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Abstract

Across many architectures and parallel programming
paradigms, collective communication plays a key role in
performance and correctness. Hardware support is nec-
essary to prevent important collective communication from
becoming a system bottleneck. Support for multicast com-
munication in Networks-on-Chip (NoCs) has achieved sub-
stantial throughput improvements and power savings. In
this paper, we explore support for reduction or many-to-one
communication operations. As a case study, we focus on
acknowledgement messages (ACK) that must be collected
in a directory protocol before a cache line may be upgraded
to or installed in the modified state. This paper makes two
primary contributions: an efficient framework to support
the reduction of ACK packets and a novel Balanced, Adap-

tive Multicast (BAM) routing algorithm. The proposed me-
ssage combination framework complements several multi-
cast algorithms. By combining ACK packets during trans-
mission, this framework not only reduces packet latency by
14.1% for low-to-medium network loads, but also improves
the network saturation throughput by 9.6% with little over-
head. The balanced buffer resource configuration of BAM
improves the saturation throughput by an additional 13.8%.
For the PARSEC benchmarks, our design offers an average
speedup of 12.7% and a maximal speedup of 16.8%.1

1 Introduction
Efficient and scalable on-chip communication will be re-

quired to realize the performance potential of many-core

architectures. To harness this performance, it is impera-

tive that NoCs be designed to efficiently handle a variety

of communication primitives. Collective communication

lies on the critical path for many applications; the criti-

cality of such communication is evident in the dedicated

collective and barrier networks employed in several super-

computers, such as NYU Ultracomputer [15], CM-5 [24],

1This research was carried out while Sheng Ma was a visiting interna-

tional student at the University of Toronto supported by a CSC scholarship.
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Figure 1. Average destinations per multicast for the PAR-
SEC benchmarks.

Cray T3D [6], Blue Gene/L [2] and TH-1A [43]. Likewise,

many-core architectures will benefit from hardware support

for collective communications but may not be able to af-

ford separate, dedicated networks due to rigid power and

area budgets [34]; this paper explores integrating collective

communication support directly into the existing NoC.

Various parallel applications and programming paradi-

gms require collective communication such as broadcast,

multicast and reduction. For example, a directory-based

coherence protocol relies heavily on multicasts to invali-

date shared data spread across multiple caches [19] and

Token Coherence uses multicasts to collect tokens [29].

Reductions and multicasts are used for barrier synchro-

nization [35, 42]. These collective communications can

have a significant effect on many-core system performance.

Without any special hardware mechanisms, even if 1% of

injected packets are multicast, there is a sharp drop in

saturation throughput [12]. Recent work proposes effi-

cient multicast routing support to improve NoC perfor-

mance [1, 12, 20, 26, 37, 38, 39, 41].

Often a multicast will trigger an operation, such as inval-

idating a cache line [19] or counting available tokens [29].

To notify the source of the completion of these operations,

the multicast destination nodes send out responses. The re-

sulting many-to-one communication operation is called a

reduction [9]. Figure 1 shows that a cache line invalidation

message triggers on average 7.44 acknowledgement mes-
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Figure 2. Latency of multicast-reduction transaction.
(Multicast: latency of last arriving multicast replica;
Transaction: latency of last arriving ACK; the network
is routed by BAM+NonCom as described in Section 5.)

sages for the PARSEC benchmarks [3] in a 16-core system2.

Prior NoC multicast proposals [1, 12, 20, 26, 37, 38, 39, 41]

implicitly assume several unicast packets will deliver these

messages to a single destination; this can lead to redundant

network traversals and create transient hotspots in the net-

work. To provide high performance, scalable NoCs should

handle traffic in an intelligent fashion by eliminating these

redundant messages.

Furthermore, the multicast-reduction transaction cannot

complete until all responses are received [4, 10, 19, 22, 25,

29]. As a result, the transmission of reduction messages

lies on the critical path of a multicast-reduction transaction.

These multicast-reduction operations are often associated

with stores; for out-of-order cores, stores do not lie on the

critical path. However, these stores can delay subsequent

loads to hotly contended cache lines. For CMPs that employ

simple, in-order cores, stores will lie on the critical path and

can significantly impact performance. Figure 2 shows the

completion latency of multicast-reduction transactions in a

4×4 mesh running uniform random traffic. The transmis-

sion of reduction packets accounts for ∼40% of the total

transaction latency. We propose a novel packet reduction

mechanism to improve performance of the full multicast-

reduction transaction.

A noteworthy property of coherence-based reduction

messages is that they carry similar information in a simple

format. For example, invalidation acknowledgement mes-

sages only carry the acknowledgement (ACK) for each no-

de and token count replies merely carry the count of avail-

able tokens at each node. Therefore, these response mes-

sages can be combined without loss of information. Com-

bining these messages eliminates redundant network traver-

sals and optimizes performance. We propose an efficient

message combination framework with little overhead. To

simplify discussion, we focus on invalidation ACK packets

in a directory-based coherence protocol. Our design can be

easily extended to other types of reductions such as those

used in Token Coherence [29].

2See Section 5 for detailed experimental configuration.

Our proposed message combination framework comple-

ments several multicast routing algorithms. Sending a mul-

ticast packet constructs a logical tree in the network. The

framework steers each ACK packet to traverse the same log-

ical tree back to the root (source) of the multicast. In each

router, a small message combination table (MCT) records

total and received ACK counts for active multicast transac-

tions. When an ACK packet arrives at the router, the MCT is

checked. If the router has not received all expected ACKs,

the table is updated and the incoming ACK is discarded.

If the router has received all expected ACKs, the incoming

ACK packet is updated and forwarded to the next node in

the logical tree. Dropping in-flight ACK packets reduces

network load and power consumption.

