
Sampling-based Approaches to Accelerate
Network-on-Chip Simulation

Wenbo Dai, Natalie Enright Jerger
Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto

{daiwenbo, enright}@ece.utoronto.ca

Abstract—Architectural complexity continues to grow as we
consider the large design space of multiple cores, cache ar-
chitectures, networks-on-chip (NoC) and memory controllers.
Simulators are growing in complexity to reflect these system
components. However, many full-system simulators fail to uti-
lize the underlying hardware resources such as multiple cores;
consequently, simulation times have grown significantly. Long
turnaround times limit the range and depth of design space
exploration.

Communication has emerged as a first class design consider-
ation and has led to significant research into NoCs. NoC is yet
another component of the architecture that must be faithfully
modeled in simulation. Here, we focus on accelerating NoC
simulation through the use of sampling techniques. We propose
NoCLabs and NoCPoint, two sampling methodologies utilizing
statistical sampling theory and traffic phase behavior, respectively.
Experimental results show that NoCLabs and NoCPoint estimate
NoC performance with an average error of 7% while achieving
one order of magnitude speedup.

I. INTRODUCTION

As the number of cores in contemporary processors con-
tinues to scale, the criticality of NoC design to overall per-
formance increases accordingly. NoC designers are relying
more heavily on full-system simulation to faithfully evalu-
ate their designs. In full-system simulation, the interaction
between applications and the NoC is fully exercised; the
performance of new designs is accurately evaluated. Although
full-system simulation enjoys the benefit of high fidelity, it
suffers from prohibitively long turnaround times. Applications
in full-system simulation experience up to 100,000× slow
down compared to native execution [17], limiting the range
and depth of design space exploration.

Sampled full-system simulation [5][13][14][23][25][28]
[30] is an effective technique to reduce simulation turnaround
times for single-, multi-threaded and multiprogrammed appli-
cations. In sampled full-system simulation, only a small but
representative portion of the application is simulated in detail,
the un-sampled intervals are fast forwarded. Existing work
mainly focuses on evaluating micro-architecture designs, and
report metrics such as CPI or application run time. To the best
of our knowledge, there is no existing work exploring sampling
methodologies for NoC simulation.

Two major challenges exist for sampled NoC simulation1.
First, NoC simulation focuses on different metrics compared
to core simulation, so it requires a new sampling methodology.

This research was funded by a gift from Intel. Additional support was
provided by the Canadian Foundation for Innovation and the Ontario Research
Fund.

1In the rest of our paper, NoC simulation refers to the full-system simulation
where NoC performance is the focus of the evaluation.

In processor simulation, CPI [5][13][30] or program basic
block information [23] is used to select samples. In contrast,
in NoC simulations, the designers are concerned with the
traffic behavior and network performance metrics including
average packet latency. Therefore, the traffic behavior or
statistical characteristics of network metrics should be studied
and utilized. Second, a new measure is needed to character-
ize applications and mark the locations of sample intervals.
Such a measure must be network architecture independent, so
that its marked samples are consistently representative across
different network configurations. In single-threaded and multi-
programmed sampled simulations [23][30], instruction count is
used to measure the application; however, it is unreliable and
architecture-dependent for multi-threaded applications: multi-
threaded applications manifest execution divergence as the tim-
ing of inter-thread synchronization changes with the hardware
configuration, causing instruction count to vary significantly.

In this paper, we address the aforementioned challenges
and propose sampling methodologies for NoC simulation.
Specifically, we introduce two sampling methodologies: No-
CLabs and NoCPoint. They are based on statistical sampling
theory and traffic behavior information, respectively. We make
the following primary contributions:

• Demonstrate that using total instruction count (TIC) to
sample multi-threaded applications results in an unrep-
resentative sample; instead, user mode instruction count
(UMIC) is a NoC architecture-independent measurement
for traffic characterization and sample selection;

• Offer insights on parameter selection by exploring the
impact of different parameters including the sample size,
unit size and the type of vector used to characterize spatial
behavior of traffic;

• Provide concrete implementations of NoCLabs and NoC-
Point. These techniques estimate NoC performance with
an average error of less than 7% while speeding up
simulation by one order of magnitude.

II. NOC ARCHITECTURE INDEPENDENT MEASUREMENT

When sampling an application, characterizing the applica-
tion and marking the locations of sample intervals are essential
steps. Selected samples must be representative of the applica-
tion even when it is running with different architectural config-
urations. Therefore, one must use an architecture-independent
measurement to mark the locations of samples. For sam-
pling a single-threaded application [23][30], total instruction
count (TIC) has been effectively used as it is architecture-
independent. However, the TIC of a multi-threaded applica-
tion is not an architecture-independent measurement; it varies
when the architectural configuration changes. Fig. 1 plots the



 0

 2

 4

 6

 8

 10

 12

 14

 16

barnes
blackscholes

bodytrack

canneal

fft fluidanimate

ocean_cp

radix
raytrace

swaptions

vips
water_nsquared

avg

v
a
ri

a
ti

o
n
(%

)

TIC_variation
UMIC_variation

Fig. 1. Variation in total instruction counts (TIC) and user mode instruction
counts (UMIC) when running with different network configurations.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 420  430  440  450  460  470

in
je

ct
io

n 
ra

te

TIC (in million)

(a) injection rate over TIC for network1 

 0

 0.5

 1

 1.5

 2

 228  230  232  234  236

in
je

ct
io

n 
ra

te

UMIC (in million)

(c) injection rate over UMIC for network1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 420  430  440  450  460  470

in
je

ct
io

n 
ra

te

TIC (in million)

(b) injection rate over TIC for network2

 0

 0.5

 1

 1.5

 2

 228  230  232  234  236

in
je

ct
io

n 
ra

te

UMIC (in million)

(d) injection rate over UMIC for network2

Fig. 2. Injection rates vs total instruction count and user mode instruction
count for canneal with different network configurations.

variations of TIC for several PARSEC [3] and SPLASH-
2 [29] applications when running with two different NoC
configurations: net1 and net2 (described in Sec. IV). The
maximal variation is as high as 14.31% (swaptions). This
raises one major issue for TIC-based sampling: using TIC to
specify the start of a sample interval for net1 will lead to a
different piece of application code being run on net2 due to
the large variance; as a result, sample intervals with net2 are
not representative.

