EREW
PRAM. A simple optimal algorithm proceeds as the one described in subsection 2.1 using a tournament tree.
Again, we base the structure of the algorithm on a complete binary tree: at each step we pair the remaining
elements up, compare them, and discard the smaller of the two. This reduces the number of elements by a
factor of 1

2 at each step, so it takes about log n steps. Can we do better?

Unfortunately, on the EREW PRAM, we can’t. A sketch of proof is as follows. Consider any EREW
algorithm that finds the max of n elements. At each step, some portion of the elements know that they
are not the max. The others are still candidates. Since the reads done at each step are distinct, at most a
constant fraction of the elements can learn that they are not the max at any step. So there must be Ω(log n)
steps with a reasoning very similar to the one we used in our discussion for the depth of the recurrence tree
of quicksort. In fact, Cook, Dwork and Reischuk proved that finding the max element still requires Θ(log n)
time on a CREW PRAM as well. With concurrent writing, the situation, as we shall see, is better.

4.2 Finding the Max in O(1) time

Recall that the common CRCW PRAM allows several processors to write to the same memory location, as
long as they all write the same value.

Theorem 1 We can find the max of n elements in O(1) time on a common CRCW PRAM with n2 proces-

sors.

To show this, assume that we have n2/2 processors, and let m be an auxiliary boolean array of size n.

Step 1. For i = 1, . . . , m, set m[i] := true.

Step 2. For all i and j in parallel, where 1 ≤ i < j ≤ n, if A[i] < A[j], set m[i]:= false.

Now m[i] is true exactly when A[i] ≤ A[j] for all j, i.e. when A[i] holds a copy of the max value.

Step 3. For i = 1, . . . , n, if m[i] = true then set max = A[i].

Even if several locations hold a copy of the same value, all values written to max will be the same.

This algorithm runs on a CRCW PRAM with n2/2 processors in O(1) time. However, this algorithm is not
optimal (since the problem can be solved sequentially in O(n) time). Valiant proved that any n-processor
CRCW PRAM algorithm requires Ω(log log n) time to find the max of n elements. In fact, as we will see,
O(log log n) time is sufficient as well.

Notice that this discussion also shows that the CRCW model is strictly more powerful than the EREW and
CREW models.



CS 1762—Fall, 2011 8 Introduction to Parallel Algorithms

4.3 Partitioning

Theorem 2 We can find the maximum of n elements in O(1/ε) time on a common CRCW PRAM with

O(n1+ε) processors, for any 0 < ε ≤ 1.

This just means that we can find the max in constant time with O(nk) processors, as long as 1 < k ≤ 2.
The amount of time will depend on the choice of k.

The idea is to partition the input into p parts of sufficiently small size so that we have enough processors
to apply Theorem 1 to all parts simultaneously. This reduces the problem to one of size p. We repeat the
basic step until there is just one element left.

First we’ll just assume that ε = 1
2 , so we have n

3
2 = n

√

(n) processors.

Step 1. Divide the array into
√

n blocks, each of size
√

n.

Step 2. Now we simultaneously apply Theorem 1 to each part. Since we need only (
√

n)2 = n processors
for each of the parts, we can do this in O(1) time.

Step 3. This leaves us with
√

n elements, and the max element is among them. We again apply Theorem 1
to these elements to find the maximum.

With n1+ε processors, the idea is similar. Actually, it suffices to show that this works for ε = 1/c, for all
integers c (why?), and we will use induction to prove it.

The algorithm above is the base of the induction as it works for c = 2. For the induction hypothesis, assume
we have a constant time algorithm for c− 1. We will show how to construct a constant time algorithm for
c. Now if we have only n1+1/c processors, we partition the problem into blocks of size n1/c. We can apply
the constant time algorithm to each block, reducing the problem to one of size N = n1−1/c. (N is now the
number of elements remaining, and the max is one of these. n = N

c
c−1 .) The number of processors available

is
n1+1/c = N

c+1

c−1 = N1+2/(c−1) .

By assumption, we already have an algorithm that will find the max of N elements using N 1+1/(c−1) pro-
cessors, so we’re done. Unrolling the induction, we can see that the number of steps in the algorithm using
N1+1/c processors is O(c).

4 5 6 7 98 10 11 12 13 14 16151 2 3

Figure 3: A doubly logarithmic–depth tree on 16 nodes



CS 1762—Fall, 2011 9 Introduction to Parallel Algorithms

4.4 Valiant’s O(log log n) time algorithm

By extending the ideas presented earlier we can do even better.

Theorem 3 We can find the max of n elements in O(log log n) time with O(n) processors on a common

CRCW PRAM.

