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Abstract

Modern and future many-core systems represent complex ar-
chitectures. The communication fabrics of these large systems
heavily influence their performance and power consumption.
Current simulation methodologies for evaluating networks-
on-chip (NoCs) are not keeping pace with the increased com-
plexity of our systems, architects often want to explore many
different design knobs quickly. Methodologies that capture
workload trends with faster simulation times are highly ben-
eficial at early stages of architectural exploration. We pro-
pose SynFull, a synthetic traffic generation methodology that
captures both application and cache coherence behaviour to
rapidly evaluate NoCs. SynFull allows designers to quickly
indulge in detailed performance simulations without the cost
of long-running full-system simulation. By capturing a full
range of application and coherence behaviour, architects can
avoid the over or underdesign of the network as may occur
when using traditional synthetic traffic patterns such as uni-
form random. SynFull has errors as low as 0.3% and provides
50x speedup on average over full-system simulation.

1. Introduction

With the shift to multi- and many-core processors, architects
now face a larger design space and more complex trade-offs
in processor design. The design of the network as a potential
power and performance bottleneck is becoming a critical con-
cern. In the power-constrained many-core landscape, NoCs
must be carefully designed to meet communication bandwidth
requirements, deliver packets with low latency, and fit within
tight power envelopes that are shared across cores, caches and
interconnects. To do this well, the designer must understand
the traffic patterns and temporal behaviour of applications the
NoC must support. There are a large number of parameters
in the NoC design space that can be tuned to deliver the re-
quired performance within a given cost/power envelope, such
as topology, routing algorithm, flow control and router mi-
croarchitecture. These knobs are most commonly explored
through software simulation.

There are a number of simulation methodologies available
to NoC designers, however each comes with speed/fidelity
tradeoffs [18]. Full-system simulators model each hardware
component of the overall system and can run full applications
and operating systems. As a result, these simulators provide
the highest degree of accuracy, but at the expense of long
simulation times. In contrast, a designer can use traditional
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synthetic traffic patterns to quickly stress their NoC design
and reveal bottlenecks. However, these traffic patterns do not
realistically represent the application space so the results are
unlikely to be representative of real workloads. Therefore, they
are unlikely to produce a properly provisioned network. In
this work, we introduce a new approach that strikes a balance
between these tradeoffs, providing a fast, realistic simulation
methodology for NoC designers.

Realistic traffic patterns will increase the accuracy of NoC
simulations. Beyond that, realistic traffic also provides opti-
mization opportunities that do not exist in traditional synthetic
traffic patterns. Many recent NoC proposals have exploited
particular application [13, 30] or coherence behaviour [25, 26]
to provide a more efficient, higher-performing NoC design. As
research continues to push the scalability of cache coherence
protocols [15, 28, 50], shared memory CMPs continue to be
widespread. As a result, we focus on this class of systems.
SynFull Overview and Contributions. SynFull provides a
novel technique for modelling real application traffic without
the need for expensive, detailed simulation of all levels of the
system. We abstract away cores and caches to focus on the net-
work, and provide application-level insight to NoC designers,
who in turn can produce more optimized designs. Through our
analysis, we determine the key traffic attributes that a cache-
coherent application-driven traffic model must capture includ-
ing coherence-based message dependences (Sec. 4), applica-
tion phase behaviour (Sec. 5) and injection process (Sec. 6).
Fig. 1 shows a high-level overview of our approach. We ob-
serve long running (macro-)phases within applications as well
as fine-grained variation within macro-phases (micro-phases),
and group them through clustering. Within these clusters, we



examine the break down of message types dictated by the co-
herence protocol. These two steps drive a hierarchical Markov
Chain that is used to reproduce the traffic behaviour. Our
proposed model is independent of the network configuration
and can be applied to a wide range of NoC configurations to
enable rapid, accurate design space exploration.

To demonstrate the accuracy and utility of our model, we ap-
ply our methodology to a variety of PARSEC [5] and SPLASH-
2 [48] benchmarks. A single full-system simulation run of
each benchmark is required to create the model. We then
use our models to synthetically generate traffic and com-
pare NoC performance to full-system simulation. Finally,
we demonstrate significant speedup for our methodology over
full-system simulation; this allows for rapid NoC design space
exploration. In essence, SynFull strives to replace full sys-
tem simulation for fast, yet accurate NoC evaluation through
richer synthetic traffic patterns.

2. The Case for Coherence Traffic

Before describing SynFull in detail, we motivate the need for
a new class of synthetic traffic patterns. Traffic patterns such
as uniform random, permutation, tornado, etc. are widely used
in NoC research. Many of these are based on the communica-
tion pattern of specific applications. For example, transpose
traffic is based on a matrix transpose application, and the
shuffle permutation is derived from Fast-Fourier Transforms
(FFTs) [2, 12]. However, these synthetic traffic patterns are
not representative of the wide range of applications that run on
current and future CMPs. Even if these traffic patterns were
representative, the configuration of a cache-coherent system
can mask or destroy the inherent communication pattern of the
original algorithm due to indirections and control messages.

The arrangement of cores, caches, directories, and memory
controllers directly influences the flow of communication for
an application. Compare a synthetic shuffle pattern with the
FFT benchmark from SPLASH-2 [48]. The shuffle pattern
is a bit permutation where the destination bits are calculated
via the function d; = s;_; mod b where b is the number of bits
required to represent the nodes of the network [12]. FFT is run
in full-system simulation! while shuffle is run in network-only
simulation. Fig. 2 shows the number of packets sent from a
source to a destination?. In Fig. 2b, we see notable destination
hot spots at nodes 0, 2, and 5 and source hot spots at nodes
0 and 5. However, Fig. 2a shows hot spots only for specific
source-destination pairs.

The best NoC design for the traffic in Fig. 2a is unlikely to
be the best NoC for the traffic in Fig. 2b. For example, we
can design a ring network for Fig. 2a, and map the nodes to
minimize hop count of shuffle on the network. The average
injection rate of FFT is used for shuffle. Doing so yields
~10% improvement in average packet latency over a mesh

!Configuration details can be found in Sec. 7.
>The absolute number of packets in each figure is unimportant in this
comparison as we focus on source-destination traffic pairs.
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Figure 2: Spatial behaviour for synthetic vs application traffic

(Network A in Sec. 7) with the naive mapping (baseline) in
Fig. 2a. However, using the same ring network in a full-
system simulation of the FFT benchmark results in an average
packet latency that is over three times worse than the baseline.
Clearly, synthetic traffic patterns are not representative of
the spatial behaviour exhibited by applications on a shared
memory architecture.

The sharp contrast in Fig. 2 is due to coherence transactions
needing to visit several nodes in a shared memory architecture
before completing. For example, a write request first visits a
directory to receive ownership of a cache line. The directory
forwards requests to the core caching the data, and also in-
validates caches who are sharing the data. Invalidated caches
must send acknowledgements — this domino effect can signifi-
cantly change an application’s spatial behaviour and should
be correctly modelled for realistic traffic generation.