Fig. 2(a) and (b) further demonstrate how TIC-based multi-
threaded sampling can result in an unrepresentative sample.
We plot the traffic injection rates against TIC for canneal
when running with two different networks. The traffic intervals
marked in grey are caused by the same piece of code in the pro-
gram. However, the TIC corresponding to that traffic is skewed
significantly (by 37 million) when a different network is used.
Therefore, as a measurement closely tied to architecture, TIC
can cause sampled multi-threaded simulation to be inaccurate,
and lead to misleading conclusions about performance and
design choices. An architecture-independent measurement for
multi-threaded applications is needed.

To this end, we propose to use the user mode instruction
count (UMIC) instead, which is observed to be stable when
different networks are used. Fig. 1 shows a maximal variation
of only 0.67% for UMIC (canneal). Moreover, looking at the
traffic injection rates versus UMIC for canneal in Fig. 2(c)
and (d), where the grey intervals are the same segment of
application code as in Fig. 2(a) and (b), one sample interval

will execute the same piece of code across different network
architectures.

The rationale behind the stability of UMIC is two-fold. For
a multi-threaded application, execution time is spent mainly on
two aspects: useful work and scheduling/synchronization [20].
The amount of useful work does not vary a lot with the ma-
chine it is running on. Since useful work is largely performed
by user mode instructions, it is straightforward that UMIC is
stable. However, the timing and duration of scheduling and
synchronization can easily change along with architectural
factors such as inter-core communication latency. The number
of instructions used to perform scheduling/synchronization
fluctuates, especially for spin-lock type synchronization. As
scheduling and synchronization are handled by the operating
system in kernel mode (for instance, pthreads are implemented
by Native POSIX Thread Library within linux kernel), its
variation will be reflected in the kernel mode instruction
count, leaving UMIC unaffected. Given the network architec-
ture independent property of UMIC, we use it in application
characterization and sample selection.

User mode instructions have been used to sample multi-
processor throughput applications [28]. In throughput applica-
tions, user-instruction throughput is proportional to transaction
throughput, therefore user-instructions per cycle (U-IPC) is
sampled to assess transaction throughput. In contrast, we
use user mode instruction count as a network architecture
independent measurement, traffic characteristics are examined
for intervals of U user-instructions. The fundamental difference
is that user mode instruction count is used as a performance
metric and the estimation target of the sampling [28], while
we use it as a measurement to profile network traffic.

III. SAMPLING NOC SIMULATION

Sampled NoC simulation looks at how to select a minimal
but representative portion of the full application traffic to
stimulate the network. Network performance metrics measured
with the sampled traffic should be an accurate estimate of
the true values. We introduce two NoC simulation sampling
methodologies: NoCLabs and NoCPoint. They utilize statisti-
cal sampling theory and traffic phase behavior information, re-
spectively. Before diving into the details, we introduce several
common aspects for both NoCLabs and NoCPoint including
the traffic unit size U , population size N , and sample size n.
• Traffic unit size U designates the scale for studying traffic.

We divide the full application traffic into non-overlapping
units of size U , and then examine network performance
metrics such as average packet latency of each unit. U is
specified in terms of UMIC.

• Population size N is the total number of U -sized units in
the full application traffic (N = total UMIC

U ).
• Sample size n is the number of traffic units that will be

included in the sample.
Traffic unit size U and sample size n are decided by

NoCLabs and NoCPoint users. In the rest of this section,
we describe how NoCLabs and NoCPoint select samples and
discuss the decision for U and n.

A. NoCLabs: Latency based Statistical Sampling
Inferential statistical sampling [9] estimates a given accu-

mulative property of a population by only measuring a sample.
It prescribes a mathematically-sound procedure to select a



minimal but representative sample. The minimal sample size
n needed is quadratically proportional to the target metric’s
variation. Since average packet latency is a commonly reported
metrics, we base our sample selection on its variation, resulting
in Latency based Statistical Sampling for NoC simulation, or
NoCLabs. In particular, the minimal sample size n to represent
the population depends upon three variables:
• The coefficient of variance of the packet latencies per unit

in the population, V̂ ;
• Confidence level (1− α);
• Confidence interval ±ε.
V̂ = σ

