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Computations are designed for processing information. They can be as simple as an estimation for driving
time between cities, and as complex as weather prediction. An algorithm may be described as finite sequence
of instructions that – when confronted with a question of some kind – will invariably compute the correct
answer.

The study of computation aims at providing an insight into the characteristics of computations. The theory
of computation reveals that there are problems that cannot be solved. And of the problems that can be
solved, there are some that require infeasible amounts of resources (e.g., millions of years of computation
time). These revelations might seem discouraging, but they have the benefit of warning against trying to
solve such problems. On the other hand, the study of computation provides tools for identifying problems
that can feasibly be solved, as well as tools for designing such solutions.

1 Preliminaries

Any formal discussion about computation and programs requires a clear understanding of these notions. In
this section, we define some basic concepts and notation.

A finite, nonempty ordered set will be called an alphabet if its elements are symbols , or characters. A finite
sequence of symbols from a given alphabet will be called a string over the alphabet. A string that consists
of a sequence a1, a2, . . . , an of symbols will be denoted by the juxtaposition a1a2 . . . an. Strings that have
zero symbols, called empty strings, will be denoted by ǫ.

Example 1 Σ1 = {a, ..., z} and Σ2 = {0, ..., 9} are alphabets. abb is a string over Σ1, and 123 is a string
over Σ2. ba12 is not a string over Σ1, because it contains symbols that are not in Σ1. Similarly, 314... is not
a string over Σ2, because it is not a finite sequence. On the other hand, ǫ is a string over any alphabet. The
empty set ∅ is not an alphabet because it contains no elements. The set of natural numbers is not an alphabet,
because it is not finite. The union Σ1 ∪ Σ2 is an alphabet only if an ordering is placed on its symbols.

An alphabet of cardinality 2 is called a binary alphabet, and strings over a binary alphabet are called binary
strings. Similarly, an alphabet of cardinality 1 is called a unary alphabet, and strings over a unary alphabet
are called unary strings. The length of a string α is denoted |α| and assumed to equal the number of symbols
in the string.

Example 2 {0, 1} is a binary alphabet, and {1} is a unary alphabet. 11 is a binary string over the alphabet
{0, 1}, and a unary string over the alphabet {1}. |11| = 2, |ǫ| = 0, and |01|+ |1| = 3.

The string consisting of a sequence α followed by a sequence β is denoted αβ. The string αβ is called the
concatenation of α and β. The notation αi is used for the string obtained by concatenating i copies of the
string α.

Example 3 The concatenation of the string 01 with the string 100 gives the string 01100. The concatenation
ǫα of ǫ with any string α, and the concatenation αǫ of any string α with ǫ give the string α. In particular,
ǫǫ = ǫ. If α = 01, then α0 = ǫ, α1 = 01 , α2 = 0101.

If α = a1...an for some symbols a1, ..., an then an...a1 is called the reverse of α, denoted αR. For instance, if
α = 001, then αR = 100.
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The set of all the strings over an alphabet Σ is denoted by Σ∗. Σ+ denotes the set Σ∗ − {ǫ}. The lexico-
graphical ordering of strings in Σ∗ = {0, 1}∗ follows the following order ǫ, 0, 1, 00, 01, 10, 11, 000, 001, ...

1.1 Languages

In general, if Σ is an alphabet and L is a (possibly infinite) subset of Σ∗, then L is said to be a language
over Σ, or simply a language if Σ is implied. Each element of L is said to be a string of the language.

Example 4 {0, 11, 001}, {ǫ, 10}, and {0, 1}∗ are subsets of {0, 1}∗, and so they are languages over the
alphabet {0, 1}.

The empty set ∅ and the set {ǫ} are languages over every alphabet. ∅ is a language that contains no string.
{ǫ} is a language that contains just the empty string.

The union of two languages L1 and L2, denoted L1 ∪ L2, refers to the language that consists of all the
strings that are either in L1 or in L2, that is, to {x|x ∈ L1 or x ∈ L2}. The intersection of L1 and L2,
denoted L1 ∩ L2, refers to the language that consists of all the strings that are both in L1 and L2, that is,
to {x|x ∈ L1 and x ∈ L2}. The complementation of a language L over Σ, denoted L̄, refers to the language
that consists of all the strings over Σ that are not in L, that is, to {x|x ∈ Σ∗ but not in L}.