Differentiating between the types of packets visiting nodes
is important when generating realistic traffic. Most synthetic
workloads split traffic into two categories: small control pack-
ets (requests) and large data packets (responses). However,
there are many different packet types in a coherence protocol
for both requests and responses. By lumping these packets
into two categories, designers cannot explore methods that
exploit cache coherence for better performance. For example,
techniques exist to reduce traffic caused by acknowledgement
packets [27]. Similar research insight is only possible when
detailed packet information is available in simulation.

Finally, the traffic imposed by an application is time-varying.
Applications exhibit phase behaviour [38]; spatial patterns are
likely to change over time. Static traffic patterns and injection
rates are not an adequate representation of real application
traffic. The behaviour of cache coherence traffic changes with
time and can have varying effects on NoC performance. For
example, phases that exhibit high data exchange will likely
result in several invalidation packets being broadcast into the
NoC. It is important to capture these variations in traffic to
reveal whether or not an NoC has been correctly provisioned.

3. SynFull Traffic Modelling Overview

Our methodology focuses only on the design of the NoC which
has become a first-class component of many-core architectures.
Thus, we abstract away the cores, caches, directories and mem-
ory controllers. Essentially, the performance characteristics of
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these elements are fixed for the purposes of our study. How-
ever, SynFull can be combined with analytical and abstract
models [10, 22] of these components to explore an even richer
design space with fast-turnaround time. Developing the net-
work models is a critical first step; combining our model with
other models is left as future work. To model application
traffic, we focus on answering four key questions:

When to send a packet? In shared memory systems, packets
are injected from the application side on a cache miss. This
packet initiates a coherence transaction to retrieve its data.
However, some packets are injected reactively. For example,
a data packet would only be sent in response to a request.

Who is sending the packet? Not all nodes inject traffic
uniformly so we must determine which node should inject that
packet. For reactive packets, the answer is clear; the node
reacting to the request is the source. However, for initiating
packets, a model is required.

Why are they sending the packet? Traditional synthetic
workloads do not concern themselves with why. For a cache
coherence traffic generator, the question is very important. The
why helps determine the type of packet being sent, and allows
us to classify packets according to the coherence protocol.
Where is the packet going? The packet’s destination is
a function of both its source and the type of packet being
injected (the answers to the previous two questions). Each
source node may exhibit different sharing patterns with other
nodes, and those sharing patterns may be different depending
on the coherence message being sent.

These 4 questions are answered in Sec. 4. However, be-
cause applications exhibit phase behaviour [38], we must also
capture how the answers change over time. We handle this
by dividing application traffic into time intervals, and group-
ing together time intervals that behave similarly. Then, we
determine answers for the When, Who, Why and Where ques-
tions for each group (phase). We discuss our methodology
for grouping intervals in Sec. 5. To complete our SynFull
methodology we need a way to transition between phases. For
this we use a Markov Chain, where we can determine the prob-
ability of transitioning from one phase to another based on the
phase we are currently in. The Markov Chain model, along
with answers to the above 4 questions, allow us to recreate the
injection process associated with an application (Sec. 6).

4. Modelling Cache Coherence Traffic

Focusing on the network only and not modelling application
behaviour at the instruction level has the benefit of keeping
our methodology generic and simple — we can apply SynFull
to any application’s traffic data in a straightforward manner.
Although we abstract away other system components, not all
network messages are equal so it is important to capture differ-
ent message types injected by the coherence protocol. Message
types are a function of the cache coherence protocol, but most
protocols are conceptually similar in how they behave. A cache

Table 1: 1-to-1 Request-Response mappings. $ signifies cache.

Destination

Original Requestor ($)
Original Requestor ($)
Original Requestor ($)
Directory

Source Reaction
Cache Writeback Ack.
Directory Data

Directory Ack.

Unblock

Message Received
Cache Replacement
Forwarded Request
Invalidation

Data Cache

miss invokes a coherence transaction from the local coherence
controller in the form of a read or write which then results
in a series of requests and responses [40]. In this section, we
explore modelling packets that initiate a coherence transaction
separately from packets that react to received messages.

4.1. Initiating Packets

To model when to send initiating messages, we collect the
number of packets (P) injected into the network for a given
interval spanning C cycles. Then, when generating synthetic
traffic, we simply inject P packets uniformly over C cycles?.

To answer who injects a packet, we observe the distribution
of packets injected across all network nodes. This distribution
gives us the probability a particular node will inject a packet
and can capture spatial behaviour of applications [41, 44]. The
answer to where a packet is going can be modelled using a
similar method with relative probabilities. Given the source
(S) of the packet, we determine its destination (D) using:

P(D|S) = Number of packets sent to D from S M
Number of packets sent by S

Finally, to answer why a packet is injected we split P into
P, (total number of reads) and P, (total number of writes).
The distinction between reads and writes is necessary because
they result in different reactions — writes lead to invalidations
that are broadcast into the NoC; these can significantly impact
NoC performance.

4.2. Reactive Packets

Most responses that maintain cache coherence have a simple
one-to-one mapping with requests, such as an acknowledge-
ment responding to an invalidation request. Upon receiving a
particular message, the protocol reacts with a predetermined
response. Table 1 shows a simplified view of the reactive as-
pect of cache coherence. Most reactions are straightforward but
some requests lead to multiple different responses, particularly:
Forwarded Requests: If the data is already cached on chip,
the coherence protocol forwards the request to the cache contain-
ing the data. Otherwise, the request goes off chip to memory.
Invalidates: When a write request arrives for a cache block
shared by multiple readers, those readers must be invalidated.
Next, we explore these two situations and how to model them
so that we may realistically generate cache coherence traffic.
4.2.1. Forwarding vs. Off-Chip When a read or write request
arrives at a directory, the requested block may be present in
another core’s cache. In this case, the request is forwarded to

3We also explored injecting packets using bernoulli and exponential distri-
butions. However, the differences in performance are negligible.
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Figure 3: The probability a read or write request is forwarded

the cache holding the data. Otherwise, an off-chip memory
request occurs. Fig. 3 shows the fraction of forwarded read
and write requests broken down by directory for SPLASH-2’s
FFT benchmark*. The probability of forwarding a read or
write changes according to which directory is being requested.
Therefore, we model the distribution of forwarding probabili-
ties on a per-directory basis. In Sec. 4.2.2, we show that this
has an affect on invalidations, and different directories may
act as hot spots in certain applications. We also note that the
probabilities of forwarding a read or a write request are not
equal. This distinction is critical as write requests will trigger
invalidations to sharers which can represent a substantial burst
of network traffic for widely-shared data.

4.2.2. Invalidates On a write miss, there is a chance that the
cache block being requested has multiple sharers; the number
of sharers determines the number of invalidates that will be
multicast into the NoC. Fig. 4 shows the per-directory prob-
ability of sending O to 15 invalidates in a 16-node network
for FFT. Some directories (1, 3, 11, and 12) exhibit bimodal
behaviour; they invalidate O or n — 1 sharers. Referring back
to Fig. 3, we can see that these directories behave similarly in
their forwarding probabilities. Other directories resemble an
exponential distribution, with 0 invalidates having the highest
probability. Invalidates can significantly impact network per-
formance; applications that share and exchange data at a high
rate will flood the network with many invalidates and strain
its resources. We model the distribution of the number of
invalidates on a per-directory basis to ensure our synthetically
generated traffic has similar affects on NoC performance.