µ , where σ and µ are the standard deviation and
mean value respectively. Confidence level and interval are to
be given by NoCLabs users. Informally, they indicate that one
can be (1−α) confident that the estimated value is within ±ε
of the true value. The minimal sample size n is defined as:

n ≥ (
z

ε
· V̂ )2 (1)

where z is the 100[1 − α
2 ] percentile of the standard normal

distribution. Such an equation indicates that applications that
show larger degrees of variation in their traffic will require a
larger sample size. After n is decided, systematic sampling is
performed on the population: one traffic unit out of every k
units is picked as sample, where k = N

n .
If (1−α), ε and V̂ are all known, sample size n is easily

calculated from Eqn. 1. However, as it is related to population
latencies, V̂ can only be obtained after finishing the simulation
of the full application. But simulating the full application is
exactly the burden that sampling is attempting to avoid. To
solve this dilemma, the variation of an initial sample’s per
unit packet latencies, V̂init, is used in place of V̂ . The steps
of performing sampling using NoCLabs are as follows:
1) Specify an accuracy requirement in terms of confidence

level (1− α) and confidence interval ±ε;
2) Take an initial sample of size ninit on the population;

simulate and measure the sample;
3) Calculate the initial sample’s V̂init, and check whether the

initial sample’s resulting confidence interval εinit meets
the specified requirement; εinit is calculated as εinit ≥
z·V̂init√
ninit

.
4) If εinit is within the desired ±ε, the initial sampling

is a success; measured network performance metrics are
reported to estimate the true values;

5) If εinit does not meet the requirement, re-sample with a
new sample size nadjust. nadjust is calculated by using
the initial sample’s V̂init, the desired (1−α) and ±ε and
applying Eqn. (1);

6) Simulate and measure the adjusted sample, and report the
network performance.

Among these steps, carefully choosing the initial sample
size is vitally important: an ninit that is too small can easily
result in the first trial failing to meet the accuracy requirement;
extra simulation is required. Too large ninit, on the other hand,
may include more units in the sample than necessary. As a
result, potential speedup will be sacrificed. We discuss how to
decide ninit for PARSEC and SPLASH-2 in Sec. IV.

B. NoCPoint: Exploiting Traffic Phase Behavior
Phase behavior exists in program execution: a set of

execution intervals share a greater amount of similarity within

themselves compared to other execution intervals. There is
a correlation between the program phase and the processor’s
architectural performance [1][23]. Similarly, application traffic
also exhibits phase behavior [2] and there is a correlation
between traffic phase and network performance [12]. NoCPoint
performs sampling by exploiting an application’s traffic phases.
There are 3 steps: 1) characterizing and classifying the full
application traffic into phases, 2) sampling the full application
traffic based on phase information and 3) using the sampled
traffic to stimulate the network and measure its performance.

1) Characterizing and classifying traffic: A traffic phase
refers to a set of traffic units that behave similarly. To reveal
the phases, we first characterize the spatial and temporal traffic
behavior. We profile each traffic unit by an injection-ejection
rate vector (IERV). In an IERV, each element represents the
injection or ejection rate for one node or multiple nodes in the
NoC. Two decisions must be made regarding IERVs: 1) how
many user mode instructions each IERV covers (traffic unit
size U ); 2) what is the granularity of injection/ejection rate
information in the IERV. In Sec. IV, we discuss the impacts
of choosing different Us and types of IERV.

After the behavior of the full application traffic is charac-
terized, one can cluster the traffic units into classes. We use
hierarchical clustering [27] to classify traffic: during the clus-
tering, Manhattan distances between IERVs are first calculated,
then classes are formed so that intra-class IERVs are closer to
each other than inter-class IERVs. That is to say, traffic within
the same class manifests similar behavior.

2) Sampling the traffic and measuring the network per-
formance: Once the full application traffic is clustered, we
sample the traffic by selecting one unit from each class: each
chosen unit has the closest distance to the centroid of that
class, and represents the traffic behavior of that class. If there
are multiple units with the same minimal distance, the earliest
one is chosen. As a result, the sample size n equals to the
number of classes formed in the clustering process.

The last step is to measure network performance by sim-
ulating the sampled traffic. As the classes formed through
clustering may vary in size, the packet latencies of each
measured unit are weighted to generate the overall average
packet latency. Other network performance metrics, such as
latency distribution and network power can also be collected
and calculated in a similar manner.

IV. IMPLEMENTING NOCLABS AND NOCPOINT
In this section, we describe our implementation of No-

CLabs and NoCPoint. By carefully selecting the sampling
parameters such as traffic unit size U and sample size n, we
can perform sampling in a cost-effective way.

A. Simulation infrastructure
We simulate 16 cores using FeS2 [18], a full-system, cycle-

accurate x86 simulator. Booksim [11] is used to simulate the
NoC. The configurations of FeS2 and Booksim are given
in Table I. We run unmodified Linux on top of FeS2 and
evaluate PARSEC [3] and SPLASH-2 [29] applications. All
applications run with 16 threads, use simsmall input, and are
run to completion. Only the regions of interest (ROI) are
measured.

Net0 is an ideal network with a one-cycle fixed latency
between all nodes. It exposes the inherent communication
behavior of applications (e.g. spatial behavior). To sample



TABLE I. SIMULATION CONFIGURATIONS

cores 16, P4-like
L1 Cache (I & D) private, 4-way, 32KB each, 64 Byte Blocks

L2 Cache private, 8-way, 512KB each, 64 Byte Blocks
Coherence Protocol MOESI distributed directory

net0 1 cycle fixed latency between all nodes,
unlimited network interface buffer, 8 Byte flit

net1 4x4 2D-Mesh, adaptive XY/YX routing,
8 VCs, 8 buffers/VC, 8 Byte flit

net2 4X4 2D-Mesh, dimension-order routing,
4 VCs, 4 buffer/VC, 4 Byte flit

net3 4-ary, 2-fly butterfly, destination tag
routing, 4 VCs, 4 buffers/VC, 8 Byte flit

net4 4-ary, 2-fly fat tree, nearest common
ancestors routing, 4 VCs, 8 buffer/VC, 8 Byte flit

F W D FF W D

Fig. 3. Simulation state transitions in sampled NoC simulation. Three states
are functional simulation (F), detailed timing simulation (D) and warmup (W).

an application, full-system simulation with net0 is performed
first to obtain the total UMIC and IERVs. This data is used
in the steps described in Sec. III. After that, one can run
sampled NoC simulation with other network configurations
and estimate their performance without needing to simulate
the entire application again. Net1 − 4 are the candidate
networks to be evaluated using NoCLabs and NoCPoint. Net1
and net2 are direct networks; they are well- and under-
provisioned respectively. Net3 and net4 are indirect networks.
These configurations verify the effectiveness of NoCLabs and
NoCPoint when applied to different types of networks.