Example 5 Consider the languages L1 = {ǫ, 0, 1} and L2 = {ǫ, 01, 11}. The union of these languages is
L1 ∪ L2 = {ǫ, 0, 1, 01, 11}, their intersection is L1 ∩ L2 = {ǫ}, and the complementation of L1 is L̄1 =
{00, 01, 10, 11, 000, 001, ...}.

∅ ∪ L = L for each language L. Similarly, ∅ ∩ L = ∅ for each language L. On the other hand, ∅̄ = Σ∗ and
Σ̄∗ = ∅ for each alphabet Σ.

The difference of L1 and L2, denoted L1 −L2, refers to the language that consists of all the strings that are
in L1 but not in L2, that is, to {x|x ∈ L1 but not in L2}. The concatenation of L1 with L2, denoted L1L2,
refers to the language {xy|x ∈ L1 and y ∈ L2}.

Li will be used to denote the concatenating of i copies of a language L, where L0 is defined as {ǫ}. The set
L0 ∪ L1 ∪ L2 ∪ ..., called the Kleene closure or just the closure of L, is denoted by L∗. The set L1 ∪ L2 ∪ ...,
called the positive closure of L, will be denoted by L+. Li consists of those strings that can be obtained
by concatenating i strings from L. L∗ consists of those strings that can be obtained by concatenating an
arbitrary number of strings from L.

Example 6 Consider the pair of languages L1 = {ǫ, 0, 1} and L2 = {01, 11}. For these languages L2
1 =

{ǫ, 0, 1, 00, 01, 10, 11}, and L3
2 = {010101, 010111, 011101, 011111, 110101, 110111, 111101, 111111}. In addi-

tion, ǫ is in L∗

1, in L+

1 , and in L∗

2 but not in L+

2 .

A language can also be described using the properties of its member strings. For example, the language of
all strings with exactly one 0 over {0, 1} is L = {0, 01, 10, 011, 101, ...}. The language L = {0p|p is a prime
number} is the infinite set {00, 000, 00000, ...}.

1.2 Regular Languages

A regular expression over a finiate alphabet Σ is defined as follows:

• ǫ is a regular expression.

• ∀a ∈ Σ, a is a regular expression.

• If R, S are regular expressions, then R + S is a regular expression (“R or S”).
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• If R, S are regular expressions, then RS is a regular expression (concatenation).

• If R is a regular expression, then R∗ is a regular expression (Kleene star).

• If R is a regular expression, then (R) is a regular expression (parenthesization).

A regular language corresponding to a regular expression R, denoted L(R) is the set of all words that the
regular expression R denotes. We will see that not all languages can be expressed using regular expressions.

Example 7 Consider the following regular expressions.

• L(0) = {0}.

• L((0 + 1)(0 + 1)) = {00, 01, 10, 11}.

• L(0∗) = {ǫ, 0, 00, 000, ...}.

• The regular expression (0 + 1)∗1 denotes all strings of 0s and 1s that end with a 1.

• The regular expression 1∗01∗ denotes the set of strings with exactly one 0 over {0, 1}, i.e. L(1∗01∗) =
{0, 01, 10, 011, 101, ...}.

• L((1∗01∗01∗)∗) denotes the set of strings with an even number of 0’s.

• L((0 + 1)∗001) denotes the set of strings ending with 001.

• L(c∗(a + (bc∗))∗) denotes the set of all strings over {a, b, c} that do not have the substring ac.

2 Finite Automata

Modern computers are often viewed as having three main components: the central processing unit, auxiliary
memory, and input-output devices. In this section, we take up a severely restricted model of an actual
computer called a finite automaton. It shares with a real computer the fact that its central processor is of
fixed finite capacity. However, a finite automaton has no auxiliary memory at all. It receives its input as
a string; the input string is delivered to it on an input tape. Its output is a yes/no (or equivalently 0/1)
answer stating whether the input is considered acceptable.

A finite automata is a language recognition device. We say that a finite automaton accepts language L, if it
accepts (i.e. answers yes for) all strings in L and rejects (i.e. answers no for) all strings outside L. We can
think of a finite automata as a specifically designed algorithm for some language L, to answer the questions
of the form “Is the input string w a member of L?”.

We will be avoiding formal definitions throughout these notes and will instead rely on figures and examples
to illustrate ideas. In the context of a compiler, a finite automaton corresponds to a lexical analyzer, which
recognizes and groups the tokens of a language.