4.3. Summary

This section showed how we model cache coherence traffic by
reacting to messages injected into the NoC. Read and write
requests are forwarded with some probability to other nodes in
the NoC, and invalidates can be sent out with some probability
given the directory a write request has arrived at. To react to
messages, read and write requests must first be injected into
the NoC. Static injection rates are not sufficient to achieve high
accuracy — we must also consider application phase behaviour.

4Our system configuration assumes 1 slice of the directory is located at
each tile in a 16-core CMP. Addresses are interleaved across directories.
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We explore phase behaviour in Sec. 5 and propose a model
that captures and applies phases to generated network traffic.

5. Traffic Phases

Applications are well-known to exhibit phase behaviour [38].
Phases can have a significant impact on the instructions
per cycle, miss rates, and prediction rates of various mi-
croarchitectures. NoC traffic is also affected by application
phases [20, 51]; our methodology needs to capture this phase
behaviour if it intends to realistically generate synthetic traffic.

We propose examining traffic at two granularities: macro
(millions or billions of cycles) and micro (thousands to hun-
dreds of thousands of cycles). At the macro level, we observe
noticeable differences in the behaviour of an application as it
moves from one phase to another (perhaps due to a barrier or
the end of an outer-loop). At the micro-level we are more likely
to capture short bursts of network activity. Each level is divided
into fixed-sized, successive time intervals measured in cycles.

Dividing traffic into intervals allows us to analyze network
traffic at a fine granularity. Considering the entire application
at once captures average behaviour; reproducing the average
behaviour will negatively impact the design and evaluation of
NoCs. For example, smoothing out periods of high traffic will
result in an NoC that becomes saturated during key application
phases. Alternatively, bringing low periods of communication
up to an average will cause a designer to miss potential oppor-
tunities for power gating or DVFS in the NoC. Intervals allow
us to capture fine-grain changes in traffic. However, selecting
a single (random) interval is not necessarily characteristic of
the entire simulation. Yet considering all intervals will be
difficult to model with a Markov Chain (Sec. 6) and will yield
little simulation speedup. Therefore, we group intervals that
behave similarly into different traffic phases via clustering.

This section explores various alternative approaches to iden-
tifying similar behaviour between intervals through feature
vectors (Sec. 5.1). Each vector contains elements (features)
that measure some aspect of traffic in that interval (e.g., the
injection rate). Vectors are then compared by calculating the
distance between them; a clustering algorithm creates groups
of intervals whose vectors are close together (Sec. 5.2).



5.1. Feature Vector Design

Defining similarity between intervals is non-trivial. One has to
consider the elements of the feature vector, its dimensionality
and scalability. In this section, we present a subset of potential
feature vectors that can be used to cluster intervals into traffic
phases; this discussion is not meant to be exhaustive but rather
captures a range of traffic metrics and feature vector scalability.

It may be tempting to use feature vectors with many el-
ements. There is a trade-off between capturing a range of
communication attributes and the effectiveness and ease of
clustering. Large feature vectors can suffer from the curse of
dimensionality where the data available to populate the vector
is insufficient for the size of the vector [4]. In addition, hav-
ing a large number of observations puts additional strain on
the clustering algorithm; some clustering algorithms have a
complexity of O(n*) (where n is the number of vectors). We
explore two different approaches to construct feature vectors:
1. Injection Rate: number of packets injected in an interval
2. Injection Flows: number of packets injected between

source-destination pairs per interval

We also explored feature vectors that consider cache coher-
ence message types. In this way, intervals with dominant read
and/or write phases are clustered together. However, such an
approach does not capture the spatial injection distribution of
packets. As a result, intervals with similar hot spots are not
clustered together. As we show in Sec. 8, this information is
crucial if we expect to synthetically generate realistic traffic.

5.1.1. Injection Rate Injection rate can be captured in differ-
ent ways. Considering the injection rate of all nodes (7otal
Injection) gives simple, one-dimensional feature vectors that
allow us to differentiate between intervals that are experi-
encing high, medium or low levels of communication. The
benefit of this vector is that it is easy to create. Calculating
the distance between vectors and applying clustering is fast
because it is one-dimensional. Yet Total Injection may be
too simple; the total number of packets does not reveal any
spatial characteristics of the traffic. Even when two vectors
have similar magnitudes, their respective intervals could ex-
hibit different spatial behaviour, such as hot spots. Using the
injection rate of individual nodes alleviates some of these is-
sues. An N-dimensional vector with per-node injection rates
(Node Injection) captures some spatial characteristics of our
applications.

5.1.2. Injection Flows Node Injection helps identify injecting
hotspots — that is, nodes that send a lot of packets. But hot
spots can also exist at a destination — that is, nodes that receive
a lot of packets. To capture the relationship between sent
and received messages, we can use flows [20]. A flow is the
injection rate between a source and a destination. For an N-
node network, there are N? source-destination flow pairs. We
construct a feature vector (Per-Node Flow) that captures this
information. This vector scales quadratically with the number
of nodes. Sufficient data has to be present in the traffic or else

Table 2: Different traffic feature vectors for an N-node network

Feature Vector # of Features | Description

Total Injection 1 Total number of packets injected

Node Injection N Packets injected for each network node
Row-Column N Packets injected between rows and columns
Flow of the network

Per-Node N? Packets injected between each source-
Flows [20] destination pair

the feature vector falls prey to the curse of dimensionality.
We can simplify Per-Node Flow feature vectors by aggregat-
ing nodes into rows and columns (Row-Column Flow). Each
element of the vector corresponds to the number of packets
sent by a row of nodes to a column of nodes. We use the words
row and column for simplicity — the actual mapping of nodes
in the network does not have to be grid-like.
5.1.3. Summary We introduce four potential feature vectors
to classify traffic phases. These are summarized in Table 2.
Each vector has its own pros and cons, and some vectors are
better suited for either a macro or micro scale. We explore the
impact of different feature vectors in Sec. 8.

5.2. Clustering Methods

Feature vectors are used to cluster intervals into traffic phases.
We calculate the distance between vectors and then apply
a clustering method. Distance calculations are affected by
the dimensionality of the vector (i.e. number of features);
therefore, feature vectors that scale poorly (Table 2) lead to
high overhead and modelling time. In this section, we look
at two clustering approaches: partitional and hierarchical and
weigh their benefits. Ultimately, we use different approaches
at different granularities, as we discuss in Sec. 6.

5.2.1. Partitional Clustering Partitional clustering desig-
nates a feature vector that is central to each group; we use
Euclidean distance as a measure of closeness between vec-
tors. Although k-means is the most popular, we use k-medoids
(specifically, Partitioning-Around-Medoids or PAM). PAM
performs a pairwise comparison of the distances between a
vector (V) and every other vector in the group. Although
slower than k-means, PAM is able to provide the central vector
(medoid) for each group. This allows us to select the interval
that is most representative of its traffic phase. Partitional clus-
tering is an NP-hard problem, however heuristics are available
that keep its complexity and speed low [46].