B. Fast forward and warmup
In sampled NoC simulation, only sampled traffic units

are simulated in detail by the timing module (D); an un-
sampled interval between two sampled units is fast forwarded
by running faster, functional simulation (F). To keep track of
an application’s progress, user mode instructions are counted
during both D and F. After each D period, the simulator drains
all the outstanding packets in the network without measuring
them, and then switches to F. As a result, when it switches
back from F to D later on, the network is cold, introducing
bias into performance measurement. To alleviate the effects
of cold start, we warmup the network by adding a warmup
(W) period before each D. A warmup period simulates the
application in detail but discards all the performance statistics.
As a result, the sampled NoC simulation transitions among
three simulation states as illustrated in Fig. 3.

A sample of size n contains n timing periods and n
corresponding warmup periods; as a result, the number of user
mode instructions simulated in detail is:

UMICsim = n× (W +D) (2)

where W and D are the length of warmup and detailed timing
period respectively. The value of UMICsim largely affects
how quickly the simulation finishes.

The length of each warmup period W is left to the users to
decide. A small W does not warmup the state enough, and an
unnecessarily large W hurts the speedup. Dally and Towles [8]
provide a heuristic procedure to detect the warmup length, and
recognize that event counts on the order of 100 to 1,000 can
bring the network to a steady state. We empirically set the
length of warmup period to 1000 user mode instructions for
both NoCLabs and NoCPoint. This generates ∼100 messages

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

10^1 10^2 10^3 10^4 10^5 10^6 10^7 10^8

v
a
ri

a
ti

o
n
 o

f 
a
v
e
ra

g
e
 p

a
ck

e
t 

la
te

n
ci

e
s 

p
e
r 

u
n
it

traffic unit size U

barnes
blackscholes

bodytrack
canneal

fft
fluidanimate

ocean_cp
radix

raytrace
swaptions

vips
water_nsquared

avg

Fig. 4. Coefficient of variance of average packet latency across different
traffic unit sizes.

to warmup the network, because the average message per user-
instruction is 0.097 across all our applications.

Note that the cache is warmed up by the same 1000
instructions used to warm up the network. Such period of
warmup is short for cache and may introduce cold start bias.
However, our large traffic unit size U (up to 10 million)
mitigates the cold start effect. To completely eliminate the
cold start effect, one must keep the cache warmed during
fast-forward, but this slows down fast-forward and reduces the
simulation speedup.

C. Refining sampling parameters for NoCLabs
NoCLabs users need to determine the initial sample size

ninit. To optimize ninit, we run an analysis on the coefficient
of variance of the full application’s packet latencies with net1.
Note that this population information is obtained by running
the full-system simulation with net1; our sampling method
does not require this full-system simulation step. We include
the data to illustrate our choice of parameters.

Fig. 4 plots the variations of the full traffic’s packet latency,
V̂ for different traffic unit sizes U . We observe that for each
application, its V̂ decreases as U grows. As U increases, short
term variation is hidden by a larger window. The knee point
of the curve exists near U equal to 100,000 for all the ap-
plications. Beyond that point, increasing U does not reduce V̂
significantly. By considering both Eqn. (1) and (2), this implies
using an U larger than the knee point causes UMICsim to
grow proportionally without improving the sampling accuracy.

We use the knee point as a guideline for U and note that
the U should not exceed the knee point. However, this does not
give a definitive conclusion on what is the best U . We show
in Sec. V that a point just to the left of the knee point (e.g.
U=10,000) achieves both high accuracy and speedup. Closer
examination of the data shows that selecting a U between
10,000 and 100,000 can more accurately locate the knee point.
Based on the analysis above, we recommend the traffic unit
size U to be 10,000. The average V̂ when U=10,000 of all
applications is 0.29. If we set an accuracy requirement of 0.99
confidence level with a ±3% confidence interval, an initial
sample size ninit of 841 can be obtained by using Eqn. (1).

D. Refining sampling parameters for NoCPoint
NoCPoint users also need to answer several questions in

regard to parameter selection. They are:
1) What is the traffic unit size U : Since each IERV

abstracts the behavior of one traffic unit, using a small U
preserves traffic temporal behavior with great detail. However,
the benefit comes at a price: 1) because population size
N = total UMIC

U , a small U results in a large N for a



TABLE II. INJECTION-EJECTION RATE VECTORS (IERVS)

IERV type detail level vector length for an X-node network

per-flow highest X2

per-node high 2X

row-column medium 4
√
X

given application, which implies a time-consuming clustering
process; 2) after the clustering is finished, a small U may
require more than one unit from each class to fully represent
the traffic. On the other hand, an extremely large U yields a
very small population size. Zhang et al. [32] point out that
clustering on a population smaller than 1000 can lead to poor
clustering quality. Using these principles as a guideline, we
experimentally decide U in Sec. V.