Our goal is to improve overall network performance in

the presence of both unicast and multicast-reduction traf-

fic. The recently proposed Recursive Partitioning Multi-

cast (RPM) routing algorithm utilizes two virtual networks

(VNs) to avoid deadlock for multicasts [39]. However, the

division of these two VNs results in unbalanced buffer re-

sources between vertical and horizontal dimensions, which

negatively affects performance. Therefore, we propose a

novel multicast routing algorithm, Balanced, Adaptive Mul-
ticast (BAM), which does not need two VNs to avoid multi-

cast deadlock. BAM balances the buffer resources between

different dimensions, and achieves efficient bandwidth uti-

lization by computing an output port based on all the multi-

cast destination positions.

To summarize, our main contributions are the following:

• An efficient message combination framework that re-

duces latency by 14.1% and energy-delay product

(EDP) by 20-40% for low-to-medium network loads

and improves saturation throughput by 9.6%.

• A novel multicast routing algorithm which balances of

buffer resources across different dimensions and im-

proves network throughput by an additional 13.8%.

2 Message Combination Framework

In this section, we describe the proposed message com-

bination framework. We use a multicast-reduction exam-

ple to illustrate the framework. One multicast packet with

destinations 0, 7 and 15 is injected by node 9. A logical

multicast tree [13] is built as shown in Figure 3(a); grey

nodes indicate destinations while white nodes are branches

that are only traversed by the packet. Each multicast desti-

nation responds with an ACK message to the root node 9.

Without combination, the ACKs are transmitted as unicast

packets back to node 9 (Figure 3(b))3. These ACK packets

travel some common channels; merging them can reduce

the network load. Figure 3(c) shows the logical ACK tree

with message combination, which is the same as the logical

3We assume the ACKs sent out by nodes 0 and 7 both traverse node 5.
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Figure 3. Message combination framework overview.

multicast tree except with the opposite transmission direc-

tion. In this example, routers 5 and 9 serve as fork routers

which are responsible for gathering and forwarding ACKs.

Next, we address two important issues associated with our

message combination framework: ensuring that ACK pack-

ets traverse the same logical tree as the multicast packet and

ensuring that the fork routers are aware of the expected total

and currently received ACKs.

In an n× n network, a log(n× n)-bit field in the multi-

cast header is reserved to identify the router where the last

replication happened (pre rep router). This field is initially

set to be the source node and is updated when a multicast

packet replicates during transmission. A 3-bit ID field is

used to differentiate multicast packets injected by the same

source node. This field increments when a new multicast

packet is injected. The src field encodes the source node.

A small message combination table (MCT) is added to

each router. A multicast allocates an MCT entry upon repli-

cation. This entry records the identity of the router where

the last multicast replication occurred and the total expected

ACK count. The transmission of a multicast packet estab-

lishes a logical tree. Each branch in the logical tree has an

MCT entry pointing to the previous fork router.

Each multicast destination responds with an ACK pack-

et. A log(n× n)-bit field (cur dest) in the ACK header

serves to identify the intermediate destination. Its value

is set to the pre rep router field in the triggering multicast

packet. Each ACK packet has two fields named multica-
st src and multicast ID which correspond to src and ID of

the triggering multicast packet, respectively. An addition-

al log(n × n)-bit field (ACK count) is used to record the

carried ACK response count of the combined packet.

When an ACK packet arrives at its current destination,

it accesses the MCT. If the router has not yet received all

expected ACKs, the incoming packet is discarded and the

entry’s received ACK count is incremented. If the router

has received all expected ACKs, the incoming ACK packet

updates its cur dest field to be the next replication router.

It will be routed to the fork router at the next level; thus,

ACK packets traverse the same logical tree as multicast in

the opposite direction.

2.1 MCT Format

Figure 4 illustrates the format of an MCT entry. The

V field is the valid bit for the entry. The src, ID and

3 bits4 bits 4 bits 4 bits 4 bits3 bits1 bit

pre_rep
_router

cur_ACK
_count

V IDsrc
incoming

_port
expected
_count

Figure 4. MCT entry format. (Port encoding: E: 0, W: 1,
S: 2, N: 3, local: 4. Assuming 16 nodes.)

pre rep router fields are the same as the corresponding

fields in the multicast packet initializing this entry. The

MCT is a content-addressable memory (CAM); the src and

ID fields work together as the tag. The incoming port field

records the incoming port of the multicast packet. The ex-
pected count field indicates the total expected ACK count,

which is equal to the number of destinations at this branch

of the multicast tree. The value of cur ACK count field

tracks the current received ACK count. As we will show lat-

er, recording the total expected ACK count instead of sim-

ply counting the number of direct successors is needed for

handling full MCTs.

2.2 Message Combination Example

Figure 5(a) gives a multicast example within a 4×4 mesh

network which is the same as Figure 3(a). Figure 5(b) shows

the multicast header values. Although our framework is in-

dependent of the multicast packet format, we assume bit

string encoding [5] for the destination addresses in the des-
tinations field of the header for clarity. Ma is the injected

packet; its destinations field contains the three destinations.

Ma replicates into two packets, Mb and Mc at router 9. An

MCT entry is created. The src, ID and pre rep router fields

of this entry are fetched from Ma. The incoming port field

is set to 4 to indicate that Ma comes from the local input

port. The expected count field is set to the total destina-

tion count of Ma: 3. The cur ACK count field is set to 0.

At router 5, Mb replicates into two packets: Md and Me.

An MCT entry is created with an expected count of 2. The

pre rep router fields of both Md and Me are updated to 5

since the last replication occurred at router 5.

After a destination node receives a multicast, it responds

with an ACK packet. Figure 6(a) shows the transmission

of ACK packets corresponding to the multicast shown in

Figure 5(a). Figure 6(b) gives the ACK header values. Ac,

Ad and Ae packets are triggered by the Mc, Md and Me

multicast packets, respectively. The multicast src, multica-
st ID and cur dest fields of the ACK packets are equal to

the src, ID and pre rep router fields of the triggering mul-

ticast packet, respectively. The ACK count fields of these

three ACK packets are set to 1 since they all carry an ACK

response from only one node.

