Steiner Tree Approximation

ECE 1762 Algorithms and Data Structures Fall Semester, 2013

[Approximation Algorithms, Steiner Tree Approximation] Given a connected, weighted, undirected graph G = (V, E) and a subset $R \subseteq V$ (of "required" vertices), a minimum Steiner tree of G is a tree of minimum weight that contains all the vertices in R. (It may or may not contain the remaining vertices).

Finding a minimum Steiner tree is NP-hard in general. Consider a class of approximation algorithms that uses the following heuristic strategy:

- 1. Compute the complete distance graph $G_1 = (R, R \times R)$ between vertices in R; each edge (u, v) in G_1 is weighted with the length of the shortest path from u to v in G.
- 2. Compute a minimum spanning tree G_2 of G_1 .
- 3. Map the graph G_2 back into G by substituting for each edge of G_2 a corresponding shortest path in G. Call the resulting graph G_3 .
- 4. Compute a minimum spanning tree G_4 of G_3 .
- 5. Iteratively delete all leaves in G_4 that are not vertices in R.

Of all the minimum Steiner trees for G and R, let T_{opt} be the one with the minimum number of leaves. Let T_{approx} be the Steiner tree obtained using the strategy outlined above. If w(T)denotes the total cost of a tree T (i.e. the sum of all its edge weights), prove that $w(T_{approx}) \leq 2(1-\frac{1}{L})w(T_{opt})$, where l is the number of leaves in T_{approx} .

Hint: Consider a clockwise circular traversal of T_{opt} ; such a traversal will start and end at the same vertex and will go along each edge in T_{opt} exactly twice.

[Solution]

Traversing T_{opt} in, say, the clockwise direction yields a circuit C that goes over each edge in T_{opt} exactly twice. Therefore, the cost of C is $2w(T_{opt})$. We can partition C into segments, such that each segment starts and ends at a leaf and does not contain any leaves in the middle. Now, delete the longest such segment from C. The remainder (say, C') of C still traverses every edge of T_{opt} . Since the average cost of a segment of C is $2w(T_{opt})/l$ (and the length of the deleted segment is at least as much as the average), the cost of C' is at most $2w(T_{opt})(1-\frac{1}{T})$.

Now, if a segment in C' runs between required segments u and v, its cost is at least as much as that of the shortest path between u and v. Thus, if we replace each segment in C' with the edge between its end points in G_1 , we obtain a graph that spans G_1 and whose length is at most $2w(T_{opt})(1-\frac{1}{l})$. G_2 is a spanning tree of G_1 and so its cost does not exceed the cost of G_1 . The transformations of steps 3 to 5 also do not increase the cost of the graph. Thus, the heuristic yields a Steiner tree whose cost is at most $2w(T_{opt})(1-\frac{1}{l})$.