2) How much detail to include in the IERV: To abstract spa-
tial traffic behavior, we consider three different types of IERV.
Table II lists their detail levels and the vector lengths needed
to characterize an X-node network. In a per-flow IERV, each
element represents the injection rate of one source-destination
pair, or flow, in the network. It is the finest way to profile traffic
spatial behavior. Alternatively, one can use a per-node or row-
column IERV. One element in a per-node IERV represents the
injection/ejection rate for one node, and each element in a row-
column IERV summarizes the injection/ejection rate for all the
nodes within the same row/column. As shown in the table, the
three candidates require different vector lengths to represent
a network of the same size. For our 16-node network, they
need 256, 32 and 16 elements respectively; these differences
influence the clustering process.

Clustering vectors whose dimension is as high as 256 raises
two issues. The first issue is the curse of dimensionality. When
dimensionality increases, the data become so sparse that they
are no longer statistically significant; consequently, they cannot
be clustered effectively. The second is a prohibitively slow
clustering process. Clustering the per-flow IERVs is over 100×
slower than clustering the row-column IERVs on average.
When running on a machine with Intel i5 processor and 4GB
memory, the longest clustering time is over 12 hours.

We rule out per-flow IERV since it is too time-consuming,
and only consider per-node and row-column IERV. Fig. 5
visually compares the clustering results for raytrace when
per-node and row-column IERV are used. In each figure,
different colors denote different classes formed. When one
compares how the application is divided into different classes
(Fig. 5(a) vs Fig. 5(b)), no major difference can be noted; the
same results are found for other applications. In Sec. V, we
quantitatively compare the performance of per-node and row-
column IERV-based sampling.

3) How many classes to form: A stopping rule in hierar-
chical cluster analysis refers to a procedure for determining
the number of classes, K, in a data set. Clustering the data set
into more than K classes indicates a solution containing too
many clusters; constructing less than K classes, on the other
hand, loses information by merging distinct classes. We use the
Calinski and Harabasz formal method [4] to guide our traffic
clustering process. The basic idea of the Calinski and Harabasz
method is to find a number of classes K that can maximize
the ratio between the inter-class variance and the intra-class
variance: it calculates the ratio of all the Ks ranging from 1
to the population size N , and then finds the maximum ratio and
reports its corresponding K. In NoCPoint, after characterizing
the traffic by IERVs, we use the Calinski and Harabasz

0 200 400 600 800

0.
00

0.
10

0.
20

0.
30

UMIC (in million)

in
je

ct
io

n 
ra

te

(a) per-node IERV

0 200 400 600 800

0.
00

0.
10

0.
20

0.
30

UMIC (in million)

in
je

ct
io

n 
ra

te

(b) row-column IERV
Fig. 5. Comparison of the clustering result based on per-node and row-column
IERV. raytrace is used as an example.

 0

 2

 4

 6

 8

 10

 12

 14

barnes
blackscholes

bodytrack

canneal

fft fluidanimate

ocean_cp

radix
raytrace

swaptions

vips
water_nsquared

avg

e
rr

o
r 

%

net1
net2
net3
net4

Fig. 6. Error for average packet latency estimation of NoCLabs. The predicted
confidence intervals are shown by the error bars.

method to analyze the IERVs and calculate the optimal number
of classes; then we cluster using the hierarchical clustering
algorithm, and sample the traffic following the steps described
in Sec. III. Prior work has not used this approach to determine
the number of classes in a mathematically-rigorous manner.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate how accurately NoCLabs
and NoCPoint estimate NoC metrics and compare the two
techniques. Insights on parameter selection are provided for
both techniques. As network designers are not only interested
in average latencies, but also care about the network congestion
level and power, we also provide results of latency distribu-
tion and power estimation to provide a more comprehensive
comparison.

A. NoCLabs
As noted in Sec. IV, we set an accuracy goal of 0.99±3%,

use U=10,000 and an initial sample size of 841 to sample NoC



 0

 2

 4

 6

 8

 10

 12

 14

rowCol-net1

rowCol-net2

rowCol-net3

rowCol-net4

perNode-net1

perNode-net2

perNode-net3

perNode-net4

e
rr

o
r 

%
U=100,000

U=1,000,000
U=10,000,000

Fig. 7. Error in average packet latency estimation for the four candidate
networks when using different traffic unit sizes and IERV types.

simulation with all the candidate networks. Fig. 6 illustrates
the measured estimation errors for average packet latency.
The errors are with respect to the true values measured
from full-system simulation. The confidence intervals are also
plotted. For all the applications, the results generated by the
initial sample provide an accurate estimation without having
to perform step 5 described in Sec. III-A. The least accurate
estimation comes from blackscholes and net2, with an error
of 5.94% and a predicted confidence of ±4.45%. From Fig. 4,
we see that this is caused by blackscholes’s high variation.
Our initial sample size ninit is selected based on the average
V̂ of all applications at U=10,000, which is lower than that
of blackscholes. As a consequence, blackscholes’s variation
was not fully captured. By sampling using an nadjust of
1878, the error can be reduced to 3.69%. Similarly, resampling
other applications using an nadjust can further reduce their
estimation errors. On average, we estimate packet latency
with an error of 1.75%, 2.45%, 1.83% and 1.68% for the
four candidate networks, respectively. Such high accuracy
demonstrates that choosing a traffic unit size U just to the
left of the knee point in Fig. 4 works well in practice.