The cur dest field defines the current destination of ACK

packet. As shown in Figure 6(a), Ae can be routed along a

different path than Me to reach its intermediate destination

at router 5. ACK packets only need to follow the same logi-
cal tree as the multicast packet giving our design significant
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Figure 5. A multicast packet transmission example.

flexibility. A similar scenario can be seen for Ac. Ad and

Ae both set their cur dest fields as router 5; at router 5, they

will be merged. Analysis shows that the possibility of mul-

tiple simultaneous MCT accesses is quite low (≤ 0.1%) as

ACK packets will experience different congestion. A small

arbiter is used to serialize concurrent accesses. Assuming

Ad arrives earlier than Ae; its multicast src and multica-
st ID are used together as the tag to search the MCT. The

sum of cur ACK count field of the matched entry and the

carried ACK count of Ad is 1, which is smaller than the ex-
pected count of 2 in that entry. Therefore, Ad is discarded

and the cur ACK count field is incremented by 1.

When Ae arrives at router 5, it accesses the MCT. Sin-

ce router 5 has received all expected ACKs, Ae will re-

main in the network. Its cur dest field is updated to the

pre rep router field of the matched entry and its ACK count
field is updated to 2 since it now carries the ACK respons-

es of nodes 0 and 7 (see Ab). Ab uses the incoming port
field of the matched entry as the output port. The combined

ACK packet is required to use the same multicast path for

one hop to avoid an additional routing computation stage

which would add an additional cycle of latency. Now that

router 5 has received all expected ACKs, the corresponding

MCT entry is freed. Finally, node 9 receives Ab and Ac and

combines them into Aa. The multicast-reduction transac-

tion is complete.

2.3 Insufficient MCT Entries

So far, we have assumed that there is always an available

MCT entry when a multicast packet replicates. However,

since the table size is finite, we must be able to handle a

full MCT. If there are no free MCT entries, the replicated

multicast packet will not update its pre rep router field. In

the previous example, if there is no available MCT entry at

router 5 when Mb replicates, Md and Me will keep their

pre rep router field as 9. When Ad and Ae are injected,

their cur dest fields are set to 9; they will combine in router

9 instead of router 5. Both Ad and Ae must travel to router

9. In this case, router 9 will receive two ACK packets for the

north-bound replication branch; this is why we record the

expected total count of ACKs in MCT instead of recording

the number of direct successors in the logic multicast tree.

In our design, insufficient MCT entries may affect perfor-
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Figure 6. ACK packets transmission example.

mance, but do not pose any correctness issues. We evaluate

the effect of the MCT size in Section 5.3.

3 Balanced, Adaptive Multicast Routing

In this section, we describe our Balanced, Adaptive Mul-
ticast (BAM) routing algorithm. To achieve efficient band-

width utilization, a multicast routing algorithm must com-

pute the output port based on all destination positions in

a network [39]. A simple and efficient routing algori-

thm, RPM, was recently proposed to deliver high perfor-

mance [39]. As shown in Figure 7, RPM partitions the net-

work into at most 8 parts based on the current position, and

applies several priority rules to avoid redundant replication

for destinations located in different parts; the goal is to de-

liver a multicast packet along a common path as far as pos-

sible, then replicate and forward each copy on a different

channel bound for a unique destination subset.

We observe that although RPM provides efficient band-

width utilization, it suffers from unbalanced buffer re-

sources between different dimensions which negatively aff-

ects network performance. To avoid deadlock for multicast

routing, RPM divides the physical network into two virtual

networks (VNs): VN0 is for upward packets and VN1 is for

downward ones. The horizontal VC buffers must be split

into two disjoint subsets for the two VNs, while the verti-

cal ones can be exclusively used by one VN [9, 39]. When a

packet is routed in each VN, there are 2x more available ver-

tical buffers than horizontal ones. This unbalanced buffer

configuration negatively affect both unicast and multicast

routing, since the more limited horizontal VCs become a

performance bottleneck. Configuring different VC counts

for different dimensions may mitigate this effect. However,

it requires different control logic for each input port as the

size of the arbiters in VC and switch allocators is related to

the VC count; a heterogeneous router requires extra design

effort [31]. Also, the critical path may increase since it is

determined by the largest arbiter. Therefore, we assume a

homogeneous NoC router architecture in this paper.

Based on these observations, we propose a novel adap-

tive multicast routing algorithm: Balanced, Adaptive Multi-
cast (BAM). The deadlock freedom of BAM is achieved by

utilizing Duato’s unicast deadlock-avoidance theory [8] for

multicast packets, rather than leveraging multiple VNs. The
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multicast packets in NoCs are generally short as they carry

only control packets for the coherence protocol; these are

most likely single-flit packets [12], making the routing of

each multicast branch independent. Thus, Duato’s unicast

theory can be applied to multicasts by regarding the rout-

ing of each multicast branch as an independent unicast. In

Duato’s theory, VCs are classified into escape and adaptive

VCs. When a packet resides in an adaptive VC, it can be

forwarded to any permissible output port. This property en-

ables BAM to select the best output port based on all desti-

nation positions. An additional advantage is that this design

is compatible with an adaptive unicast routing algorithm.

Figure 7 shows the partitioning of destinations into 8

parts. For Part1, Part3, Part5 or Part7, there is only one

admissible output port. For Part0, Part2, Part4 or Part6,

there are two alternative output ports. If a multicast packet

has some destinations located in Part1, Part3, Part5 and

Part7, the corresponding N, W, S and E output port must be

used; these ports are called obligatory output ports for this

multicast packet. To achieve efficient bandwidth utilization,

we design a heuristic output port selection scheme for des-

tinations located in Part0, Part2, Part4 and Part6: (i)

If only one of the two alternative output ports is an obliga-
tory output port for the multicast packet, the router will use

this output port to reach the destination; (ii) If the two al-

ternative output ports both are obligatory or not obligatory
output ports, the router will adaptively select the one with

less congestion. This scheme maximally reuses the obliga-
tory output ports to efficiently utilize bandwidth.

