
SigNet: Network-on-Chip Filtering for Coarse Vector Directories

Natalie Enright Jerger
Department of Electrical and Computer Engineering

University of Toronto
Toronto, ON

enright@eecg.toronto.edu

Abstract—Scalable cache coherence is imperative as systems
move into the many-core era with cores counts numbering in
the hundreds. Directory protocols are often favored as more
scalable in terms of bandwidth requirements than broadcast
protocols; however, directories incur storage overheads that
can become prohibitive with large systems. In this paper, we
explore the impact that reducing directory overheads has on
the network-on-chip and propose SigNet to mitigate these issues.
SigNet utilizes signatures within the network fabric to filter out
extraneous requests prior to reaching their destination. Overall,
we demonstrate average reductions in interconnect activity of
21% and latency improvements of 20% over a coarse vector
directory while utilizing as little as 25% of the area of a full-
map directory.

I. INTRODUCTION

With transistor counts continuing to scale with Moore’s
Law, chip architects are able to integrate an increasing number
of cores on chip. As parallel architectures remain largely re-
liant on a shared memory paradigm, cache coherence protocol
implementations and the resultant communication will become
a significant performance bottleneck. Efficient handling of
coherence actions within the network-on-chip (NoC) is im-
perative to continue scaling many-core architectures.

Various coherence schemes have been explored over the
years; the majority fall into two categories: broadcast and
directory coherence. These coherence protocols can be charac-
terized by their bandwidth requirements, their latency to satisfy
requests and their storage overhead requirements.

Broadcast protocols exhibit low latency but are limited to
a small number of nodes due to high bandwidth requirements
that quickly saturate a bus. Broadcast protocols do not incur
storage overheads. Alternatively, directory protocols have been
favored for large-scale multiprocessors as they require lower
bandwidth allowing greater scalability. A disadvantage of
directory protocols is the large storage overheads required to
maintain sharing lists for cached memory blocks.

Directory protocols pose significant storage challenges mov-
ing forward toward massively many-core architectures. Well-
known techniques to address the storage overhead can be
employed [3], [9], [11]; however, these techniques in turn
increase the bandwidth demands that a directory protocol
places on the NoC. Coarse vector (CV) directories have been
employed to reduce storage overhead without resorting to full
broadcast in the common case [11]. Work by Gupta et. al
[11] utilizes the notation DiriCVr where i is the number of
pointers and r is the number of cores in a region represented
by a single bit in the coarse vector.

When the number of sharers of a cache block exceeds
i causing the pointers to overflow, the directory entry will

This research was supported in part by an NSERC Discovery grant. The
author would like to thank Andreas Moshovos, Jason Zebchuk and the
anonymous reviewers for their suggestions on improving this work.

operate in a coarse mode. CV directories use one bit in
the sharing vector to represent a region of cores (multiple
cores map to the same bit). When an invalidation is required,
extraneous processors will receive and acknowledge this inval-
idation request due to the imprecise sharing list. Extraneous
invalidation requests also result in additional cache accesses
which wastes power and can delay non-extraneous requests.
CV directories can also result in additional bandwidth to locate
a block on-chip for cache-to-cache transfers.

For many applications commonly studied, the number of
cores sharing a cache line is small (e.g. close to 2); more
widely shared lines exist but occur infrequently in most ap-
plications [13]. Previous work in CV directories has exploited
this property [11]. Assuming such sharing trends continue as
applications scale to many-core architectures, a directory or-
ganization with two or four pointers could be a feasible design
point that does not suffer from frequent pointer overflows. For
example, with a 256-core architecture, 2 cores are represented
with two 8-bit pointers; when the two pointers overflow, the
coarse vector would have 16 cores per region. 16 invalidation
requests would be generated.

Ideally, an NoC design cognizant of CV directories would
attempt to eliminate extraneous invalidation requests (requests
that go to invalid cache blocks). SigNet utilizes Bloom fil-
ters [4] inside each router to summarize cache contents. Ad-
dresses that map to valid bits in the Bloom filter may be cached
at downstream routers. Messages pertaining to these addresses
must continue their network traversal. Addresses that map to
invalid bits in the Bloom filter do not reside in downstream
caches and their network traversal can be safely terminated.
SigNet reduces NoC activity by an average of 21%, average
packet latency by 20% and invalidation completion time by
22% compared to a CV directory with no NoC support.