2.1 Deterministic Finite Automata

The simplest way to describe a Deterministic Finite Automaton (DFA) is using an example:

Example 8 The following is the transition diagram of a DFA M :

In the DFA M shown in the following figure, q0 is the initial state (has a floating arrow pointing to it), q1

is an accepting final state (has two circles), and the arrows denote state transitions according to the input
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q1
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Figure 1: A Deterministic Finite Automata

Table 1: State transitions of M

current state input symbol next state

q0 0 q0

q0 1 q1

q1 0 q0

q1 1 q1

symbols. The language recognized or accepted by a DFA is the set of strings such that there exists a path
from the initial state to some accepting final state following the edges in the transition diagram of the DFA.

Given the string w = 1101, let us go through the computation of this DFA. The input string w is read from
left to right. Starting from q0, the leftmost symbol 1 is first read, so the DFA goes to state q1. Next, 1 is read
again, and the DFA stays in state q1. Then 0 is read, and the DFA goes back to q0. Finally, 1 is read, and
M returns to q1. Since q1 is an accepting state, M accepts the string w. In other terms, w = 1101 belongs
to the language of M , denoted as w ∈ L(M).

This finite automaton is deterministic because there is one possible state transition for each state and input
symbol.

Think about M and try to see that L(M) = {w ∈ {0, 1}∗|w ends with 1}. This language can be represented
by the regular expression (0 + 1)∗1.

Theorem 1 A language is regular if and only if it is accepted by some DFA.

Theorem 1 implies that any language which can be expressed using a regular expression can be accepted by
some DFA. And conversely, if a language cannot be expressed using a regular expression, there is no DFA
accepting it.

2.2 Nondeterministic Finite Automata

The concept of nondeterminism alludes to one or more choice points where multiple different computations
are possible, without any specification of which one will be taken.

A Nondeterministic Finite Automaton (NFA) is a finite automaton that can have many possible state
transitions from a given state and for a given input symbol. An NFA can also have transitions with the ǫ

symbol (i.e. without reading any input symbol). For each of these possibilities, the NFA “splits” into another
copy of itself, where each copy follows one state transition possibility. By the end of the input string, if any
of the copies reach an accepting final state, the NFA accepts the input string. Let us illustrate this using an
example.

Example 9 Consider the following NFA N :
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Figure 2: A Nondeterministic Finite Automata

Notice that when the NFA N is at state q0 and the input symbol 0 is read, there are two possible state
transitions: Either N stays in q0 or it goes to q1.

Let us follow the execution of N over the input string w = 1001. After reading 1, N stays in q0. Then 0 is
read, and N splits into two: One version stays in q0 and the other goes to q1. After reading the next 0, the
version that was in q1 “dies” because it has nowhere to go, whereas the version that was in q0 again splits
into two just like before, one going to q1 and the other staying in q0. Finally once the last symbol in w, 1, is
read, the version of N which was at q1 can go to q2, which is an accepting final state. Therefore, N accepts
w = 1001.

Think about N and try to see that L(N ) = {w ∈ {0, 1}∗|w ends with 01}. This language can be represented
by the regular expression (0 + 1)∗01.

Theorem 2 For each NFA, there is an equivalent DFA accepting the same language.

Theorem 2 implies that NFAs are equivalent to DFAs in their expressive power. In other terms, any language
accepted by an NFA can be accepted by some DFA. In fact, there are procedures to build an equivalent DFA
for each NFA.

We end this section by giving a few examples of languages which are not accepted by NFAs or DFA (i.e. are
non-regular languages).

Example 10 Consider the following languages.

• {0p|p is prime} is not a regular language. Intuitively, the reason is that a finite automaton, having a
finite memory represented by its states, cannot “remember” infinitely many prime numbers.

• The language {0n1n|∀ integers n ≥ 0} = {ǫ, 01, 0011, 000111, ...} is not regular. Here, the finite automa-
ton cannot remember the number of 0’s in order to start counting the 1’s because it has a finite memory,
and the number of 0’s can be increased indefinitely.

• The language L = {wwR|w ∈ {0, 1}∗} is not regular for similar reasons.

In the following section, we will show that the last two languages can be accepted by an automaton which
uses an infinite stack as an auxiliary memory.