Figure 8 shows the output port calculation logic for

BAM. The one bit Pi indicates whether there is a destination

in Parti. Take Part0 as an example: Np0
and Ep0

indicate

that the router uses the north or east port to reach the des-

tinations located in Part0. Nne and Ene signals indicate

whether the north or east output has less relative congestion

in the northeast (ne) quadrant. These signals are provided

by the routing computation module.

Escapen, Escapew, Escapes and Escapee indicate

whether the multicast packet can use the escape VC for the

N, W, S and E output ports, respectively. If a multicast pack-

et uses the north output port to reach nodes in Part0 or

Part2, it is not allowed to use the north escape VC since

this packet will make a turn forbidden by DOR. A similar

rule is applied to the south escape VC. The east and west

0 21 p pN P N N� � �

2 43 p pW P W W� � �

0 67 p pE P E E� � �

4 65 p pS P S S� � �

0 1 7 1 7 1 7p ne neN P P P P N P P N� � � � � � � �

0 1 7 1 7 1 7p ne neE P P P P E P P E� � � � � � � �

2 1 3 1 3 1 3p nw nwN P P P P N P P N� � � � � � � �

2 1 3 1 3 1 7p nw nwW P P P P W P P W� � � � � � � �
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4 5 3 5 3 5 3p sw swW P P P P W P P W� � � � � � � �
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Figure 8. BAM routing computation logic.

escape VCs are always available for routing. If a multicast

packet resides in an escape VC, it will replicate according

to DOR, similar to VCTM [12]. Once a multicast packet

enters an escape VC, it can be forwarded to the destinations

using only escape VCs; there is no deadlock among escape

VCs. Any multicast packet residing in an adaptive VC has

an opportunity to use an escape VC. This design is deadlock

free [8]. Compared with RPM, BAM does not need to parti-

tion the physical network into two virtual networks to avoid

multicast deadlock; it achieves balanced buffer resources

across vertical and horizontal dimensions. Moreover, BAM

achieves efficient bandwidth utilization as well.

4 Router Pipeline and Microarchitecture

Our baseline is a speculative VC router [7, 11, 36].

Look-ahead signals transmit the unicast routing information

one cycle ahead of the flit traversal to overlap the routing

computation (RC) and link traversal (LT) stages [17, 23].

We use a technique to pre-select the preferred output for

adaptive routing; the optimal output port for each quad-

rant is selected one cycle ahead based on network sta-

tus [16, 21, 27]. The pipeline for unicast packets is two

cycles plus one cycle for LT, as shown in Figure 9(a).

Including multicast routing information in the look-

ahead signals requires too many bits; therefore, we assume

a 3-cycle router pipeline for multicasts, as shown in Fig-

ure 9(b). A multicast packet replicates inside the router

if multiple output ports are needed to reach the multicast

destinations. We use asynchronous replication to eliminate

lock-step traversal among several branches; the multicast

packet is handled as multiple independent unicast packets

in the virtual channel allocation (VA) and switch allocation

(SA) stage, except that a flit is not removed from the input

VC until all requested output ports are satisfied [20, 39].

ACK packets are handled differently from other unicast

packets. When an ACK packet arrives, its cur dest field is

checked. If this field does not match the current router, the

ACK packet is handled like a normal unicast packet (Fig-

ure 9(a)). If they match, the ACK packet accesses the MCT

instead of performing the routing computation. The MCT

access is overlapped with the RC stage. As we show in Sec-

tion 5.3, this operation can fit within a single pipeline stage;

it does not add additional latency to the critical path. Fig-
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ures 9(c) and 9(d) illustrate the ACK packet pipeline.

Figure 10 illustrates the proposed router microarchitec-

ture. If a multicast packet needs multiple output ports af-

ter the routing computation, an entry is allocated in the

MCT. This operation is overlapped with the VA/SA oper-

ations and does not add delay to the critical path. The Port
Pre-selection module provides eight signals indicating the

optimal output port for each quadrant [16, 21, 27]. These

signals are used by both unicasts and multicasts to avoid

network congestion.

5 Evaluation

We evaluate our message combination framework with

RPM and BAM using synthetic traffic and real application

workloads. We modify the cycle-accurate Booksim simula-

tor [7] to model the router pipelines and microarchitecture

described in Section 4. For synthetic traffic, we configure

two VNs to avoid protocol-level deadlock [7]: one for mul-

ticasts and one for ACKs. RPM further divides the mul-

ticast VN into two sub-VNs: one for upward packets and

one for downward ones. BAM does not need to sub-divide

the multicast VN. Normal unicast packets can use any VN.

However, once injected into the network, a packet’s VN is

fixed and cannot change during transmission. Unicast pack-

ets are routed by an adaptive routing algorithm. For BAM’s

multicast, BAM’s ACK and RPM’s ACK VNs, the algori-

thm is designed based on Duato’s theory [8] and uses one

VC as the escape VC. The two sub-VNs of RPM’s multicast

VN enable adaptive routing without requiring escape VCs.

We use a local selection strategy for adaptive routing: when

there are two available output ports, the selection strategy

chooses the one with more free buffers.

Table 1. Simulation configuration and variations.
Characteristic Baseline Variations
Topology (mesh) 4×4 8×8, 16×16

VC configuration 4 flits/VC, 8 VCs/port 4 & 6 VCs/port

Packet length Normal: 1 & 5 (bi-modal)
-

(flits) ACK: 1; multicast: 1

Unicast traffic uniform random, transpose,
-

pattern bit rotation, hot spot

Multicast ratio 10% 5%, 15%, 20%

Multicast dest.
2 - 10 (uniformly dist.)