SigNet is a novel router microarchitecture that provides
an NoC with tightly-coupled coherence filters to reduce NoC
pressure. This paper makes the following contributions:
• Characterizes the impact of CV directory architectures on

both the latency and bandwidth of the NoC.
• Proposes in-network filtering to reduce the load on the

NoC to improve performance and save power.

II. MOTIVATION

In this section, we first compare the overheads of full-map
directory vectors to CV directories to support our claim that
CV directories will be necessary (from a storage perspective)
for large core counts. Next, we discuss the negative impacts on
NoC latency and bandwidth that result from utilizing coarse
vectors. Finally, we present data illustrating the potential for
negative system side effects due to coarse vectors.



0 
0.5 
1 

1.5 
2 

2.5 
3 

3.5 
4 

256  128  64  32  16  8 

N
or
m
al
iz
ed

 In
te
rc
on

ne
ct
 L
at
en

cy
 

Number of bits per directory entry 

5% 

10% 

12% 

15% 

Sa
tu
ra
1o

n 

Sa
tu
ra
1o

n 
Sa
tu
ra
1o

n 

Sa
tu
ra
1o

n 

Sa
tu
ra
1o

n 

Sa
tu
ra
1o

n 

Injec1on Rates 

Fig. 1: Normalized average packet latency as the number of
bits in the sharing vector decreases

Storage Overheads. A full-map directory and 256 cores
on-chip requires 32 bytes of overhead per directory entry to
identify the sharers. Per 64-byte cache line, this represents
an unacceptable 50% overhead for just the sharing vector.
Therefore, we believe it highly likely that many-core CMPs
will employ CV directories to reduce overhead. Overhead per
cache line drops to a mere 3.125% when the directory is
configured as Dir2CV16. A directory with four pointers has
twice the overhead (6.25%). This savings in storage overhead
can substantially increase latency and bandwidth demands.

Latency Impact. Interconnect latency can be informally
characterized by the following equation:

T = H · Tlink + H · Trouter + Tc + Ts

where H is the average hop-count, Tlink the latency to
traverse the wiring between routers, Trouter the delay a packet
experiences through each router, Tc the delay due to contention
from other packets, and Ts the serialization delay determined
by the number of trailing flits. We target reducing the H of
invalidation requests and acknowledgments by truncating the
NoC traversal of unnecessary invalidations and reducing the
Tc component of all packets by reducing the NoC load caused
by extraneous invalidations and acknowledgments.

Fig. 1 shows the impact on average packet latency as the
number of bits per directory is decreased for a 16× 16 mesh
with 4 different injection rates. Five percent of messages
injected into the NoC are invalidation requests. The average
number of destinations (sharers) per invalidate (prior to taking
coarseness into account) is 2.5. All destinations are selected
with a uniform random distribution. Table III (Section V)
contains additional NoC parameters. All results are normalized
to the latency measured for a full-map directory.

Load increases substantially1 with a decrease in bits per
directory entry; for each true sharer, r − 1 additional in-
validation requests and acknowledgments may be generated.
Even at moderate injection rates (10-15%), latency increases
substantially. With 32 bits (8 cores/region) per directory entry,
the NoC saturates at a 15% injection rate. With only 16 bits
per directory entry, a 3.7x increase in latency occurs for a
10% injection rate and both 12% and 15% have saturated.

Bandwidth Overheads. CV directories increase bandwidth
demands which has two implications for the NoC. First,
this increase can drive up latency (and possibly saturate the
NoC) as shown in Fig. 1. As NoC activity increases, router
optimizations such as pipeline bypassing become less effective

1Injection rates are presented as the number of messages that would be
injected into the NoC with a full-map directory; therefore with CVs, the
actual injected traffic is higher than the stated injection rate.