Partitional clustering requires the number of traffic phases
(or clusters k) to be an input to the algorithm. Formal meth-
ods exist [34] to determine an optimum k value, though not
all methodologies agree on the same k. Two common meth-
ods that estimate an optimal k are Average Silhouette Width
(ASW) [35] and the Calinksi-Harabasz (CH) index [6]. We
explore the effects of k using these two methods in Sec. 8.1.
5.2.2. Hierarchical Clustering Hierarchical clustering is an
efficient, deterministic approach to grouping traffic phases.
However, it has a complexity of ¢'(n®) (where n is the number
of vectors), making it better suited to clustering smaller data
sets. Hierarchical clustering creates a tree (a dendogram) of all



feature vectors, linking vectors together based on distance and
a linkage criterion’. The algorithm iteratively combines the
two clusters that have the least impact on the sum of squares
error. Different levels of the tree indicate which vectors belong
to which clusters; the tree can be cut at a user-defined level
to provide the desired number of traffic phases. We use the
L-method [36] to determine the appropriate number of clusters
in hierarchical clustering.

6. Injection Process

In Sec. 5, we introduce macro- and micro-level granularities
for intervals. Each macro-interval is further broken down into
micro-intervals. Then, we group intervals into traffic phases
using clustering. Next, we demonstrate how to construct a
hierarchical Markov Chain for the macro- and micro-levels.
Fig. 1 shows an overview of our approach, where macro-scale
traffic has been decomposed into micro-scale intervals, and
two Markov Chains govern the transitions between phases.
Markov Chains are typically used to model stochastic pro-
cesses. A Markov Chain is made up of a number of states,
with transition probabilities defined for moving from one state
to another. In our case, states correspond to macro- or micro-
phases, and transitioning from one phase to another allows
us to accurately replicate the time-varying behaviour of an
application’s injection process.
Macro Scale Given long application runtimes, the number
of intervals at the macro level ranges from hundreds to thou-
sands. This variability and the resulting large number of vec-
tors means hierarchical clustering is not a good fit because
of its &(n?) complexity; therefore we use PAM at the macro
scale. PAM gives us the medoid of each traffic phase — that is,
a single macro interval that best represents the macro phase.
Having a single macro-interval for each phase significantly re-
duces the amount of data modelled. Once we have the medoid
for each traffic phase, we pass them to our micro model and
analyze the traffic at a finer granularity. We create a micro
model for each macro-interval selected.
Micro Scale The micro scale looks at only a small subset
of the overall traffic. Dividing a macro-interval into micro-
intervals allows us to capture the injection process at a finer
granularity; this is necessary to capture bursty fluctuations in
traffic that can greatly influence network performance. Unlike
at the macro-level, we are not looking for a single representa-
tive interval per traffic phase. A single representative interval
does not contain enough data to form an accurate micro-level
model. Since we do not need a medoid, we use hierarchical
clustering at the micro scale.
Hierarchy We model multiple Markov Chains for our hierar-
chy of macro- and micro-levels. One Markov Chain governs
transitioning between macro-phases. For each macro-phase
we define another Markov Chain for its micro-phases. Fig. 1
shows the two level hierarchy with two macro-phases and

5We use minimum-variance based on Ward’s method [47].

Processor 16 Out-of-Order cores, 4-wide, 80-instruction ROB

L1 Caches 16 Private, 4-way, 32 KB

L2 Caches 16 Private, 8-way, 512 KB

Coherence Protocol Directory-Based MOESI (blocking)

Network A B C

Topology Mesh Mesh Flattened Butterfly [23]
Channel Width 8 bytes 4 bytes 4 bytes
Virtual Ch 1 2 per port 2 per port 4 per port
Routing Alg. XY Adaptive XY-YX UGAL

Buffer Depth 8 flits

Router Pipeline 4 stages

Table 3: Simulation configurations

three micro-phases. An important property of Markov Chains
is that they can reach equilibrium (7). That is, after infinite
time, the Markov Chain converges to a steady state where the
probability of being in a given state is constant. We exploit
this property to achieve significant speedups over full-system
simulation in Sec. 10.

7. Methodology

We evaluate SynFull using a 16-core CMP with the configura-
tion given in Table 3. Each node contains a core, private L1
cache, private L2 cache and a directory. Data is collected using
FeS2, a full-system simulator [31] integrated with Booksim, a
cycle-accurate network simulator [19]. We run PARSEC [5]
and SPLASH-2 [48] benchmarks with the sim-small input
set. All benchmarks are run to completion with the exception
of facesim, which was capped at three hundred million cycles.

To generate the SynFull models, we collect traces from full-
system simulation assuming an ideal fully-connected NoC
with a fixed one cycle latency. Using an ideal network ensures
that our model does not contain artifacts of the network, and
therefore cannot be influenced by a certain topology, routing
algorithm, etc. Thus a single model can be used to simulate
a wide range of NoC configurations. We compare NoC per-
formance of our synthetically generated network traffic with
full-system simulation and trace-based simulation using state-
of-the-art packet dependency tracking based on Netrace [18].

To demonstrate that our methodology is network agnos-
tic, we compare against three different NoC configurations
(Table 3). That is, we can apply SynFull to different NoC
configurations and capture similar behaviour to what would
have been exhibited by full-system simulation, regardless of
the network’s configuration.

8. SynFull Exploration

Our proposed SynFull traffic model has a number of parame-
ters that can be changed. Initially, it is not obvious or intuitive
what the values of these parameters should be to accurately
model traffic. In this section, we explore these model pa-
rameters and discuss their affects on the generated network
traffic, NoC performance and model accuracy. Specifically,
we: (i) Evaluate how the number of macro phases affect NoC
performance; (ii) Demonstrate how to adjust the amount of
congestion at the micro level with different feature vectors;



Benchmark | ASWNI | ASWTI | CHNI | CHTI
Lu 2 2 2 10
Raytrace 2 2 8 7
Swaptions 2 2 2 6

Table 4: Number of macro phases for different formal methods
and feature vectors

and (iii) Explore how the size of time intervals can change
traffic generated by SynFull.

We look at the effects of different parameters quantitatively
on three benchmarks: Lu (contiguous), Raytrace, and Swap-
tions. The domains of these benchmarks are different; Lu is
a high-performance computing application that relies heav-
ily on barriers as its synchronization primitive, Raytrace is a
graphics-based benchmark that relies heavily on locks, and
Swaptions deals with financial analysis and is not very com-
munication intensive. Once we have explored the parameters
across these three benchmarks, we make recommendations
to achieve NoC performance estimates that are accurate with
respect to full-system simulation results.

