
ECE 1767 University of Toronto

l Deterministic, Fault-Oriented ATG
♦ D-Algorithm
♦ PODEM
♦ FAN

l Random ATG
♦ Weighted random
♦ RAPS

l Test Compaction

Outline: ATPG for stuck at faultsOutline: ATPG for stuck at faults

ECE 1767 University of Toronto

DD--AlgorithmAlgorithm
l Roth (1966) proposed a D-algebra and a

deterministic ATG algorithm.
♦ D: good value 1 / faulty value 0
♦ D: good value 0 / faulty value 1

VG / VF
0/0
1/1
1/0
0/1

-/X,X/-

0
1
D
D
X

5-valued algebra:

ECE 1767 University of Toronto

DD--Algorithm: 5Algorithm: 5--Valued OperationsValued Operations

A
B

C
A
0
-
1
1
X
D
1
1
D
D
D

B
-
0
1
X
1
1
D
D
1
X
D

C
0
0
1
X
X
D
D
D
D
X
D

0
0
0
0
0
0

0
1
D
D
X

1
0
1
D
D
X

D
0
D
D
0
X

D
0
D
0
D
X

X
0
X
X
X
X

AND

1
D

D

1
D

D

X
D

X

ECE 1767 University of Toronto

FanoutFanout--Free CircuitFree Circuit

l Test for m s-a-1 in a fanout-free circuit
♦ begin

s set all lines to X;
s Justify (m, 0); // activate the fault
s Propagate (m, D);

♦ end

X
s-a-1m

no conflicts with
implications or
justifications

ECE 1767 University of Toronto

JustifyJustify
Justify d=0 Justify d=1

a
b
c

d=0 select one i of
{a,b,c} & justify i=0

a
b
c

d=0 justify (a=0)
justify (b=0)
justify (c=0)

d=0a justify (a=1)

a
b
c

d=0

a
b
c

d=0

justify (a=1)
justify (b=1)
justify (c=1)

select one i of
{a,b,c} & justify i=1

a
b
c

d=1

a
b
c

d=1

d=1
a

a
b
c

d=1

a
b
c

d=1

justify (a=1)
justify (b=1)
justify (c=1)

justify (a=0)
justify (b=0)
justify (c=0)

justify (a=0)

select one i of
{a,b,c} & justify i=0

select one i of
{a,b,c} & justify i=1

ECE 1767 University of Toronto

Propagate (a, D)Propagate (a, D)

a
b
c

d

a
b
c

d

D

D

justify (b=1) and
justify (c=1)

justify (b=0) and
justify (c=0)

b

a

c

d

e

D
a1

a2

select one path i ∈ {a1,a2}
Propagate (i, D)

Propagate D on line a

ECE 1767 University of Toronto

Test GenerationTest Generation

Set g=1
justify (g=1)

justify (a=1), justify (f=1)
justify (d=0), --> justify (c=0)

propagate (g, D)
justify (h, 0)

--> select one, justify (e=0) --> justify (c=0)

d
c
b

a
f

e

i

h

g
X
g/0

ECE 1767 University of Toronto

Test GenerationTest Generation
l What if we make “wrong” selection (decision)?
l What if justify (a=1) fails?
l What if propagate fails?

d
c
b

a
f

e

i

h

g
X
g/1

Set g=0
justify (g=0)

select f --> justify (f=0)
justify (d=1)
justify (c=1)

propagate (g, D)
justify (h, 0)

select e
justify (e=0)
justify (c=0) X

ECE 1767 University of Toronto

BacktrackingBacktracking
l Conflicts can occur in circuits with fanout and

reconvergence.
♦ If a decision causes inconsistency, then we need to

backtrack.
♦ A backtracking strategy is simply a systematic

exploration of all decisions (choices).
♦ Conflict/inconsistency/contradiction

s An already-assigned value is different from the value
implied by the last decision.

♦ Bounding conditions
s There is no D left in the circuit.
s The fault is not excited.
s Lookahead indicates that a D cannot propagate.

ECE 1767 University of Toronto

Choice in DChoice in D--PropagationPropagation

d

e

f1

d

a
b
c

G2

G1 X
s-a-1

D
choice

G3

G5

G6

G4

f2

ECE 1767 University of Toronto

Choice in Line JustificationChoice in Line Justification

a
b

c
d

e
f
h

k

l

m
n

o

q

r

p

s

X
s-a-1

D

D

1
1

1

choice

ECE 1767 University of Toronto

General Test Generation AlgorithmGeneral Test Generation Algorithm
l Procedure Imply_and_check() implies and

checks for inconsistency.
l Procedure Solve() is a generic branch-and-

bound procedure.
♦ AND-OR search strategy.

set of problems that must be solved
{a, b, c} AND

choice {a1 OR a2 OR a3}

solve a

solve a1

{x, y}AND
solve x

Failure Failure

solve a3

{f, g, h} AND

Success SuccessSuccess