TABLE I: Benchmark Descriptions
Benchmark Description

SPECjbb Standard java server workload
SPECweb Zeus Web Server 3.3.7 servicing 300 HTTP requests
TPC-W TPC’s Web e-commerce benchmark, DB Tier
TPC-H TPC’s Decision Support System running query 12
Barnes 8K particles, full end-to-end run including initialization
Ocean 514x514 full end-to-end run (parallel phase only)

Radiosity -room -batch -ae 5000 -en 0.050 -bf 0.10 (parallel phase)
Raytrace car input (parallel phase only)

0 
20 
40 
60 
80 

100 
120 
140 

SP
EC
jb
b 

SP
EC
w
eb

 

TP
C‐
H
 

TP
C‐
W
 

Ba
rn
es
 

O
ce
an
 

Ra
di
os
ity

 

Ra
yt
ra
ce
 

A
ve
ra
ge
 C
yc
le
s 

Local 
Remote 
Inval Complete 

Fig. 2: Average Wait Time on Store Completion

resulting in additional pipeline stages which drive up the
average message latency and increases the TC component of
packet latency. Second, this increase in activity will also results
in more dynamic power consumption on the links.

Impact of Invalidations. In addition to increasing average
packet latency, coarseness has a negative impact on invalida-
tion latency. An upgrade cannot complete until all invalidation
acknowledgments are received; this completion time increases
with more sharers. The latency to complete invalidations can
in turn have a negative impact on subsequent requests which
may lead to significant overall performance degradation. To
explore this potential impact, we examine the average delay
that later requests experience due to a pending invalidation
a full system simulator running 16 cores with a full-map
directory. Table I provides workload descriptions. While a
store to an address is outstanding, we measure the latency
a subsequent cache access (either local or remote) to the
same address must wait for the pending store to complete; the
average is shown in Fig. 2. Additionally, we show the average
latency for invalidates to complete (the requesting core has
collected all acknowledgments). For 16 cores, the invalidation
latency is low (on average 46 cycles); however, the use of
coarse vectors in larger systems will increase invalidation
delay causing these average wait times to grow substantially
and degrade performance.

III. SIGNET: INVALIDATION FILTER ARCHITECTURE

SigNet uses cache summary information to remove extra-
neous invalidation messages that are sent when using CV
directories. Counting Bloom filters are placed in each router
to create signatures that summarize the cache contents of all
tiles downstream (along a deterministic route) from the current
router. A counting Bloom filter [10], [14] allows information
to be removed from the signature; removal limits the likelihood
that signatures will saturate and become ineffectual 2. Absence
of an address from the router’s Bloom filter indicates that an
invalidation request does not need to continue its NoC traversal
as the destination cache block is invalid.

2Every signature lookup results in a hit indicating the possible presence of
the address in a downstream cache.



BW 
RC 

VA 
SA 

ST  LT 

BW  SA  ST  LT 

Head 
flit 

Body/Tail 
flit 

(a) Baseline Router Pipeline

BW 
RC 

Decode/Sig 

VA 
SA  ST  LT 

Head flit 

Sig Hit 

Ack Msg 
Form  ST  LT VA 

SA Sig Miss 

(b) Modified SigNet Pipeline

Fig. 3: Router pipeline stages. BW: Buffer Write, RC: Routing
Computation, VA: Virtual Channel Allocation, SA: Switch
Allocation, ST: Switch Traversal, LT: Link Traversal, Decode:
Decode Message Type, Sig: Signature Check.

The router signature filters targets H; messages are in-flight
over shorter distances. Tc component is reduced; lower H
decreases NoC load leading to less congestion.

To summarize the actions taken based on the signature data:
Bloom Filter Hit: A core exists along the dimension or-

dered (DOR) path between the current node and the destination
that is caching an address mapping to the same entry: either
the demand address or a false positive due to finite signatures.

Bloom Filter Miss: None of the caches downstream from
this router are caching lines that map to this hash entry. Halting
the invalidation at this node and generating an invalidation
response is correct (a response must be generated since the
directory will be receiving and counting acknowledgments;
receiving too few acknowledgements will lead to deadlock).

Bloom Filter Insertion: Cache misses that travel to the
directory increment the counter for the appropriate entry of
the Bloom filter at each router along their traversal between
the requesting core and the directory.

Bloom Filter Deletion: The writeback or invalidation
acknowledgment associated with evicted cache blocks must
decrement the Bloom filter counters between the cache and
the directory. Invalidation acknowledgments are sent to the
directory to ensure that the proper counters are decremented.

With the high level functions of SigNet filters in mind,
we describe their integration into the router pipeline and
microarchitecture.