8.1. Macro Phases

Macro phases constitute the largest granularity for our model —
a macro interval can be several hundred thousand cycles long.
The number of macro phases we need to model is a function of
application behaviour. In order to determine this number, we
apply formal methods (CH and ASW) to a particular clustering
of macro-intervals. Clustering is also affected by the feature
vectors used. The number of macro phases used by SynFull
affects the variety of traffic exhibited at the macro granularity.
We explore two feature vectors at the macro-level: Total
Injection (TT) and Node Injection (NI). Our goal is to reduce
the clustering overhead at the macro level because the number
of observations can be quite large and varies by benchmark —
TI and NI require the least processing time of all the proposed
feature vectors. Using these two feature vectors, we apply CH
and ASW to the clustering to determine the optimal number of
macro-phases. We assume macro-intervals of 500,000 cycles
and micro-intervals of 200 cycles, and the NI feature vector
at the micro level. We create our model from full-system
simulation with an ideal network, and then apply the traffic to
Network A. We compare the resulting average packet latency
to full-system simulation (FSYS); this metric includes the time
a node is queued waiting to be injected into the network.
Table 4 shows the number of phases suggested by the ASW
and CH formal methods for the NI and TI feature vectors, and
Fig. 5 shows the results of using those parameters. There is
little variation in average packet latency when tweaking macro
parameters for Lu and Swaptions. Raytrace, however, shows
more accuracy using the CH index, which recommends 7 or 8
macro phases with TI and NI, respectively. Raytrace traffic has
several macro intervals that deviate from the norm, likely due
to the several thousand locks it uses [48], and therefore should
be modelled with more macro phases. The locking in Raytrace
results in an unstructured communication pattern with high
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Figure 5: Macro-level sweeping of feature vectors & number
of phases (Table 4).

variation. Too few macro phases would force interval outliers
into phases where they do not belong.

The use of barriers in Lu results in distinct periods of low
and high communication; when all threads reach a barrier there
is a sudden burst of packets into the NoC. This communication
pattern maps well to 2 distinct macro phases. CH+TI has 10
macro phases which results in the highest error for SynFull.
Too many phases can lead to poor clustering quality because
some phases will have very few, or even a single interval, asso-
ciated with them. These phases are superfluous and negatively
impact the Markov Chain because they will be rarely visited.

The single dimension of TI makes the clustering sensitive
to fluctuations between macro intervals; that is, two high-
communication macro-intervals may not be clustered together
due to a small difference in total packets. This sensitivity is
alleviated by using more dimensions, so that deviations in one
element are neutralized by similarity in others. This helps
prevent the case where we have too many phases for macro
intervals; thus, we recommend NI for macro clustering and
CH for the number of macro phases.

8.2. Congestion at the Micro Level

Sec. 8.1 uses Node Injection (NI) as the feature vector at
the micro level. NI clusters micro intervals according to the
distribution of injected packets across nodes. While this will
cluster hot spots at source nodes, there are situations where hot
spots exist between source-destination pairs. For example, a
many-to-one communication pattern is not accurately captured
by the NI vector. The Row-Column Flow (RCFlow) and Per-
Node Flow (Flow) feature vectors are better suited to capturing
these hot spots, allowing for the synthetically generated traffic
to cause congestion as full-system simulation might.

In this section, we use CH+NI at the macro level with
interval sizes of 500,000 cycles. We compare the NI feature
vector to RCFlow and Flow with 200-cycle micro intervals.
We run our models on Network A and show average packet
latency in Fig. 6. The RCFlow and Flow vectors are more
accurate with respect to full-system simulation for Raytrace;
the locks used by Raytrace result in specific source-destination
sharing that NI does not capture. Also important is that the two
vectors did not negatively affect the accuracy for the Lu and
Swaptions; that is, RCFlow and Flow did not artificially create
congestion for benchmarks that do not exhibit that behaviour.

We are not only interested in average behaviour but in cap-
turing the highs and lows of network traffic. Looking at packet
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Figure 7: Hellinger distance comparing packet latency distribu-
tions of synthetic simulations to full system. Lower is better.

latency distributions, we can see the number of packets that
achieve a wide range of latencies while in the network; this
distribution gives insight into the congestion the network has
experienced. The Hellinger Distance defines the similarity
between two distributions. The Hellinger Distance is defined
in Equation 2, where P and Q are two discrete distributions (in
our case, packet latency distributions), and p; and ¢; are the
i"" element of P and Q, respectively.

ks

Fig. 7 shows the Hellinger Distance for our synthetic traffic
latency distributions compared to full-system simulation. The
lower the distance, the more similar the latency distributions
are. We can see that, although the error in average packet
latency is less for Raytrace with the Flow vector (Fig. 7), the
distribution of packet latencies is not as close to full system
as RCFlow. This is because the Flow vector causes more high
latency packets than full-system simulation, driving up the av-
erage packet latency with more congestion than necessary. In
all cases, RCFlow is more similar to the desired packet latency
distribution exhibited by full-system simulation, and its error
in average packet latency is comparable to Flow. Therefore,
we recommend RCFlow for micro clustering.

(VPi —Vai)? 2)

1

i

8.3. Time Interval Size

So far we have used 500,000 cycles per macro interval and
200 cycles per micro interval. This results in 500,000/200 =
2,500 micro intervals (observations) per macro interval, which
is low enough to keep hierarchical clustering time reasonable.
Now, we sweep the macro and micro interval sizes together so
that they always result in 2,500 observations. We use CH+NI
at the macro level, and compare the RCFlow and Flow feature
vectors at the micro level with various interval sizes.

Fig. 8 shows the average packet latency for SynFull traffic
with different interval sizes. There is not a clear cut interval
size that is best for every application. RCFlow works best with

a
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Flow 200 500000
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Flow 500 1250000
RCFlow 100 250000
RCFlow 200 500000
RCFlow 500 1250000
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Figure 8: NoC performance for different interval sizes.

Macro-Level Model Micro-Level Model
Feature Vector Node Injection RCFlow
Cluster Algorithm PAM Hierarchical
Formal Method CH Index L-Method
Interval Size 500,000 200

Table 5: Final SynFull Configuration

a micro-interval size of 100 cycles for Raytrace, but performs
worse for Lu. Applications may exhibit different periodic
behaviour at the micro level depending on their algorithm or
an application may not have periodic behaviour at all. When
using large interval sizes of 500 cycles or more, we risk not
capturing bursty application traffic because deviations in injec-
tion rate get averaged out across the interval. For applications
without bursty traffic, large interval sizes work well because
the standard deviation of packets injected over time is low.
Choosing a universal interval size for all applications may
lead to slightly less accurate SynFull results for a subset of
benchmarks. In future work, we will investigate automatically
determining the interval size based on application traffic.

8.4. Parameter Recommendations

Based on the results presented in this section, we make some
recommendations regarding model parameters used in SynFull.
Changing the feature vector at the macro level does not have a
significant effect on network performance. However, in terms
of the clustering quality (recall TI vs. NI for Lu’s barriers),
using the NI feature vector with the CH index yields the best
results. For feature vectors at the micro level, it is important to
select a vector that adequately captures hotspots. Both RCFlow
and Flow feature vectors show good results, however RCFlow
scales better with the number of nodes being simulated and
takes significantly less time to model (typically, an RCFlow
model takes a few minutes to generate whereas a Flow model
can take over 20). Finally, the interval sizes of the macro
and micro levels can greatly influence traffic generated by
SynFull. For the rest of this paper, we will use 200 cycles at
the micro-level and 500,000 cycles at the macro-level.

9. Results

We evaluate SynFull with PARSEC and SPLASH-2 bench-
marks on the three network configurations introduced in Ta-
ble 3. We compare SynFull against full-system simulation and
trace simulation with packet dependences. For SynFull, we
use the recommendations in Sec. 8.4 summarized in Table 5.
Initially for both SynFull and trace simulations, the number of
cycles simulated is equal to the number of cycles required to
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Figure 10: Comparing similarity of packet latency distributions with full-system simulation

complete a full-system simulation of the benchmark with an
ideal network. Later, we explore early simulation termination
due to the Markov Chain reaching steady-state.