3 Context-Free Languages

Let us consider the language L = {0n1n|∀ integers n ≥ 0} = {ǫ, 01, 0011, 000111, ...}. In the previous section,
we noted that this language is not regular. Now, we will try to generate this language using certain rules.
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Let S be a new symbol interpreted as “a string in the language”. Now observe that if S is a string in the
described language L, then 0S1 is also a string in L. Furthermore, as a base case, S = ǫ ∈ L. Therefore, we
can generate L by repeated applications of the followsing two rules:

S → ǫ

S → 0S1

These rules can be abbreviated as S ← 0S1|ǫ. For example, using these rules, we can have a derivation for
0313 as follows:

S ⇒ 0S1⇒ 00S11⇒ 000S111⇒ 000111

These rules are called Context-Free Grammars (CFGs) and languages derived by such rules are called
Context-Free Languages (CFLs). Intuitively, a CFG strict language specs by which all words of a language
can be generated by well defined rules. Therefore, L = {0n1n|∀ integers n ≥ 0} is a CFL.

Example 11 Consider the non-regular language L = {wwR|w ∈ {0, 1}∗}. The strings in this language L

are called palindromes. Let us try to derive a CFG for deriving palindromes. Notice that if S is a palindrome,
then 0S0 and 1S1 are also palindromes. Furthermore, as a base case, S = ǫ is a palindrome. Therefore, a
CFG deriving all palindromes is: S → 0S0|1S1|ǫ.

3.1 Nondeterministic Pushdown Automata

Just as NFAs and DFAs recognize regular languages, Nondeterministic Pushdown Automata (NPDAs) are
the machines that recognize CFLs. An NPDA is basically an NFA which has also access to an infinite stack,
as shown in the following figure. A stack is a memory storage device which can only be accessed from the top
by pushing or popping elements. In the context of compilers, an NPDA corresponds to the syntax analyzer
(or parser), which checks whther the stream of tokens obeys language specifications.

read head

input tape

stack

read/write
head

Figure 3: A Nondeterministic Pushdown Automaton

In Figure 3, the NPDA has a read head, which reads from the input tape, along with read/write head, which
can write into or read from the stack. The NPDA can recognize when the stack is empty, and hence uses the
stack to “count” symbol occurrences in the input string. We illustrate this using the following examples.

Example 12 Let us consider the CFL L = {0n1n|∀ integers n ≥ 0}. An NPDA accepting L operates as
follows. Initially, the stack is empty. All the encountered 0’s in the input string are pushed into the stack. As
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soon as the first 1 is encountered in the input, the NPDA starts popping elements from the stack. Basically,
a 0 is popped for each 1 read. If the input terminates exactly when the stack becomes empty, then the NPDA
accepts. Otherwise (i.e. if a 0 is encountered after a 1, or if the input terminates and the stack is not empty,
or if the stack is empty and the input is not fully read yet), the NPDA rejects. Clearly, such an NPDA
accepts L.

Example 13 Next, consider the CFL L = {wwR|w ∈ {0, 1}∗}. An NPDA accepting all palindromes will
need to use non-determinism. The NPDA will push every symbol of the input into the stack and split into
two: The first version will always assume that w is over and will try to start reading wR by popping elements
of the stack if they are in the correct order, while the second version will assume w is not over yet, and will
keep pushing the symbols of w. If any of the copies of the NPDA succeeds in popping the whole stack correctly
exactly when the input terminates, the NPDA accepts. Otherwise, the NPDA rejects the input string.

Theorem 3 The class of languages accepted by NPDAs is exactly the class of CFLs.

Finally, note that there are languages that are not CFLs (i.e. that are not accepted by any NPDA).
For example, the languages {www|∀w ∈ {0, 1}∗}, {0n1n2n|∀n ≥ 0} are not CFLs. Intuitively, the stack
cannot be used to detect the “middle” of the string as we did for the two CFLs we analyzed. Furthermore,
{0p|p is prime} is also not a CFL.

4 Turing Machines

We have seen in the last two sections that neither finite automata nor pushdown automata can be regarded
as truly general models for computers, since they are not capable of recognizing even such simple languages
as {0n1n2n|∀n ≥ 0}. In this section, we take up the study of devices, called Turing Machines (TMs) that
can recognize this and many more complicated languages.

The TM is named after its inventor Alan Turing (1912-1954), who was an English mathematician, logician,
cryptanalyst, and computer scientist. During the Second World War, Turing worked for the Government
Code and Cypher School at Bletchley Park, Britain’s codebreaking center. For a time he was head of Hut
8, the section responsible for German naval cryptanalysis. He devised a number of techniques for breaking
German ciphers, including the method of the bombe, an electromechanical machine that could find settings
for the Enigma machine.