A. SigNet Architecture
Our baseline architecture (used to collect the data in Sec. II)

is a canonical virtual channel router employing state-of-the-art
optimizations to achieve single-cycle pipeline latency at low
loads [16]. The baseline router pipeline is shown in Fig. 3a.

SigNet pipeline stage modifications (Fig. 3b) only apply to
head flits; body/tail flits traverse the original pipeline (Fig. 3a).
In the first stage, messages are decoded to determine the
type. Messages may need to update/insert into the signature,
check the signature or delete an item from the signature.
Some messages such as data messages do not perform any
signature operations and continue immediately to the VA/SA
stage. Messages that only update the signature proceed to the
VA/SA stage of the original pipeline.

Fig. 4 depicts SigNet’s modified router architecture. Each
message must be decoded to determine the message type;
invalidation requests are handled differently from other mes-
sage types. For an invalidation request, a signature lookup is
performed on the message’s desired output port; there is one
signature per port in the router. The router uses lookahead
routing; the signature lookup can be performed in parallel
with the lookahead RC since the current output port is already
known. A signature hit proceeds to the VA/SA (the top lane in

Route	  
Computa+on	  

VC	  Allocator	  

Switch	  
Allocator	  

Crossbar	  switch	  
Input	  5	  

Input	  1	  

Output	  5	  

Output	  1	  

Decode	  
Sig	  N	  

Sig	  S	  

Sig	  E	  

Sig	  W	  

Input	  buffers	  

VC	  1	  

VC	  n	  

Ack	  Message	  
Forma+on	  

Input	  buffers	  

VC	  1	  

VC	  n	  

VC	  1	  VC	  2	  

Fig. 4: Router Microarchitecture. Modifications shown in gray.
Fig. 3b). Signature hits continue their NoC traversal because a
downstream cache may be caching the block being invalidated.
On a signature miss, the message arbitrates for the acknowl-
edgment formation block which is another input/output port
to the crossbar. Buffering is also associated with this block.
Here the source and destination in the message header are
swapped and the message type is switched to acknowledgment.
Once the message is reformed, it proceeds to VA/SA (the
bottom lane in Fig. 3b) so that it may return to the directory.
Channel dependences are broken since the input message to
acknowledgment formation block uses a different VC than the
output message from the block.

Some coherence messages must update the signatures.
These updates are performed on the signature corresponding
to the input port of the packet because the address being
inserted or deleted is in a cache upstream from the current
node. Requests to a new cache block will insert their address
into the signature and eviction messages will decrement the
appropriate signature counters.

The proposed router architecture employs class-based deter-
ministic routing (CDR) [1]. CDR chooses to route a message
along an XY or YX route depending on the message class.
Here, the classes are request, reply and intervention. CDR al-
lows requests to update signatures, while interventions traverse
the reverse path to check the signatures and determine cache
occupancy in downstream tiles.
B. SigNet Example

Fig. 5 provides a walk-through example of SigNet. First, a
cache miss to block A occurs and the request is sent to the
directory (1). As Req. A traverses the NoC, it hashes A and
inserts it into the signatures corresponding to its input ports
(2). When Req. A reaches the directory (3), a bit is set in the
coarse vector corresponding to the requester (assuming the
directory entry is operating in overflow mode). Later, another
core wants to upgrade its copy of A so it can perform a store
to A (4). This upgrade request is sent to the directory. The
directory forwards the invalidations to cores W, X, Y and Z;
however of those 4 cores, only W is caching a copy of A. The
invalidations destined for W and X hit in the filter indicating
that a downstream cache may be caching A (6). Invalidations
to Y and Z will take the west port and experience a filter miss
indicating no downstream copies of A.

The directory waits and collects all acknowledgments and
then sends a single combined acknowledgment to the request-
ing cache. When the invalidations destined for Y and Z experi-
ence a filter miss and are squashed, they must each individually
arbitrate for the ack formation block. One acknowledgment
each will be returned to the directory (7). Once the invalidation
requests have reached W and X, invalidation acknowledgments
will be sent back along an XY path to the directory.



At each hop, insert 
address into input port 
signature 

1 

Cache miss to 
A, send req. 
to dir 

2 

Directory 
responds to req. 