2 - 4, 4 - 14,

count 10 - 14, 15

ACK resp. cycles 1 - 4 (uniformly dist.) -

MCT entries 64 0, 1, 4, 16

Warmup & total 10000 & 100000 cycles -

Table 2. Full system simulation configuration.
# of cores 16

L1 cache (D & I) private, 4-way, 32KB each

L2 cache private, 8-way, 512KB each

Cache coherence MOESI distributed directory

Topology 4×4 2D-Mesh

Multicasts and ACKs are single-flit packets, while the

normal unicasts are bimodally distributed, consisting of 5-

flit packets (50%) and 1-flit packets (50%). We use sev-

eral synthetic unicast traffic patterns [7], including unifo-

rm random, transpose, bit rotation and hot spot, to stress

the network for detailed insights. We control the percent-

age of multicast packets relative to whole injected packets.

For multicasts, the destination counts and positions are uni-

formly distributed. A cache’s ACK packet response delay is

uniformly distributed between 1 and 4 cycles. We assume

a 64-entry MCT; in Section 5.3, we explore the impact of

MCT size. Table 1 summarizes the baseline configuration

and variations used in the sensitivity studies.

To measure full-system performance, we leverage two

existing simulation frameworks: FeS2 [33] for x86 simula-

tion and BookSim for NoC simulation. FeS2 is a timing-

first, multiprocessor x86 simulator, implemented as a mod-

ule for Virtutech Simics [28]. We run the PARSEC bench-

marks [3] with 16 threads on a 16-core CMP, consisting of

Intel Pentium 4-like CPU. We assume cores optimized for

clock frequency; they are clocked 5× faster than the net-

work. We use a distributed, directory-based MOESI coher-

ence protocol that needs 4 VNs for protocol-level deadlock

freedom. The cache line invalidation packets (multicasts)

are routed in VN1, while the acknowledge packets are rout-

ed in VN2. The VCs/VN, VC depth and MCT size are the

same as the baseline (Table 1). Cache lines are 64 bytes

wide and the network flit width is 16 bytes. All benchmarks

use the simsmall input sets to reduce simulation time. The

total runtime is used as the metric for full-system perfor-

mance. Table 2 gives the system configuration.

5.1 Performance

We evaluate four scenarios: RPM without message

combination (RPM+NonCom), RPM with message com-

bination (RPM+Com), BAM without message combina-
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Figure 11. Overall network performance. (10% multicast, average 6 destinations.)

tion (BAM+NonCom) and BAM with message combination

(BAM+Com).

Overall Network Performance. Figure 11 illus-

trates overall network performance. Both RPM+Com and

BAM+Com see performance improvements compared to

RPM+NonCom and BAM+NonCom respectively; not on-

ly are the network latencies reduced, but the saturation

throughputs4 are improved. Detailed analysis reveals that

the combination framework reduces the average channel

traversal count of ACK packets from 4.7 to 2.5, reducing

approximately 45% of the network operations for ACKs.

The network latency for RPM+Com is reduced by 10%-

20% under low-to-medium injection rates5 compared to

RPM+NonCom (average 14.1%); larger improvements are

seen at high injection rates. Similar latency reductions are

seen for BAM+Com vs. BAM+NonCom. Packet dropping

shortens the average hop distance bringing latency reduc-

tions at both low and high network loads. The mitigation of

ejection-side congestion is also beneficial to latency reduc-

tion. Saturation throughput improvements resulting from

the framework (RPM+Com vs. RPM+NonCom) range

from 8.5% to 11.2% (average 9.6%). BAM+Com sees sim-

ilar throughput improvements over BAM+NonCom. Dis-

carding in-flight ACKs reduces the network load, which is

helpful to improve the saturation throughput.

Across the four traffic patterns, both BAM+NonCom

and BAM+Com improve the saturation throughput over

RPM+NonCom and RPM+Com, respectively. For

transpose, bit rotation and hot spot patterns, although

BAM+NonCom has larger latencies than RPM+Com un-

der low loads, its saturation throughputs are higher. The

balanced buffer configuration between vertical and hori-

zontal dimensions helps BAM to improve the saturation

throughput. BAM+Com improves the saturation through-

put by 14.2%, 27.6%, 26.4% and 25.1% (average 23.4%)

over RPM+NonCom for the four traffic patterns. Both

the ACK packet dropping and balanced buffer configu-

ration contribute to this performance improvement. As

4The saturation point is measured as the injection rate at which the

average latency is 3× the zero load latency.
5The low-to-medium injection rate is the injection rate at which the

average latency is less than 2× the zero load latency.

shown in Figure 11, the trend between BAM+NonCom and

RPM+NonCom is similar to the trend between BAM+Com

and RPM+Com; thus, we omit BAM+NonCom in the fol-

lowing sections for brevity.

Multicast Transaction Performance. To clearly un-

derstand the effects of message combination on multica-

st transactions, we measure the multicast-reduction trans-

action latency. Figure 12 shows the results for five in-

jection rates. The injection rate for the last group of

bars exceeds the saturation point of RPM+NonCom. Un-

der all injection rates, RPM+Com and BAM+Com have

lower transaction latencies than RPM+NonCom; dropping

ACK packets reduces network congestion and accelerates

multicast-reduction transactions. ACK packet acceleration

contributes more to the latency reduction than multicasts.

A multicast needs to send out multiple replicas; releasing

its current VC depends on the worst congestion each repli-

ca may face. Thus, the multicast is not as sensitive as the

ACK to the network load reduction. For example, with

low-to-medium injection rates (≤ 0.30) under uniform ran-

dom traffic (Figure 12(a)), the average multicast delay is

reduced by 9.5% for BAM+Com versus RPM+NonCom.

Yet, ACK packet delay is reduced by 17.6%. These two

factors result in an average 13.4% transaction latency re-

duction. The transaction acceleration increases with higher

network load. Merging ACKs reduces the number of pa-

ckets the source needs to wait for to finish a transaction.