The algorithm proceeds as above. At each step we partition the elements into small enough groups to apply
the basic step of Theorem 1 simultaneously to all of the groups.

For the first step (call this step 0), we have n elements, and partition the elements into groups of 2. Finding
the max of each group leaves n/2 elements. Next, for step 1, we partition the elements into n/8 groups of
4. To apply Theorem 1, each group needs 42/2 = 8 processors, so all can be done simultaneously with the
n processors available. This leaves n/8 elements. Next, for step 2, we can partition into n/128 groups of 16
elements. Each group needs 162/2 = 128 processors — just enough. Observe that the basic structure of the
algorithm corresponds to a doubly-logarithmic depth tree. Such a tree, for 16 leaf nodes, is shown in Fig. 3.

Continuing in this way, we see that step k reduces the number of elements by a factor of 22k

. So it takes
O(log log n) steps before we get down to just one element, the maximum of the array. Unfortunately,
if we count the amount of work (number of operations) performed by this algorithm, it turns out to be
O(n log log n). Thus, the algorithm is not optimal.

4.5 Accelerating cascades

We conclude our presentation with the presentation of a general technique that can be often used to improve
the performance of a parallel algorithm. In our case, accelerating cascades produces a strongly optimal
algorithm for the problem of finding the maximum.

The idea behind accelerating cascades is as follows: you have several algorithms to solve a problem, each
with a different time/processor requirement. Typically, you have slower algorithms that are optimal, and
faster algorithms that are non-optimal because they require too many processors. Each of these algorithms
uses a sequence of steps to reduce the problem to a similar problem of smaller size. Start with the optimal
but slower algorithm, and reduce the size of the problem. Then use a faster algorithm to reduce the size
even more, and continue like this. In many cases, this will allow you to derive an algorithm which is both
fast and closer to optimal.

For example, to find the max of elements we already described a couple of algorithms with different
time/processor requirements:

1. Solve the problem optimally (sequentially) in O(n) time with 1 processor.

2. Solve the problem optimally in O(log n) time with O(n/ log n) processors using the balanced binary tree
scheme (pairwise comparisons). Each step of this algorithm reduces the size of the problem by 1

2 .

3. Solve the problem in O(log log n) time with O(n) processors (Valiant’s algorithm).

We will now combine these algorithms to get an optimal O(log log n) time one that has only O(n) cost (i.e.
uses O(n/ log log n) processors).

Here are two ways that you can do it:

1. Use (2) and (3). First we apply log log log n steps of the binary tree algorithm (2). There is O(n)
work here and, since each step reduces the problem size by 1

2 , it reduces the problem to one of size



CS 1762—Fall, 2011 10 Introduction to Parallel Algorithms

N = n/2log log log n = n/ log log n. Now apply Valiant’s algorithm (3) to these elements: this requires
O(log log N) = O(log log n) time and work

O(N log log N) = O

(

n

log log n
· log log

(

n

log n

))

= O(n) .

So the total time is O(log log n) and work is O(n). By Brent’s Theorem, this can be done with
O(n/ log log n) processors.

2. Similarly, we can use (1) and (3) and n/ log log n processors. Partition the array into n/ log log n blocks
of size log log n each. Assign one processor to each block and (using (1)) each processor computes the
max of its block of elements. This reduces the problem to one of size n/ log log n in log log n steps. Now
apply Valiant’s algorithm to these elements and find the max in O(log log n) steps using only n/ log log n
processors.

It can be shown [1] that any n-processor CRCW PRAM algorithm that uses only comparisons on elements
of the array requires Ω(log log n) time to find the max of n elements. Therefore, both algorithms described
above are strongly optimal comparison based parallel algorithms for this problem.

5 Further Reading

There is a rich literature on parallel machine models, parallel architectures and parallel algorithms. The
text by [2] is a good start as it contains a comprehensive description of algorithms and different architecture
topologies for the network model (tree, hypercube, mesh, and butterfly). The literature in [1] and [3] discuss
in depth recent results and algorithms for the shared memory PRAM model.

In the world of new microprocessing chips with multiple cores and multi-threading[4], parallel algorithms
gain real time acceptance.

References

[1] Jájá J., “An Introduction to Parallel Algorithms,” Addison–Wesley, 1992.

[2] Leighton T., “Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and Hypercubes,”
Morgan–Kaufmann, 1991.

[3] T. Cormen, C. Leiserson and R. Rivest, “Introduction to Algorithms,” McGraw-Hill (1st Ed.), 1990.

[4] T. Cormen, C. Leiserson, R. Rivest and Stein, “Introduction to Algorithms,” MIT Press (3rd Ed.),
2009.