3 

Write	  upgrade	  
req.	  for	  A	  

4	  

Directory	  
forwards	  
invalida:on	  
requests	  

5	  

6	   North	  Port	  Filter	  Hit	  
West	  Port	  Filter	  Miss	  

Spawns	  2	  Acks	  
7	  

8	   Invalida:ons	  reach	  W	  &	  
X	  and	  sent	  back	  Acks	  

W X	  

Y	   Z	  

U	  

Fig. 5: Invalidation Filter Request/Acknowledgment Example
TABLE II: Per cache line overheads of CV + signatures.

Full Map Dir2CV16 Dir4CV8

No Signatures
50% (32B/entry) 3.125% (2B/entry) 6.25% (4B/entry)

8192 entry signatures with 6 bit counters
50% (32B/entry) 12.5% (8B/entry) 15.625% (10B/entry)

8192 entry signatures with 10 bit counters
50% (32B/entry) 18.75% (12B/entry) 25% (14B/entry)

The invalidation acknowledgment from X represents a true
invalidation as X was caching the block in question. X’s
acknowledgment is tagged so the decode stage will cause X
to decrement the appropriate signatures (to indicate that X is
no longer caching this block) as it travels to the directory.
Acknowledgments from W, Y, and Z were not from valid
blocks and must not decrement the Bloom filters; the decode
logic bypasses the update stage for these messages.

IV. IMPLEMENTATION ISSUES

Overhead. SigNet adds storage overhead to the NoC; this
overhead is substantially less than a full-map directory. SigNet
places 8K entry counting Bloom filters at each output port of
every router. The use of a counting Bloom filter allows entries
to be deleted from the signature [10]. A Bloom filter entry
counts the number of cache blocks downstream that map to
this entry3.

Table II shows the byte overheads of incorporating 8K
entry signatures into the NoC. We show these costs as a
function of additional bytes required per cache line. A full-
map directory requires 32 bytes per cache line; the Dir2CV16

and Dir4CV8 require 2 and 4 bytes per line for directory
pointers. Assume we have directory storage to map 64MB
of data on-chip; the signatures are amortized across this area
(signatures summarize many cache lines per entry) resulting
in overheads of between 8 and 24 bytes per cache line for
signatures plus the directory pointers. The additional logic to
perform hashing and to update the signature is not included
here. SigNet uses two XOR hash functions to hash into the
Bloom filters. The address bits selected for the hash functions
are taken from Notary [21].

Correctness. For correct execution, all cores caching a
block being invalidated must receive the invalidation request.
An invalidation request travelling from the directory to a core
currently caching a request will not experience a filter miss

3This can be multiple different addresses in one cache and across caches.
The total can be #Addr mapped×#downstream cores. Counters this
large would be impractical; saturation is possible (and only has performance
and not correctness concerns).

N 

(a) North Port Example

E   

(b) East Port Example

Fig. 6: Cache summary information held in signatures

during its NoC traversal. Deterministic routing provides this
guarantee. Using CDR to send requests to the directory along
XY path and having the directory send out responses and
invalidations along an YX path will guarantee that if the line
is cached downstream from the current node, then the address
will hit in the filter at the current node (and every subsequent
node until the destination is reached). The current SigNet
architecture is limited to deterministic routing protocols; to
facilitate adaptive routing protocols, more complex signature
insertion (along multiple paths) would be required. Current
NoCs favor simple deterministic routing schemes, so this is
not a significant limitation.

Bloom filters cannot have false negatives which would
result in an incorrect execution. SigNet filters invalidations
and spawns responses for in-flight messages; however it does
not impact any ordering performed by the directory protocol.
Support for task migration with SigNet is handled implicitly
with the directory protocol; cache coherence requests would
be required to move cache contents from the old core mapping
to the new core mapping. This cache migration would update
signatures appropriately.

Fig. 6 depicts two examples of cache contents that output
ports must capture. In Fig. 6a, the north output port of Tile
N summarizes the subset of addresses in the caches of darkly
shaded tiles that map to the directory home nodes of the light
gray tiles. We assume directory information is uniformly dis-
tributed across all tiles; using a smaller number of directories
would generate NoC hotspots but is larger orthogonal to the
goals and implementation of SigNet. Fig. 6b, similarly shows
the east output summary of Tile E. This signature summarizes
all of the addresses in the two dark gray tiles that have as their
directory home nodes any of the 8 light grey tiles. Different
signatures will have different utilization by cache addresses;
non-uniform signature sizes could be leveraged to improve the
signature utilization, but is left for future work.