Incorporating packet dependences into trace simulation im-
proves the fidelity of traditional trace-based simulation on
NoCs [18]. Traditionally, packets from a trace are injected
into the network with no regard for when they arrive at their
destinations. This is unrealistic due to the reactive nature of
some packets, as explained in Sec. 4. Dependence tracking
aims to capture the reactive nature of packets, and only inject
them when their requesting packet has arrived; the injection
of dependent packets is triggered by another packet’s arrival,
rather than the timestamp of the original trace.

We compare average packet latency across simulation
methodologies (Fig. 9). SynFull does very well on NoCs
A and C, with a geometric mean error of 8.9% and 9.5%
across all benchmarks. NoCs A and C are reasonably well-
provisioned; most applications do not experience significant
contention on these networks. SynFull achieves accurate aver-
age packet latency both for applications that do not stress the
network (e.g. Cholesky Radix, Radiosity, Swaptions), and ap-
plications that do stress the network (e.g. Barnes, Bodytrack,
Fluidanimate). Network throughput has similar accuracy, with
geometric mean errors of 11.78% and 12.42% for NoCs A
and C. Running an ideal network trace with dependences does
not fair as well (geometric mean packet latency error of 18%
and 12.8% for NoCs A and C) because dependences are not
tracked at the application level. While reactive packets are
throttled correctly waiting on the arrival of predecessor pack-

ets, independent packets continue to be injected according to
their timestamp. For most applications, especially FFT and
Radix, this has a significant impact on NoC performance.

NoC B is the least provisioned of the 3 networks. As a
result, discrepancies in initiating packet injections are more
pronounced for both SynFull (16.1% packet latency error and
a 16.11% throughput error) and Traces (30.2% packet latency
error). Traces with dependences have significant error even for
applications with low communication requirements (e.g. Ra-
diosity), while SynFull is capable of reproducing similar NoC
performance for benchmarks of this type. Some applications
running on NoC B have significant error for both SynFull and
Traces. In particular, Radix and FFT (excluded from geoMean
calculations) run off the chart. These are special cases where
the application has macro-level intervals with very high injec-
tion rates that dwarf the injection rate across the rest of the
application. For example, running FFT on an ideal network,
there is a spike of several macro-intervals during the middle
of simulation with an order of magnitude larger injection rate
than other intervals. When running FFT in full-system simula-
tion on the considerably less provisioned NoC B, the spike is
longer but with a much lower (less than 50%) injection rate.
This is due to application-level dependences and the core’s re-
order buffer throttling instruction issue which in turn throttles
network injection. However, this is an extreme case and one
not typically found in many of the applications we consider;
we are investigating techniques to adapt our model to these
scenarios.

We discussed the importance of packet latency distributions
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in Sec. 8.2, and use the Hellinger Distance to compare dis-
tributions to full-system simulation. Fig. 10 shows packet
latency distribution Hellinger Distance for SynFull and Traces
compared to full-system simulation. Consistent with the aver-
age packet latency error, SynFull modelling FFT (NoC B) has
a large Hellinger Distance which indicates that the resulting
distribution does not resemble the latency distribution seen in
full-system simulation. Outside of FFT, our technique fares
well for PARSEC and SPLASH-2 applications. Applications
with low communication requirements typically have the low-
est Hellinger Distance because both SynFull and full-system
simulation do not have a large tail in the distribution. For
applications with more bursty behaviour, Hellinger Distances
are greater but still comparable.

Traces that perform well in average packet latency on NoCs
A and C perform better than SynFull in Hellinger Distance
(e.g. Cholesky, Lu, Radiosity). These applications have low
communication requirements. As a result, the issue of in-
dependent messages flooding the network is minimized on
a well-provisioned network, and the trace faithfully repro-
duces application traffic. Due to the randomness associated
with Markov Chains, SynFull phases do not exactly coincide
the way a trace would. As a result, we have slightly higher
Hellinger Distances, but the results are still comparable. How-
ever, when comparing applications across all domains, SynFull
is the clear winner.

9.1. Capturing Trends

While absolute error values are useful, designers expect a
methodology to accurately capture the relationship between
networks designs. That is, if one network performs better than
another in full-system simulation, then the trend should be the
same when using SynFull. Here we demonstrate that the rela-
tionship is captured with more intuitive trends. Specifically,
we perform two separate sweeps on channel width and virtual
channel buffer size. In the first sweep, we look at networks
with 16, 8, 4, and 2 byte channel widths. In the second sweep,
we look at networks with 16, 8, 4, and 2 flits per buffer. Intu-
itively, larger channel widths and buffer sizes would lead to
better performance than smaller ones. Indeed, this is the case
as shown in Fig. 11; results are averaged across all workloads.

Packets are subdivided into flits based on the channel width.

Our simulations use 8-byte control packets and 72-byte data
packets. From Fig. 11 (right) we see that there is not much
difference in performance between an 8 and 16 byte channel
width. This is because a 16 byte channel width only improves
transmission of data packets, since 8 bytes is all that is needed
for a control packet. As the channel width decreases, so too
does performance due to the increased serialization latency of
all packets. Buffer depth also affects performance. Smaller
buffers increases the latency of packets because flits have to
wait until space becomes available before proceeding towards
their destination. In this case study, Fig. 11 (left) shows that
SynFull captures the relationship almost perfectly.

Overall, SynFull is a superior approach to trace dependences
in terms of fidelity. SynFull is less prone to error across a va-
riety of applications and stresses an NoC in the same way
an application would in full-system simulation. SynFull also
captures the same trends found through full-system simulation.
High accuracy is an important attribute of SynFull; indepen-
dent of its accuracy relative to full-system simulation, SynFull
provides a meaningful collection of synthetic traffic models
that capture a diverse range of application and cache coher-
ence behaviour making SynFull an invaluable tool in a NoC
designer’s arsenal. In Sec. 10, we explore the speed of SynFull
relative to full-system simulation, and how it can be further
accelerated using a special property of Markov Chains.

10. Exploiting Markov Chains for Speedup

Simply running SynFull for the same number of cycles as
full-system simulation results in significant speed up — this
is because SynFull itself does not require much processing
time. The NoC simulator is the limiting factor, but is still sub-
stantially faster than a full-system simulator. We can further
improve the simulation time of SynFull by exploiting the sta-
tionary distribution of Markov Chains. An important property
of Markov Chains is that they can reach equilibrium. That is,
after infinite time, the Markov Chain converges to a steady
state where the probability of being in a given state is constant.

In SynFull, when the macro-level Markov Chain has con-
verged to its equilibrium, we exit the simulation prematurely.
This implies that all traffic phases have been simulated for an
adequate time, and our simulation has reached its steady state.
We cannot apply the same methodology to trace-based simu-
lation because it follows the same progression as full-system
simulation. If we exit a trace prematurely, we may miss out on
a large period of bursty communication or low communication,
both of which would give very different overall NoC perfor-
mance results. For example, if trace simulation of FFT were to
exit early, it would not reach the large spike of macro intervals,
leading NoC researchers to draw incorrect conclusions.