Waiting for only one ACK instead of multiple ACKs can

improve performance since multiple packets may encounter

significantly more congestion than a single packet, especial-

ly under high network load. For uniform random traffic with

a high injection rate (0.40), RPM+Com and BAM+Com re-

duce the transaction latency by 46.2% and 57.6% compared

to RPM+NonCom, respectively. The message combination

framework accelerates the total transaction by almost a fac-

tor of 2. As injection rate increases, BAM+Com outper-

forms RPM+Com by a significant margin.

Real Application Performance. Figure 13 shows the

speedups over RPM+NonCom for the PARSEC bench-

marks. Although the message combination framework

mainly optimizes the performance for one of the four VNs

(the ACK VN) used in full-system simulation, collective
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Figure 12. Multicast-reduction transaction latency. (10% multicast, average 6 destinations.)
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Figure 13. System speedups against RPM+NonCom for
the PARSEC benchmarks.

communication often lies on the critical path for applica-

tions. Also, dropping ACK packets in one VN reduces

switch allocation contention and improves the performance

of other VNs. These factors result in RPM+Com achieving

speedups over RPM+NonCom ranging from 5.3% to 8.3%

for all applications. The efficiency of message combination

depends on the multicast destination count. The multica-

st destination counts of bodytrack, facesim and raytrace
are the lowest; the speedups of RPM+Com for these 3 ap-

plications are lower than the remaining 7 applications.

The balanced buffer configuration utilized in BAM+Com

supports higher saturation throughput than the unbalanced

one. BAM+Com improves the performance of applications

which have high network loads and significant bursty com-

munication. For blackscholes, fluidanimate, raytrace
and swaptions, the additional performance gain due to the

balanced buffer configuration (BAM+Com vs. RPM+Com)

ranges from 2.3% to 3.7%. The network loads of these ap-

plications are low and do not stress the network. Howev-

er, BAM+Com achieves additional speedups ranging from

5.5% to 8.6% over RPM+Com for bodytrack, canneal,
facesim, ferret, streamcluster and vips. These appli-

cations have more bursty communication and higher injec-

tion rates. For all ten applications, BAM+Com achieves an

average speedup of 12.7% over RPM+NonCom. The max-

imal speedup is 16.8% for canneal.

5.2 Comparing BAM’s and RPM’s Multi-
cast VN Configuration

In this section, we delve into the effect of the unbalanced

buffer configuration used in the multicast VN of RPM on

both unicast and multicast packet routing. Since the ACK

VNs of RPM and BAM are the same, we assume the net-

work only has one VN: the multicast VN. Four VCs are

configured in this VN, and RPM further divides this VN in-

to two sub-VNs: the horizontal VC count of each sub-VN

is two, while the vertical count is four.

Unicast Performance. Figure 14 compares the perfor-

mance of BAM’s and RPM’s multicast VN configuration

using only unicast packets. To extensively understand the

effect of the unbalanced buffer configuration, we evaluate

the performance of XY, YX and a locally adaptive routing

algorithm (Adaptive) in RPM’s multicast VN. XY efficient-

ly distributes uniform random traffic and achieves the high-

est performance for this pattern. For the other three patterns,

Adaptive has the highest performance; adaptively choosing

the output port mitigates the negative effect of unbalanced

buffer resources. Therefore, this work uses locally adaptive

routing for unicast packets.

Although Adaptive has better performance than XY and

YX, its performance is still limited by the unbalanced buffer

resources used in each of RPM’s multicast sub-VNs; the

horizontal dimension has half the buffer resources of the

vertical one. However, in BAM’s VN, the number of bu-

ffers of different dimensions are equal. Adaptive rout-

ing in BAM’s VN shows substantial performance improve-

ment over Adaptive routing in RPM’s VN. Transpose has

the largest performance gain with a 73.2% saturation point

improvement. Across these four traffic patterns, BAM’s
VN-Adaptive achieves an average saturation throughput im-

provement of 35.3% over RPM’s VN-Adaptive.

Multicast Performance. Figure 15 shows the performance

using 100% multicast packets. The Adaptive curve shows

the performance of the adaptive multicast routing algorithm

without our heuristic replication scheme; multicast repli-

cas adaptively choose the output ports without considering

the reuse of obligatory ports. This negatively affects band-

width utilization. BAM has 8.7% higher saturation through-

put than Adaptive. BAM achieves 47.1% higher saturation

throughput over RPM. The effect of the unbalanced buffer

resources is greater on multicasts than unicasts. A multica-

st packet is removed from its current VC only after all its

replicas are sent out; the horizontal VC bottleneck affects
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Figure 14. Unicast traffic performance for RPM’s and BAM’s multicast VN.
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Figure 15. Performance of 100% multicast traffic. (aver-
age 6 destinations.)

multicast performance more strongly than unicast perfor-

mance. Average switch traversal counts are 8.6, 8.8 and 8.4

for RPM, Adaptive and BAM, respectively, which further

demonstrates that our applied heuristic replication scheme

achieves efficient bandwidth utilization.

5.3 MCT Size

As described in Section 2.3, the MCT size affects net-

work performance but not correctness. Too few MCT en-

tries will hamper ACK packet combination and force the

ACK packets to travel more hops than with combination. To

determine the appropriate size, we simulate an infinite MCT

using the baseline configuration (Table 1) and uniform ran-

dom traffic. Multicast packets are routed using BAM. Fig-

ure 16(a) presents the maximum and average concurrently

valid MCT entries. For low-to-medium injection rates (<
0.39), the maximum number of concurrently valid entries is

less than 10 and the average number is less than 1.5. Even

when the network is at saturation (0.52 injection rate), the

maximum number of concurrently valid entries is 49 and

the average is 10.15. These experimental results indicate

that a small MCT can provide good performance.