B. NoCPoint
The procedure of selecting traffic unit size U for NoCPoint

is empirical. As a rule of thumb, we prefer a large U over a
small U . The rationale for this is that after the clustering step,
each class is represented by only one unit in the sample; a
small traffic unit may not stimulate the network long enough
to represent the underlying class.

We explore three different unit sizes: 100,000, 1 million
and 10 million. They are tested with both row-column and per-
node IERV. Fig. 7 shows the errors for different Us on net1−4.
For a given U , the results vary across different applications; on
average, using U of 1 million and 10 million achieves low error
percentages: 3.37% for 1 million and 2.75% for 10 million. In
contrast, the error increases by ∼1.5× when U=100,000 is
used. This validates our preference for large Us.

Although larger U is generally better, an excessively large
value reduces the achievable simulation speedup. Fig. 8 shows
the speedups when using different unit sizes with different
sampling configurations. Wall-clock time is used to compute
the speedup with respect to the full-system simulation. The
common trend is that, larger unit size results in smaller
speedup. For U=10 million, the average speedup is 6.31. If
one continues to increase U beyond that, the speedup will keep
dropping, as a result, the sampled simulation will not be fast
enough to compensate for the accuracy that is sacrificed. Based

 0

 2

 4

 6

 8

 10

 12

 14

rowCol-net1

rowCol-net2

rowCol-net3

rowCol-net4

perNode-net1

perNode-net2

perNode-net3

perNode-net4

sp
e
e
d

u
p

U=100,000
U=1,000,000

U=10,000,000

Fig. 8. Simulation speedup achieved by different unit sizes on different
sampling configurations.

on our analysis, we recommend U=1 million to achieve a
balance between estimation accuracy and simulation speedup.

The other observation is that for the configuration of per-
node IERV-net2, the highest speedup is achieved by U=1
million, instead of the minimal U of 100,000. By examining
the speedups on per-application basis, we find that vips reports
a larger speedup (23.1) when U=1 million, compared to 10.1
when U=100,000. Although more instructions are simulated
when U=1 million, the last sampled traffic unit occurs sig-
nificantly earlier than the end of the application. As a result,
the simulation can terminate before reaching the end of the
application. In contrast, when U=100,000, the sampled traffic
includes fewer user mode instructions, but its last sampled
unit is near the end of the application; this postpones the
termination of the simulation. As a benefit of NoCPoint, if
the sampled units do not last until the end of the application,
the sample simulation can terminate as soon as the last unit is
finished which will increase the speedup opportunity.

Fig. 7 also compares the effects of using row-column and
per-node IERV. For estimation accuracy, there is no clear
winner. For example, when U=1 million is used, per-node
IERV is more accurate than row-column IERV for net2 (3.2%
error vs 3.75% error), but it is the opposite for net4 (3.82%
vs 3.06%). Therefore, our quantitative comparison shows that
a row-column IERV is as accurate as a per-node IERV in
characterizing the traffic behavior. However, clustering on row-
column IERVs is 2× faster than clustering per-node IERVs. We
recommend row-column IERV as a cost-effective solution.

C. NoCLabs vs NoCPoint
We compare the estimation accuracy and speedup of No-

CLabs and NoCPoint. NoCLabs uses U=10,000 and the initial
sample size n=841, NoCPoint uses U=1 million and the row-
column IERV.

1) Comparing different networks: NoC designers rely on
simulation results to draw conclusions about whether one
network outperforms another. Sampled NoC simulation should
provide correct conclusions. Fig. 9 plots the absolute packet
latency of the four candidate networks collected from full
system simulation, NoCLabs and NoCPoint. It verifies that
NoCLabs and NoCPoint are drawing correct conclusions when
comparing the performance of different networks. For instance,
full system simulation suggests that net1 has lower packet
latency than net2 across all applications. Both NoCLabs and
NoCPoint agree with full system simulation when comparing
the two networks and concludes that net1 outperforms net2;
when comparing the performance of net3 and net4 based



 0

 10

 20

 30

 40

 50

barnes
blackscholes

bodytrack

canneal

fft fluidanimate

ocean_cp

radix
raytrace

swaptions

vips
water_nsquared

avg

p
a
ck

e
t 

la
te

n
cy

net1_full
net1_NoCLabs
net1_NoCPoint

net2_full
net2_NoCLabs
net2_NoCPoint

net3_full
net3_NoCLabs
net3_NoCPoint

net4_full
net4_NoCLabs
net4_NoCPoint

Fig. 9. Packet latency comparison for full system, NoCLabs and NoCPoint.

 0

 5

 10

 15

 20

 25

 30

0-4 5-9 10-14
15-19

20-24
25-29

30-34
35-39

40-44
45-49

all_other

error_sum

%
 o

f 
p

a
ck

e
ts

latency

full_traffic
NoCLabs_traffic
NoCPoint_traffic
NoCLabs_error%
NoCPoint_error%

Fig. 10. Packet latency distribution of full vs sample traffic for raytrace.

on full system simulation, there is no immediate winner on
per-application basis; on average, net4 slightly outperforms
net3. Again, NoCLabs and NoCPoint agree with full system
simulation both on per-application basis and average.