False positives. The rate of false positives in Bloom filters
can limit the benefit of the SigNet architecture. However, even
with a 100% false positive rate, the performance of SigNet will
not degrade past the performance of the baseline CV directory.

Based on the analysis of Broder and Mitzenmacher [5], the
probability of false positives in a Bloom filter is given by:

p = (1− (1− 1
s
)c)h

where s is the size of the Bloom filter, c is the number
of entries in each private cache and h is the number of hash
functions.

The Bloom filters in SigNet summarize the contents of mul-
tiple caches that lie between the directory and the destination
of a message. Given the average hop count for a mesh NoC:

Havg =
nk

3



TABLE III: Configuration Parameters

Network Configuration
Number of Nodes 256
Topology 16-ary 2-cube
Virtual Channels & Buffers 4 VC/port, 8 Buffers/VC
Link Width 16 Bytes
Signature Size 8192 entry

Workload Parameters
Name % Invalidates Avg Sharers
Database 6.0 2.3
Web 3.5 3.8
Java 2.7 2.2
SciA 2.0 2.3
SciB 5.0 3.0

which is 10 2
3 hops for a 16-ary 2-mesh. On average the

partial contents of∼11 caches will be summarized between the
directory and the destination. Assuming that all cache accesses
are uniformly distributed to directories across the 4 cardinal
directions the probability of false positives in SigNet will be:

p = (1− (1− 1
s
)

nk
3 ×

c
4 )h.

With 32KB private caches per core, 8192 entries per bloom
filter, 2 hash functions, the probability of false positives is just
2.5%. For larger private cache sizes, the probability increases:
for 128KB cache, there is a 24.7% chance of false positives.
Exploring topologies with lower hop counts will reduce the
rate of false positives. For example, with a torus, the false
positive probability in this scenario drops to 1.4% for a 32KB
private cache size and to 15.5% for a 128KB private cache.

V. EVALUATION
In this section, we present the evaluation methodology

followed by results indicating the performance and power
potential of the SigNet architecture.
A. Methodology

Limitations in current application scalability and in the
overheads of full-system simulation preclude the study of
large many-core architectures in such a manner. However, we
use characteristics from 16-core workloads and extrapolate to
create synthetic network workloads for larger systems to study
the pressures CV directory entries place on the NoC.

We have characterized invalidations as a percentage of total
messages using a full system simulator running 16 cores
with 128KB of private cache per core. Additionally, we used
this infrastructure to characterize the number of cores per
invalidation. For the results in this paper, we assume that these
characteristics will largely carry over to many-core systems.

Table III summarizes the NoC configuration parameters
used for our evaluation and the parameters used to generate
synthetic workloads for this section. As discussed earlier,
several researchers have noted that the majority of cache
blocks have a small number of sharers.
B. Performance Results

We show average packet latencies for all 5 workloads
with Dir2CV16 and Dir4CV8 configurations; a 10% injection
rate is used. Results are normalized to a system with CV
directories; there is a significant performance improvement
with full-map directories. The addition of signature filters
closes the gap between full-map and CV directories. With
SigNet, latencies reductions of up to 28% are observed with an

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

1.2	  

D
ir
2C

V1
6	  

D
ir
4C

V8
	  

D
ir
2C

V1
6	  

D
ir
4C

V8
	  

D
ir
2C

V1
6	  

D
ir
4C

V8
	  

D
ir
2C

V1
6	  

D
ir
4C

V8
	  

D
ir
2C

V1
6	  

D
ir
4C

V8
	  

Database	   Web	   Java	   SciA	   SciB	  

N
or
m
al
iz
ed

	  A
ve
ra
ge
	  P
ac
ke
t	  L
at
en

cy
	  

CV	  Directory	  

SigNet	  

Full	  Map	  

Fig. 7: Network Latency Results for SigNet

0	  

20	  

40	  

60	  

80	  

100	  

120	  

Database	   Web	   Java	   SciA	   SciB	  La
te
nc
y	  
(c
yc
le
s)
	  fo

r	  
in
va
lid

a3
on

	  to
	  c
om

pl
et
e	  

CV	  

SigNet	  

Prune	  (85%)	  

Prune	  (98%)	  

Full	  Map	  

Fig. 8: Invalidation Completion Latency

average improvement of 20%. More dramatic improvements
are observed with Dir2CV16 since more cores per region
results in a larger number of injected invalidations in the NoC.