Figure 16(b) shows the performance for different table

sizes. The 0-entry curve performs no ACK combination; all

ACK packets are injected into the network with their des-

tination set to the source node of the triggering multicast

packet. Even with only one entry per router, ACK combi-

nation reduces the average network latency by 10%. More

entries reduce the latency further, especially for high injec-

tion rates. Saturation throughput improvements range from

3.3% to 12.1% for 1 to 64 entries.
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Figure 16. Evaluation of MCT size. (10% multicast, aver-
age 6 destinations.)

Table 3. MCT overhead.
Entries Area (mm2) Energy (nJ) Time (ns) Bytes

16 0.0011 0.0008 0.138 48

32 0.0017 0.0013 0.146 96

64 0.0031 0.0026 0.153 192

Cacti [32] is used to calculate the power consumption,

area and access latency for the MCT in a 32nm technolo-

gy process. Table 3 shows the results. Assuming a 1 GHz

clock frequency, a 64-entry table can be accessed in one

cycle. This size provides good performance for nearly all

injection rates for various traffic patterns. In the full system

evaluation, we observe that the maximal concurrently valid

entries for the PARSEC benchmarks are less than 25 entries.

For area-constrained designs, fewer entries still provide la-

tency and throughput improvements.

5.4 Sensitivity to Network Design

To further understand the scalability and impact of our

design, we vary the VC count, multicast ratio, destination

count per multicast packet and network size. Figure 17

presents the average performance improvement across the

four synthetic unicast traffic patterns. In each group of bars,

the first two bars show the saturation throughput improve-

ment, and the second two bars show the latency reduction

under low-to-medium loads.

VC Count. Figure 17(a) shows the performance improve-

ment with 8, 6, and 4 VCs per physical channel. One in-

teresting trend is observed: For smaller VC counts, the gain

due to combination framework increases (RPM+Com vs.

RPM+NonCom), while the improvement due to balanced

buffer resources declines (BAM+Com vs. RPM+Com).
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Figure 17. Performance gains of RPM+Com and BAM+Com over RPM+NonCom for sensitivity study.

The reasons for this trend are two-fold. First, fewer VCs

per port makes the VCs a more precious resource; dropping

ACK packets improves the reuse of this resource. For ex-

ample, RPM+Com has a 14.8% higher saturation through-

put than RPM+NonCom with 4 VCs per physical channel.

As the number of VCs increases, this resource is not as pre-

cious; its effect on performance declines. However, even

with 8 VCs per physical channel, dropping ACK packets

still improves the saturation throughput by 9.6%.

Second, BAM+Com uses escape VCs to avoid deadlock.

The horizontal escape VC can always be used, while the

vertical one can only be used by DOR; there is some im-

balance in the utilization of escape VCs and this imbal-

ance increases with fewer VCs. However, the situation is

worse for RPM+Com. In RPM’s multicast VN configu-

ration, the vertical dimension always has twice as many

VCs as the horizontal one. Even with 4 VCs/port, the

saturation point improvement of BAM+Com is still larger

than RPM+Com’s improvement by about 9.0%. With fewer

VCs, RPM+Com’s latency reduction increases; it achieves

a 18.5% reduction with 4 VCs/port. BAM+Com further re-

duces latency due to the balanced buffer configuration am-

ong different dimensions. The latency difference between

BAM+Com and RPM+Com is not as significant as the sat-

uration throughput improvement. Adaptive routing mainly

accelerates packet transmission at high injection rates by

avoiding network congestion.

Multicast Ratio. Figure 17(b) presents the perfor-

mance improvement for several multicast ratios: 5%, 10%,

15% and 20%. Increasing the multicast portion leads to

greater throughput improvements due to message combi-

nation. The improvement contributed by the balanced

buffer configuration remains almost constant (BAM+Com

vs. RPM+Com). A higher multicast packet ratio triggers

more ACK packets; ACK combination has more opportuni-

ty to reduce network load. The framework becomes more

effective. BAM+Com achieves a 27.2% saturation through-

put improvement with 20% multicast ratio. A higher multi-

cast ratio also results in larger latency reductions. The VC

count per physical channel is kept constant (8 VCs/port)

in this experiment, so the gap between BAM+Com and

RPM+Com remains almost the same.

Destinations per Multicast. Figure 17(c) illustrates the

performance gain for different average numbers of multica-

st destinations: 3, 6, 9, 12, and 15 (broadcast). The trend is

similar to varying the multicast ratio. Although the multica-

st ratio remains constant (10%), more destinations per mul-

ticast trigger more ACK packets. The framework combines

more of these ACKs during transmission. As the destination

count varies from 3 to 15, BAM+Com improves the satura-

tion throughput by 17% to 28%. RPM+Com reduces laten-

cy by 10% to 25%; BAM+Com’s latency reduction ranges

from 13% to 27%.

Network Size. Figure 17(d) shows the performance

improvement for different network sizes: 4×4, 8×8 and

16×16 mesh networks6. Since 8×8 and 16×16 networks

have more nodes, we increase the average destinations per

multicast to 12 and 24, respectively. The message combi-

nation framework is more efficient at larger network sizes

since packets traverse more hops on average. As a result,

combining ACK packets eliminates more network opera-

tions. For the 16×16 network, the message combination

framework improves the saturation point by 16.8%. Simi-

larly, larger network sizes show greater latency reductions.

RPM+Com and BAM+Com achieve 25% and 27% latency

reductions for a 16×16 mesh, respectively. The efficiency

of the balanced buffer configuration utilized by BAM+Com

remains constant with different network sizes.

Throughout the sensitivity studies, the MCT size is 64

entries. One may think that with more multicast destina-

tions, a higher multicast ratio or a larger network size that

more entries will be required. Yet, analysis reveals changing

these aspects reduces the injection rate at which the network

becomes saturated. Thus, the maximal concurrently active

multicast transactions supported by the network is reduced.

As a result, a 64-entry MCT is able to achieve high perfor-

mance for these different network design points.