Fig. 12 shows the average speedup of traces, SynFull, and
with SynFull exiting simulation at steady-state (SynFull_SS).
The numbers are calculated by averaging the total runtime of
simulations across each of the three network configurations (A,
B, and C) for each application. Without steady-state, SynFull
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Figure 12: The average speedup over full system simulation

and Trace Dependency speed-ups are very similar since they
simulate the same number of cycles. The simulation bottleneck
here is the NoC itself and not the methodology for driving
traffic. With steady state, we achieve substantial speedup;
speedup is as high as ~150x and over 50x on average.

SynFull models two Markov Chains; however, we only exit
when steady state is reached at the macro level. We could
potentially end a macro-interval early by observing steady
state at the micro level. However, this would result in different
length macro intervals, which could negatively affect perfor-
mance accuracy. For example, imagine a low injection macro
interval reaches steady state very early while a high injection
macro interval does not. There would be a disproportionate
amount of high injection to low injection, negatively impact-
ing the accuracy of our model. By only observing steady state
at the macro-level Markov Chain, we achieve similar error
compared to running SynFull to completion; a full run of Syn-
Full has a geometric mean error of 8.9%, 16.1%, and 9.5%
across networks A, B, and C, while SynFull with steady state
yields errors of 10.5%, 17.1%, and 9.1%.

11. Related Work

Simulation acceleration. There has been considerable work
done to improve simulation time. FPGA-based acceleration
has been proposed [11, 43]. FIST implements an FPGA-based
network simulator that can simulate mesh networks with signif-
icant speed up over software simulation [32]. User-level simu-
lators exist as an alternative to full-system simulation for ex-
ploring thousands of cores [7, 29]. ZSim exploits parallel simu-
lation with out-of-order core models [37]. Sampling for micro-
architectural simulation has been widely explored [38, 39, 49]
and has received renewed attention for multi-threaded and
multi-core processors [1, 8]. Zhang et al. leverage SimPoints
for network traffic so that they may speed up simulations for
parallel applications [51]. Hornet [33] focuses on parallelizing
a NoC simulation. Simulators such as Hornet [33], ZSim [37]
and Slacksim [9] are great tools but designers should still
prune the design space to a few candidates prior to using such
detailed simulators; SynFull bridges the gap between existing
synthetic models and detailed full-system simulation.

Workload modelling.  Cloning can mimic workload be-
haviour by creating a reduced representation of the code [3,
21]. Much of this work focuses on cloning cache behaviour;
SynFull can be viewed as creating clones of cache coher-
ence behaviour to stimulate the network. Creation of syn-

thetic benchmarks for multi-threaded applications has been
explored [17]; this work generates instruction streams that exe-
cute in simulation or on real hardware. Our work differs as we
reproduce communication patterns and coherence behaviour
while abstracting away the processor and instruction execution.
MinneSPEC [24] provides reduced input sets that effectively
match the reference input for SPEC2000; rather than focus on
input set or instruction generation, we provide a reduced set
of traffic based on the steady state of a Markov Chain.

Workload Design and Synthetic Traffic. Synthetic work-
loads have been a focus of research long before NoCs
emerged [16, 42]. Statistical profiles can be used to gener-
ate synthetic traces for microarchitectural performance anal-
ysis [14]. Methods for synthetic trace generation at the chip
level have also been proposed [44, 45]; Soteriou et al. pro-
pose a 3-tuple statistical model that leverages self-similarity
to create bursty synthetic traffic [41]. To our knowledge, there
has been no work done to synthetically generate network traf-
fic that includes cache coherence. The benefits of such an
approach allows us to remove the necessity for full-system
simulation while still allowing works that exploit coherence
traffic. In addition, most statistical models do not compare
generated traffic with full-system simulations, ignoring perfor-
mance metrics such as packet latency.

12. Conclusion

Full-system simulation is a long and tedious process; as a
result, it limits the range of designs that can be explored in a
tractable amount of time. We propose a novel methodology
to accelerate NoC simulation. SynFull enables the creation
of synthetic traffic models that mimic the full range of cache
coherence behaviour and the resulting traffic that is injected
into the network. We accurately capture spatial variation in
traffic patterns within and across applications. Furthermore,
burstiness is captured in our model. These two attributes
lead to a model that produces accurate network traffic. We
attain an overall accuracy of 10.5% across 3 configurations
for all benchmarks relative to full-system simulation. Fur-
thermore, our technique uses the steady-state behaviour of
Markov chains to speedup simulation by up to 150 x. SynFull
is a powerful and robust tool that will enable faster exploration
of a rich design space in NoCs. SynFull can be downloaded at
www.eecg.toronto.edu/~enright/downloads.html

Acknowledgements

This research was funded by a gift from Intel. Additional sup-
port was provided by the Canadian Foundation for Innovation
and the Ontario Research Fund. We thank Mike Kishinevsky
and Umit Ogras for their invaluable feedback and insight while
developing SynFull. We further thank Emily Blem, Andreas
Moshovos, Jason Anderson, the members of the Enright Jerger
research group and the anonymous reviewers for their thought-
ful and detailed feedback on this work.



References

[1]

[2]
[3]

[4]
[5]
[6]
[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

(26]

E. Ardestani and J. Renau, “ESESC: A fast multicore simulator using
time-based sampling,” in Proc. of Intl. Symposium on High Perfor-
mance Computer Architecture, 2013.

J. H. Bahn and N. Bagherzadeh, “A generic traffic model for on-chip
interconnection networks,” Network on Chip Architectures, p. 22, 2008.
G. Balakrishnan and Y. Solihin, “WEST: Cloning data cache behavior
using stochastic traces,” in Proc. of Intl. Symposium High Performance
Computer Architecture, 2012.

R. Bellman, Adaptive Control Processes: A Guided Tour, ser. A Rand
Corporation Research Study Series. Princeton University Press, 1961.
C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

T. Calinski and J. Harabasz, “A dendrite method for cluster analysis,”
Comm in Statistics-theory and Methods, vol. 3, no. 1, pp. 1-27, 1974.
T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: exploring the
level of abstraction for scalable and accurate parallel multi-core simu-
lation,” in Proc of Supercomputing (SC), 2011, p. 52.

T. E. Carlson, W. Heirman, and L. Eeckhout, “Sampled simulation of
multi-threaded applications,” in Intl. Symp. Performance Analysis of
Systems and Software, Apr. 2013.

J. Chen, L. K. Dabbiru, D. Wong, M. Annavaram, and M. Dubois,
“Adaptive and speculative slack simulations of CMPs on CMPs,” in
Proc. of Intl. Symposium on Microarchitecture, 2010.

X. E. Chen and T. M. Aamodt, “Hybrid analytical modeling of pend-
ing cache hits, data prefetching and MSHRs,” ACM Transactions on
Architecture and Code Optimization, vol. 8, no. 3, October 2011.

D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. Johnson,
J. Keefe, and H. Angepat, “FPGA-accelerated simulation technologies
(fast): Fast, full-system, cycle-accurate simulators,” in Proc of the
International Symposium on Microarchitecture, 2007, pp. 249-261.
W. J. Dally and B. P. Towles, Principles and practices of interconnec-
tion networks. Morgan Kaufmann, 2003.