Fig 8 compares the total latency to complete an invalidation
(sending the invalidation and receiving all acknowledgements).
SigNet and CV results are shown for Dir4CV8. Pruning
caches [19] with two different hit rates (98% and 85%) are
included for comparison. Before traversing each dimension
of the NoC, a pruning cache is checked to see if nodes in
that dimension need to see the invalidation. Our NoC has 16
nodes in both dimensions; on a miss, the pruning cache will
conservatively send invalidations to all nodes in the dimension.
Here there are only two opportunities to prune; pruning caches
are more effective with higher dimension topologies4. In
general, for a low miss rate, pruning cache perform similarly
to SigNet or slightly better. For a Dir2CV16, SigNet improves
invalidation latency by 28% compared to a CV directory. A
full cost comparison of building pruning caches that achieve
these miss rates and SigNet is left for future work.

C. Power Results

Next, we evaluate the potential dynamic power savings
achieved with the SigNet architecture. Link traversal power
and router power are calculated to be 0.397W and 0.739W
respectively using Orion [12] and signature access power of
0.161W was taken from Notary [21]. Cache read power (tag
only) is calculated to be 0.035W using Cacti [15]. Several
assumptions are made to provide relative power consumption
for each design. We assume 50% of messages access the cache
and 70% of messages update or test signatures. The remaining
30% of messages are data transfers.

4Pruning caches also implement acknowledgment combining; this function-
ality is not currently evaluated; acknowledgment combining is orthogonal to
SigNet and will be explored in future work.



0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

0.8	  

0.9	  

1	  

1.1	  

Database	   Web	   Java	   SciA	   SciB	  N
or
m
al
iz
ed

	  P
ow

er
	  C
on

su
m
p3

on
	  

CV	  Directory	  

SigNet	  

Full	  Map	  
Directory	  

Fig. 9: Normalized Cache and Network Power

Figure 9 shows the power results (normalized to the
Dir4CV8 configuration). SigNet provides significant savings
by removing many hops from both invalidations and acknowl-
edgments and prevents cache lookups from extraneous invali-
dations. SigNet saves an average of 21% (up to 25%) of power
from cache lookups and network traversals over the baseline
NoC with a Dir4CV8 directory. However, SigNet results in an
average increase in NoC and cache power of 1.87x over the
full-map directory. This comparison is pessimistic (for SigNet)
as we do not account for the extra power consumption of the
full-map directory over a CV directory.

We have compared SigNet against a full map and a CV di-
rectory; comparison of SigNet against other filtering proposals
such as Jetty [14] is left for future work.

VI. RELATED WORK

In this section, we explore related research in coherence
storage optimizations and co-design of interconnection net-
works and cache coherence protocols.

Interconnection Network Support. Pruning caches [19]
are a means to filter invalidation requests and combine ac-
knowledgments at various levels of the cache hierarchy. They
note that these messages can cause interconnect and perfor-
mance bottlenecks. Pruning caches only propagate necessary
requests; they improve the scalability of both the protocol
and the interconnect for large multiprocessor systems. INCF
proposes in-network filtering support through region-based
sharing information for snoop-based protocols [2].

Cache Coherence Optimizations. Characterization of
broadcast systems has shown many snoop messages to be
unnecessary [7]. Jetty [14] uses counting Bloom filters to
represent the set of all blocks cached by a processor to reduce
cache snoops. Blue Gene/P employs several filters to avoid
unnecessary snoops [17]. Reducing the bandwidth of broadcast
protocols improves the scability of bus-based systems. In this
work, we examine eliminating unnecessary messages from the
NoC to maintain the scalability of CV directory protocols.

LimitLESS [8] uses a limited number of pointers per
directory information; when the number of sharers exceeds the
number of pointers available, the processor traps to software
to emulate full-map directory coherence. Tagless coherence
directories [22] replace conventional directories with Bloom
filters that store sharing information on a per-set basis to
overcome the storage overheads of full-map directories.