Turing’s homosexuality, which was illegal and considered to be a mental illness during his lifetime, resulted
in a criminal prosecution in 1952. He accepted treatment with female hormones as an alternative to going
to prison. He died in 1954, several weeks before his 42nd birthday, from an apparently self-administered
cyanide poisoning.

A TM is a finite state machine connected to an infinite memory tape which initially holds the input string
and which can be written to and read from using a read/write head. Communication between the finite
state machine and the memory tape is provided by this read/write head which can move in both directions.

The figure on the next page shows a typical TM.

The TM operates in discrete steps; at each step it performs two functions in a way dependent on the current
state of the finite state machine and the tape symbol currently scanned by the read/write head.

1. Put the finite state machine in a new state.

2. Either

(a) Write a symbol in the tape square currently scanned, replacing the one already there; or

(b) Move the read/write head one tape square to the left or right.
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memory

read/write head

Figure 4: A Turing Machine

The tape has a left end, but it extends indefinitely to the right.

A TM is supplied with input by inscribing that input string on tape squares at the left end of the tape. The
rest of the tape initially contains blank symbols. The machine is free to alter its input in any way it sees fit,
as well as write on the unlimited blank portion of the tape to the right.

Because a TM can write on its tape, it can leave an answer on the tape at the end of a computation.
Therefore, we do not need to provide special final states, as before. There is a special halt state that is used
to signal the end of computation and which takes effect immediately. Unlike DFAs or NPDAs, it is possible
for a TM to never halt on a certain input, and instead loop over non-halting states indefinitely.

We say that a TM T accepts a language L, if T accepts (i.e. outputs ‘yes’ for) all strings in L, whereas it
can reject or loop on strings not in L. We say that a TM T decides a language L, if T accepts all strings in
L and rejects all strings not in L.

Here, we should note the correspondance between languages and decision problems, which are problems
whose answer are ’yes’ or ’no’ for each input instance. A language corresponding to a decision problem
contain all the input strings with answer ’yes’. A TM which decides such a language equivalently solves
the corresponding decision problem. Also note that any decision problem can be encoded using a binary
alphabet {0, 1} without asymptotically increasing the problem size. We will denote the encoding of an object
O in binary as 〈O〉.

Example 14 Consider the language {〈p〉 ∈ {0, 1}∗|p is prime} = {10, 11, 101, 111, ...} where the correspond-
ing binary number encoding is used for each integer. This language corresponds to the decision problem which
asks whether 〈p〉 is prime.

The Church-Turing thesis states that if an algorithm exists then there is an equivalent Turing machine for
that algorithm. Today the thesis has near-universal acceptance.

A Universal TM U works as follows: On input 〈M, w〉 it simulates the TM M on w. It accepts if M accepts
and rejects if M rejects. This is the basis of today’s computer, which “simulates” different TMs (programs).

Is every problem acceptable? Each TM accepts a certain language. However, it can be proved that the set
of all TMs is countably infinite, whereas the set of all languages is uncountably infinite. Therefore, there are
some languages which do not have any TMs which accept them. I.e. not all problems are acceptable.

Here, we will show an example of a language which is not decidable. This is called the Halting problem, and
the proof of undecidability is done using a technique called diagonalization. The halting problem is famous
because it was one of the first problems proven to be algorithmically undecidable. This means there is no
algorithm which can be applied to any arbitrary program and input to decide whether the program stops
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when run with that input.

Let L = {〈M, w〉|M is a TM and M halts (i.e. does not loop) on w}. We will show that L is not decidable
by contradiction.

Assume towards a contradiction that there exists a TM H deciding L. This means that H takes 〈M, w〉 and
returns true iff M halts on w. It must return false otherwise, and not go into an infinite loop.

Now consider another TM D(〈M〉) which calls H on 〈M, 〈M〉〉 and outputs the opposite of H ’s output.
Since H always terminates, D must also always terminate.

Finally, let us give D its own description, i.e. run D(〈D〉). This will call H(〈D, 〈D〉〉). Now H accepts if D

halts, in which case D, which must output the opposite of H , rejects. And H rejects if D loops, in which case
D must accept. Note the contradiction in the second case where D must both loop and accept. Therefore,
L is not decidable.
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