R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Aergia: exploting
packet latency slack in on-chip networks,” in Proc. of Intl. Symposium
on Computer Architecture, 2010.

L. Eeckhout, K. De Bosschere, and H. Neefs, “Performance analy-
sis through synthetic trace generation,” in Intl. Symp. Performance
Analysis of Systems and Software, 2000, pp. 1-6.

M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo di-
rectory: A scalable directory for many-core systems,” in Intl Symp on
High Performance Computer Architecture, 2011, pp. 169-180.
D. Ferrari, On the foundations of artificial workload design.
1984, vol. 12, no. 3.

K. Ganesan and L. John, “Automatic generation of miniaturized syn-
thetic proxies for target applications to efficiently design multicore
processors,” IEEE Trans. on Computers, vol. 99, 2013.

J. Hestness, B. Grot, and S. W. Keckler, “Netrace: dependency-driven
trace-based network-on-chip simulation,” in Proc. of the 3rd Interna-
tional Workshop on Network on Chip Architectures, 2010, pp. 31-36.
N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
J. Kim, and W. J. Dally, “A detailed and flexible cycle-accurate network-
on-chip simulator,” in Intl. Symp. Performance Analysis of Systems and
Software, 2013.

Y. Jin, E. J. Kim, and T. Pinkston, “Communication-aware globally-
coordinated on-chip networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 2, pp. 242 254, Feb. 2012.

A. Joshi, L. Eeckhout, R. Bell, and L. John, “Cloning: A technique
for disseminating proprietary applications at benchmarks,” in Proc. of
IEEE Intl Symposium Workload Characterization, 2006.

T. Karkhanis and J. E. Smith, “A first-order superscalar processor
model,” in Proc of the Intl Symp on Computer Architecture, 2004.

J. Kim, J. Balfour, and W. Dally, “Flattened Butterfly Topology for
On-Chip Networks,” in Proc of the International Symposium on Mi-
croarchitecture, 2007, pp. 172-182.

A. KleinOsowski and D. J. Lilja, “MinneSPEC: A new SPEC bench-
mark workload for simulation-based computer architecture research,”
Computer Architecture Letters, vol. 1, June 2002.

T. Krishna, L.-S. Peh, B. Beckmann, and S. K. Reinhardt, “Towards
the ideal on-chip fabric for 1-to-many and many-to-1 communication,”
in Proc. of the International Symposium on Microarchitecture, 2011.
M. Lodde, J. Flich, and M. E. Acacio, “Heterogeneous NoC design for
efficient broadcast-based coherence protocol support,” in International
Symposium on Networks on Chip, 2012.

ACM,

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

S. Ma, N. Enright Jerger, and Z. Wang, “Supporting efficient collec-
tive communication in NoCs,” in Proc of Intl. Symposium on High
Performance Computer Architecture, 2012, pp. 165-177.

M. Martin, M. Hill, and D. Sorin, “Why on-chip cache coherence is
here to stay,” Comm of the ACM, vol. 55, no. 7, pp. 78-89, 2012.

J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal, “Graphite: A distributed parallel simulator
for multicores,” in Proc. of Intl. Symposium on High Performance
Computer Architecture, Jan. 2010, pp. 1 -12.

A. Mishra, O. Mutlu, and C. Das, “A heterogeneous multiple network-
on-chip design: An application-aware approach,” in Proc. of the Design
Automation Conference, 2013.

N. Neelakantam, C. Blundell, J. Devietti, M. M. Martin, and C. Zilles,
“FeS2: A Full-system Execution-driven Simulator for x86,” Poster
presented at ASPLOS, 2008.

M. Papamichael, J. Hoe, and O. Mutlu, “FIST: A fast, lightweight,
FPGA-friendly packet latency estimator for NoC modeling in full-
system simulations,” in Intl Symp on Networks on Chip, 2011.

P. Ren, M. Lis, M. H. Cho, K. S. Shim, C. W. Fletcher, O. Khan,
N. Zheng, and S. Devadas, “HORNET: A cycle-level multicore simula-
tor,” IEEE Trans. Comput-Aided Design Integr. Circuits Syst., vol. 31,
no. 6, 2012.

A. Reynolds, G. Richards, B. De La Iglesia, and V. Rayward-Smith,
“Clustering rules: a comparison of partitioning and hierarchical cluster-
ing algorithms,” Journal of Mathematical Modelling and Algorithms,
vol. 5, no. 4, pp. 475-504, 2006.

P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53—-65, 1987.

S. Salvador and P. Chan, “Determining the number of clusters/segments
in hierarchical clustering/segmentation algorithms,” in Int. Conf. on
Tools with Artificial Intelligence, 2004, pp. 576-584.

D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” in Proc. of the International
Symposium on Computer Architecture, 2013.

T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in applications,”
in Parallel Architecture and Compilation Techniques, 2001, pp. 3—14.
T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proc. of Architecture
Support for Programming Languages and Operating Systems, 2002,
pp. 45-57.

D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory consis-
tency and cache coherence,” Synthesis Lectures on Computer Architec-
ture, vol. 6, no. 3, pp. 1-212, 2011.

V. Soteriou, H. Wang, and L.-S. Peh, “A statistical traffic model for
on-chip interconnection networks,” in MASCOTS, 2006, pp. 104-116.
K. Sreenivasan and A. Kleinman, “On the construction of a repre-
sentative synthetic workload,” Comm of the ACM, vol. 17, no. 3, pp.
127-133, 1974.

Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanovic, and D. Patterson,
“A case for FAME: FPGA architecture model execution,” in Proc. of
Intl Symposium on Computer Architecture, 2010.

L. Tedesco, A. Mello, L. Giacomet, N. Calazans, and F. Moraes, “Ap-
plication driven traffic modeling for NoCs,” in Proc of the 19th Symp
on Integrated Circuits and Systems Design. ACM, 2006, pp. 62-67.
G. V. Varatkar and R. Marculescu, “On-chip traffic modeling and
synthesis for MPEG-2 video applications,” IEEE Trans on Very Large
Scale Integration Systems, vol. 12, no. 1, pp. 108-119, 2004.

T. Velmurugan and T. Santhanam, “Computational complexity between
k-means and k-medoids clustering algorithms for normal and uniform
distributions of data points,” Journal of Computer Science, vol. 6, no. 3,
p- 363, 2010.

J. H. Ward Jr, “Hierarchical grouping to optimize an objective function,”
J. Amer. Statist. Assoc., vol. 58, no. 301, pp. 236244, 1963.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in Intl Symp on Computer Architecture, 1995, pp. 24-36.

R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Proc. of Intl Symposium on Computer Architecture, 2003.

J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos, “A tagless
coherence directory,” in Intl Symp on Microarchitecture, 2009.

Y. Zhang, B. Ozisikyilmaz, G. Memik, J. Kim, and A. Choudhary,
“Analyzing the impact of on-chip network traffic on program phases for
CMPs,” in Intl Symp on Performance Analysis of Systems and Software,
2009, pp. 218-226.