2) Estimating NoC congestion: Network designers are also
concerned with the network congestion level. To determine if
our sampled traffic causes the same level of network conges-
tion as the full traffic does, we quantify the difference in la-
tency distribution between sampled and full traffic. In Fig. 10,
we use raytrace as an example. The sampled traffic generated
by NoCLabs and NoCPoint in net1 are both compared against
the original traffic collected for full system simulation. Each
group of bars represents the percentage of packets that falls
into a range of latency. We compare the two bars representing
the same range of latency, and measure the difference. The
network congestion estimation error is obtained by summing
the differences of all the bars. We find only an 1.56% error for
raytrace. Fig. 11 compares NoCLabs and NoCPoint’s average
error of latency distribution estimation for all the applications
and networks. Both techniques exhibit low error.

3) Estimating NoC power: Power is another important
metric designers should take into consideration. We validate
the power estimation accuracy of NoCLabs and NoCPoint by
collecting data from both sampled and full-system simulation.
We record network activity including buffer read/write, switch
and link traverse during the simulation, and fed them into the
DSENT [24] power model to calculate dynamic and leakage
power. DSENT is configured to use a 45nm process and 1 GHz
frequency. The average errors are reported in Fig. 11.

4) Putting all together: In Fig. 11, we plot NoCLabs and
NoCPoint’s average estimation error of packet latency, latency
distribution (i.e. network congestion) and power for net1− 4.
Their speedup is also compared. For NoCLabs, we use error

 0

 5

 10

 15

packet_latency
latency_dist

power speedup
 0

 5

 10

 15

e
rr

o
r 

%

sp
e
e
d

u
p

estmiated metric/simulation speedup

noclabs-net1
noclabs-net2

noclabs-net3
noclabs-net4

nocpoint-net1
nocpoint-net2

nocpoint-net3
nocpoint-net4

Fig. 11. Comparison between NoCLabs and NoCPoint. Results are averaged
across all applications.

bar to demonstrate the predicted confidence interval of latency
estimation; for the rest of the data points, error bar implies
the coefficient of variance of all the applications. NoCLabs
and NoCPoint both show high accuracy in NoC performance
estimation. The errors of latency and power estimation are
all less than 5%. The latency distribution errors are higher
(maximal average error is 6.57%) due to the accumulation of
multiple comparison points as explained earlier. For all the
performance estimation errors, the coefficients of variance are
less than 2 (with the exception of 3.2 for the latency estimation
with NoCLabs-net2), suggesting a stable accuracy across
all the applications. In terms of simulation speed, NoCLabs
reports a 8.92× speedup with net2; it offers almost one order
of magnitude speedup over full-system simulation. Simulations
previously lasting for one week now can be finished within a
day. All speedups have a variation of less than 1 which implies
stable simulation performance for NoCLabs and NoCPoint.

Although NoCLabs and NoCPoint achieve comparable
speedup on average (7.57 vs 7.54), they have different
strengths and application scenarios. NoCLabs offers lower
error than NoCPoint on average across all the candidate
networks (1.92% vs 3.3% for latency, 5.31% vs 5.52% for
congestion, 1.61% vs 2.36% for power) due to its rigorous
mathematical nature. On the other hand, NoCPoint provides a
better understanding of application traffic behavior by explor-
ing its phases (e.g. Fig. 5 illustrates how raytrace stresses
the network differently over time). Therefore, users can choose
between these two approaches according to their needs.

VI. RELATED WORK
SMARTS [30][31] and SimPoint [22][23] apply sampling

techniques to the micro-architecture simulation running single-
threaded applications. SMARTS utilizes statistical sampling
theory to select samples. The sample size is decided by the co-
efficient of variance of the cycles-per-instruction (CPI) values.
In SimPoint, the samples are picked based on the knowledge
of program phase behavior, which is detected by analyzing
program basic blocks. Both SMARTS and SimPoint sample the
dynamic instruction stream, and estimate microarchitectural
statistics including IPC, branch prediction and cache miss rate.
They were first proposed in the context of single threaded
application simulation; they have been extended to multi-
programmed workloads [25][28].

Recently, Ardestani and Renau [13] further explore statis-
tical sampling for multi-threaded applications. They propose



time-based sampling to handle the problem of execution vari-
ation of multi-threaded applications. Fast-forwarding threads
using time information rather than instruction count can
maintain the correct relative progress among threads. Carlson
et al. [5] provide a general-purpose sampling methodology
for multi-threaded application. They highlight the importance
of maintaining thread interaction and synchronization events
during fast forward to achieve correct relative thread progress.

For phase-based multi-threaded application sampling, prior
work concentrates on effectively detecting application phases.
Instruction counts and traffic count information can be com-
bined to better identify execution phases of multi-threaded
applications [32]. Jin et al. [12] examine the characterization
and clustering procedure for network traffic. They cluster the
traffic by using different types of traffic feature vector. By
comparing the intra-class variations of all the cluster results,
they also conclude that the row-column vector is efficient. In
our paper, we choose row-column IERV over per-node IERV
based on the measured results from simulation.

Besides sampling, other approaches can accelerate simu-
lation. FPGA-based acceleration can be used for both full-
system [7][15][19] and NoC simulation [10][26]. FPGA-based
simulation introduces additional complexity in building hard-
ware models for all the components. Parallelizing simulation
is another approach to exploit multi-core hardware for faster
simulation [6][16][17][21]. Synchronization can be a bottle-
neck and some approaches propose to relax synchronization
across simulator threads to improve scalability [17][21].

