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l Deterministic, Fault-Oriented ATG
♦ D-Algorithm
♦ PODEM
♦ FAN

l Random ATG
♦ Weighted random
♦ RAPS

l Test Compaction

Outline: ATPG for stuck at faultsOutline: ATPG for stuck at faults
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DD--AlgorithmAlgorithm
l Roth (1966) proposed a D-algebra and a 

deterministic ATG algorithm.
♦ D: good value 1 / faulty value 0
♦ D: good value 0 / faulty value 1
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DD--Algorithm: 5Algorithm: 5--Valued OperationsValued Operations
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FanoutFanout--Free CircuitFree Circuit

l Test for m s-a-1 in a fanout-free circuit
♦ begin

s set all lines to X;
s Justify (m, 0);   // activate the fault
s Propagate (m, D);

♦ end

X
s-a-1m

no conflicts with
implications or
justifications
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JustifyJustify
Justify d=0 Justify d=1
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Propagate (a, D)Propagate (a, D)
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Test GenerationTest Generation

Set g=1
justify (g=1) 

justify (a=1), justify (f=1)
justify (d=0), --> justify (c=0)

propagate (g, D)
justify (h, 0)

--> select one, justify (e=0) --> justify (c=0)
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Test GenerationTest Generation
l What if we make “wrong” selection (decision)?
l What if justify (a=1) fails?
l What if propagate fails?
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Set g=0
justify (g=0) 

select f --> justify (f=0)
justify (d=1)
justify (c=1)

propagate (g, D)
justify (h, 0)
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BacktrackingBacktracking
l Conflicts can occur in circuits with fanout and 

reconvergence.
♦ If a decision causes inconsistency, then we need to 

backtrack.
♦ A backtracking strategy is simply a systematic 

exploration of all decisions (choices).
♦ Conflict/inconsistency/contradiction

s An already-assigned value is different from the value 
implied by the last decision.

♦ Bounding conditions
s There is no D left in the circuit.
s The fault is not excited.
s Lookahead indicates that a D cannot propagate.
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Choice in DChoice in D--PropagationPropagation
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Choice in Line JustificationChoice in Line Justification
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General Test Generation AlgorithmGeneral Test Generation Algorithm
l Procedure Imply_and_check() implies and 

checks for inconsistency.
l Procedure Solve() is a generic branch-and-

bound procedure.
♦ AND-OR search strategy.

set of problems that must be solved
{a, b, c} AND

choice {a1 OR a2 OR a3}

solve a

solve a1

{x, y}AND
solve x

Failure Failure

solve a3

{f, g, h} AND

Success SuccessSuccess