6 Power Analysis

A NoC power model [30] is leveraged to determine over-

all network power consumption; network power consump-

tion is contributed by three main components: channels, in-

put buffers and router control logic. The activity of these

components is obtained from Booksim. Leakage power is

included for buffers and channels. The power consump-

6Bit string encoding is used in all experiments to encode the destination

set; this method is impractical in large networks. However, further explo-

ration of this issue is orthogonal to the message combination framework.
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(a) Power (10% multicast).
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(b) Power (20% multicast).
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(c) EDP (10% multicast).
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(d) EDP (20% multicast).

Figure 18. Power consumption and EDP results. (average 6 destinations.)

tion of a MCT access is also integrated into the power mod-

el. We assume a 128-bit flit width. The technology pro-

cess is 32nm and the network clock is 1 GHz based on a

conservative assumption of router frequency. Figures 18(a)

and 18(b) show the power consumption using transpose

traffic for unicast messages. We measure the MCT access

power and the static and dynamic network power for two

multicast ratios: 10% and 20%.

MCT access power comprises only a small portion of

the total power. The reason is two-fold. MCT is very small;

each entry is only 3 bytes. With 64 entries, the size of MCT

is 192 bytes, which is only 7.5% of the size of flit buffers.

Second and more importantly, the MCT access activity is

very low. Even when the network is saturated, only 7.2% of

all cycles have an MCT access; if the network is not satu-

rated, the activity is even lower.

RPM+Com reduces power consumption compared to

RPM+NonCom for all injection rates due to the dropping

of ACK packets. BAM+Com further reduces the power

consumption due to more balanced buffer utilization among

different dimensions. As the injection rate increases, the re-

duction in power consumption becomes more obvious. For

0.35 injection rate with a 10% multicast ratio, RPM+Com

and BAM+Com achieve a 7.6% and a 10.8% power reduc-

tions over RPM+NonCom, respectively. With larger mul-

ticast ratios, the combination framework is able to reduce

more power for both RPM+Com and BAM+Com.

The energy-delay product (EDP) [14] of the whole net-

work further highlights the energy efficiency of our de-

sign, as shown in Figures 18(c) and 18(d). Dropping ACK

packets during transmission not only results in fewer net-

work operations, but also reduces network latency. For

low-to-medium injection rates with a 10% multicast ratio,

RPM+Com and BAM+Com show about 20%-40% EDP re-

ductions. At a high injection rate (0.35), this reduction can

be as much as 60%-75%. Higher multicast ratios result in

greater EDP reduction.

7 Related Work

In this section, we review related work for message com-

bination and NoC multicast routing.

Message Combination. Barrier synchronization is an

important class of collective communication, in which a

reduction operation is executed first followed by a broad-

cast. Gathering and broadcasting worms have been pro-

posed [35]. Many supercomputers including the NYU

Ultracomputer [15], CM-5 [24], Cray T3D [6], Blue

Gene/L [2] and TH-1A [43] utilize dedicated or optimized

networks to support the combination of barrier information.

Oh et al. [34] observe that the using a dedicated network

in many-core platform is unfavorable and propose the use

of on-chip transmission lines to support multiple fast bar-

riers. Our work focuses on collective communication that

is used in cache coherence protocols where the multicast is

sent first followed by the collection of acknowledgements.

Bolotin et al. [4] acknowledge that ACK combination might

be useful, but do not give a detailed design or evaluation.

Krishna et al. [22] propose efficient support for collective

communications in coherence traffic. Our message combi-

nation mechanism is quite different from their design. We

utilize a CAM to record the ACK arrival information, while

they keep the earlier arriving ACK in network VCs to merge

with later arriving ones [22].

NoC Multicast Routing. Recent work explores various

NoC multicast routing algorithms. Lu et al. [26] use path-

based multicast routing, which requires path setup and ac-

knowledgement messages resulting in a long latency over-

head. Tree-based multicast mechanisms in NoCs avoid this

latency overhead. VCTM [12] is based on the concept of

virtual multicast trees. bLBDR [37] uses broadcasting in

a small region to implement multicasting. RPM [39] fo-

cuses on achieving bandwidth efficient multicasting. Based

on the isolation mechanism proposed in bLBDR, Wang et

al. [41] extend RPM for irregular regions. MRR [1] is an

adaptive multicast routing algorithm based on the rotary

router. Whirl [22] provides efficient support for broadcasts

and dense multicasts. The deadlock avoidance mechanisms

of Whirl and our proposed BAM are similar; both are based

on Duato’s theory [8]. Both BAM and RPM use bit string

encoding for multicast packet destinations; this method is

not scalable for large networks. Some compression me-

thods [40] can improve the scalability of this encoding

scheme. In addition, coarse bit vectors [18], similar to what

has been proposed for directories, are another possible ap-



proach to reduce the size of the destination set encodings.

This type of encoding will increase the number of desti-

nations per multicast and receive greater benefits from our

proposal. Delving into this issue is left as future work.

8 Conclusions

Scalable NoCs must handle traffic in an intelligent fash-

ion; to improve performance and reduce power they must

eliminate unnecessary or redundant messages. The pro-

posed message combination framework does just that by

combining in-flight ACK responses to multicast requests. A

small 64-entry CAM is added to each router to coordinate

combination. In addition to the framework, we propose a

novel multicast routing algorithm that balances buffer re-

sources between different dimensions to improve perfor-

mance. Simulation results show that our message combina-

tion framework not only reduces latency by 14.1% for low-

to-medium network loads, but also improves the saturation

point by 9.6%. The framework is more efficient for fewer

VCs, larger network size, a higher multicast ratio or more

destinations per multicast. The balanced buffer configura-

tion achieves an additional 13.8% saturation throughput im-

provement. Our proposed message combination framework

can be easily extended to support the reduction operations

in Token Coherence and other parallel architectures.
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