VII. CONCLUSION

NoC designers often rely on full-system simulation to
faithfully evaluate their designs. In this paper, we propose
two sampling methodologies to accelerate NoC simulation:
NoCLabs and NoCPoint. For NoCLabs, we use statistical
sampling to derive a latency-based NoC simulation sampling
procedure. It selects a representative sample from the full
traffic based on variations in packet latency. By characterizing
the traffic using a network architecture-independent measure-
ment and an IERV, NoCPoint captures the intrinsic temporal
and spatial behavior of application communication to iden-
tify traffic phases. This phase information is used to select
simulation points that represent the full traffic. By applying
NoCPoint and NoCLabs, only a small portion of the full
system simulation is needed to faithfully evaluate various
NoC designs. As NoCLabs and NoCPoint users are faced
with rich options in terms sampling parameter selection, we
provide guidelines for these parameters. We provide concrete
implementations for NoCLabs and NoCPoint, and evaluate
them against the full system simulation. Evaluation results
show that they estimate network performance metrics including
average packet latency, latency distribution and power within
an error of only 7%. Meanwhile, they speed up simulation by
one order of magnitude. With a reduced simulation turnaround
time, the range and depth of NoC design space exploration can
be enhanced.

ACKNOWLEDGMENT

The authors thank Mike Kishinevsky and Umit Ogras for
their invaluable feedback and insight. Additional thanks go
to the members of the Enright Jerger research group and
the anonymous reviewers for their thoughtful and detailed
feedback on this work.

REFERENCES
[1] M. Annavaram et al., “The fuzzy correlation between code and perfor-

mance predictability,” in MICRO, 2004.
[2] M. Badr and N. Enright Jerger, “SynFull: Synthetic traffic models

capturing a full range of cache coherent behaviour,” in ISCA, 2014.
[3] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,

Princeton University, January 2011.
[4] R. Calinski and J. Harabasz, “A dendrite method for cluster analysis,”

Communications in Statistics, vol. 3, pp. 1–27, 1974.
[5] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sampled simulation of

multi-threaded applications,” in ISPASS, Apr. 2013.
[6] J. Chen, M. Annavaram, and M. Dubois, “SlackSim: a platform for

parallel simulations of CMPs on CMPs,” SIGARCH Comput. Archit.
News, vol. 37, no. 2, pp. 20–29, Jul. 2009.

[7] D. Chiou et al., “FPGA-accelerated simulation technologies (FAST):
Fast, full-system, cycle-accurate simulators,” in MICRO, 2007.

[8] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco: Morgan Kaufmann Publishers Inc., 2003.

[9] J. Devore, Probability and Statistics for Engineering and the Sciences,
Enhanced Review Edition. Brooks/Cole, Cengage Learning, 2008.

[10] N. Genko et al., “A complete network-on-chip emulation framework,”
in DATE, 2005.

[11] N. Jiang et al., “A detailed and flexible cycle-accurate network-on-chip
simulator,” in ISPASS, 2013.

[12] Y. Jin, E. J. Kim, and T. M. Pinkston, “Communication-aware globally-
coordinated on-chip networks,” IEEE TPDS, vol. 23, no. 2, Feb. 2012.

[13] E. K. Ardestani and J. Renau, “ESESC: A fast multicore simulator using
time-based sampling,” in HPCA, 2013.

[14] J. Kihm and D. Connors, “Statistical simulation of multithreaded
architectures,” in MASCOTS, 2005.

[15] A. Krasnov et al., “Ramp blue: a message-passing manycore system in
FPGAs,” in FPL, 2007.

[16] M. Lis et al., “Scalable, accurate multicore simulation in the 1000-core
era,” in ISPASS, 2011.

[17] J. Miller et al., “Graphite: A distributed parallel simulator for multi-
cores,” in HPCA, Jan. 2010, pp. 1 –12.

[18] N. Neelakantam et al., “Fes2: A full-system execution-driven simulator
for x86,” in ASPLOS, 2008.

[19] M. Pellauer et al., “HAsim: FPGA-based high-detail multicore simula-
tion using time-division multiplexing,” in HPCA, 2011.

[20] M. Roth et al., “Deconstructing the overhead in parallel applications,”
in IISWC, 2012, pp. 59–68.

[21] D. Sanchez and C. Kozyrakis, “ZSim: fast and accurate microarchitec-
tural simulation of thousand-core systems,” in ISCA, 2013.

[22] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in applications,”
in PACT, 2001.

[23] T. Sherwood et al., “Automatically characterizing large scale program
behavior,” in ASPLOS, 2002.

[24] C. Sun et al., “DSENT - a tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in NOCS,
2012.

[25] M. Van Biesbrouck, T. Sherwood, and B. Calder, “A co-phase matrix
to guide simultaneous multithreading simulation,” in ISPASS, 2004.

[26] D. Wang, N. Enright Jerger, and J. Steffan, “DART: A programmable
architecture for noc simulation on FPGAs,” in NOCS, 2011.

[27] J. H. Ward, “Hierarchical grouping to optimize an objective function,”
Journal of the American Statistical Association, vol. 58, no. 301, pp.
236–244, 1963.

[28] T. F. Wenisch et al., “SimFlex: Statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, no. 4, pp. 18–31, Jul. 2006.

[29] S. Woo et al., “The SPLASH-2 programs: characterization and method-
ological considerations,” in ISCA, June 1995, pp. 24–36.

[30] R. E. Wunderlich et al., “SMARTS: accelerating microarchitecture
simulation via rigorous statistical sampling,” in ISCA, 2003, pp. 84–
97.

[31] ——, “Statistical sampling of microarchitecture simulation,” ACM
Trans. Model. Comput. Simul., vol. 16, no. 3, pp. 197–224, Jul. 2006.

[32] Y. Zhang et al., “Analyzing the impact of on-chip network traffic on
program phases for CMPs,” in ISPASS, 2009.