Signatures. Signatures borrow from Bloom filters [4] and
have been used in several proposals including transactional
memory [20], [21]. Work by Sanchez et. al [18] focused on the
implementation cost and overhead associated with signatures.

VII. CONCLUSION

In this work, we characterize the impact of CV directories
on the NoC power consumption and performance. Interconnect
support for scalable coherence is imperative for many-core
architectures. We present SigNet, a network architecture that
reduces network load by filtering requests that do not need
to be observed by the cores they are destined for. Extraneous
network messages become quite pronounced as systems scale
and force directories to leverage coarse vector mappings. The
SigNet architecture improves average network latency by 20%
and reduces both network power and cache power by 21% over
the CV directory implementation.

REFERENCES

[1] D. Abts, N. Enright Jerger, J. Kim, D. Gibson, and M. Lipasti, “Achiev-
ing predictable performance through better memory controller placement
in many-core CMPs,” in Proceedings of ISCA, June 2009.

[2] N. Agarwal, L.-S. Peh, and N. K. Jha, “In-network coherence filters:
Snoopy coherence without broadcasts,” in Proceedings of MICRO, 2009.

[3] J. Archibald and J.-L. Baer, “An economical solution to the cache
coherence problem,” in Proceedings of ISCA, June 1985, pp. 355–362.

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[5] A. Broder and M. Mitzenmacher, “Network applications of Bloom
filters,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2005.

[6] H. Cain, K. Lepak, B. Schwarz, and M. H. Lipasti, “Precise and
accurate processor simulation,” in Workshop on Computer Architecture
Evaluation using Commercial Workloads, 2002.

[7] J. Cantin, M. Lipasti, J. Smith, A. Moshovos, and B. Falsafi, “Coarse-
grain coherence tracking: Regionscout and region coherence arrays,”
IEEE Micro Top Picks, no. 1, 2006.

[8] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “LimitLESS directories:
A scalable cache coherence scheme,” in ASPLOS, 1991.

[9] J. H. Choi and K. H. Park, “Segment directory enhancing the limited
directory cache coherence schemes,” in International Symposium on
Parallel and Distributed Processing, April 1999, pp. 258–267.

[10] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM Transaction
on Networking, vol. 8, no. 3, pp. 281–293, 2000.

[11] A. Gupta, W.-D. Weber, and T. Mowry, “Reducing memory and traffic
requirements for scalable directory-based cache coherence schemes,” in
International Conference on Parallel Processing, 1990.

[12] A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: A fast
and accurate NoC power and area model for early-stage design space
exploration,” in Proceedings of Design and Test in Europe, April 2009.

[13] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and D. A. Wood,
“Using destination-set prediction to improve the latency/bandwidth
tradeoff in shared memory multiprocessors,” in ISCA, 2003.

[14] A. Moshovos, G. Memik, A. Choudhary, and B. Falsafi, “Jetty: Filtering
snoops for reduced energy consumption in SMP servers,” in HPCA,
January 2001.

[15] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A tool to understand large caches,” Hewlett Packard, Tech. Rep., 2008.

[16] L.-S. Peh and W. Dally, “A delay model and speculative architecture for
pipelined routers,” in Proceedings of HPCA, January 2001, pp. 255–266.

[17] V. Salapura, M. Blumrich, and A. Gara, “Design and implementation of
the Blue Gene/P snoop filter,” in Proceedings of HPCA, February 2008.

[18] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam, “Implementing
signatures for transactional memory,” in MICRO, 2007.

[19] S. L. Scott and J. R. Goodman, “Performance of pruning-cache directo-
ries for large-scale multiprocessors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 4, no. 5, May 1993.

[20] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M.
Swift, and D. A. Wood, “LogTM-SE: Decoupling hardware transactional
memory from caches,” in HPCA, February 2007.

[21] L. Yen, S. Draper, and M. D. Hill, “Notary: Hardware techniques to
enhance signatures,” in Proceedings of the MICRO, November 2008.

[22] J. Zebchuk, V. Srinivasan, M. Qureshi, and A. Moshovos, “A tagless
coherence directory,” in Proceedings of MICRO, 2009.


