
Enabling Interposer-based Disintegration of Multi-core
Processors

Ajaykumar Kannan‡
kannan.ajay@gmail.com

Natalie Enright Jerger‡†
enright@ece.utoronto.ca

Gabriel H. Loh†
gabriel.loh@amd.com

‡Edward S. Rogers Dept. of Electrical and Computer Engineering
University of Toronto

†AMD Research
Advanced Micro Devices, Inc

ABSTRACT
Silicon interposers enable the integration of multiple
stacks of in-package memory to provide higher band-
width or lower energy for memory accesses. Once the
interposer has been paid for, there are new opportu-
nities to exploit the interposer. Recent work consid-
ers using the routing resources of the interposer to
improve the network-on-chip’s (NoC) capabilities. In
this work, we exploit the interposer to “disintegrate” a
multi-core CPU chip into smaller chips that individually
and collectively cost less to manufacture than a single
large chip. However, this fragments the overall NoC,
which decreases performance as core-to-core messages
between chips must now route through the interposer.
We study the performance-cost trade-offs of interposer-
based, multi-chip, multi-core systems and propose new
interposer NoC organizations to mitigate the perfor-
mance challenges while preserving the cost benefits.

Categories and Subject Descriptors
B.3 [Memory Structures]: Dynamic Memory; B.4.3
[Interconnections]: Topology

Keywords
Silicon interposer, die stacking, network-on-chip

1. INTRODUCTION
This paper is about the convergence of two well-known
trends. The first is the often-discussed end or slow-down
of Moore’s law. For decades, the industry has enjoyed
exponential growth in the functionality per unit-area of
silicon. However, in recent years, fundamental physical
limitations have slowed down the rate of transition from
one technology node to the next, and the costs of new
fabs are sky-rocketing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MICRO 2015 Waikiki, Hawaii USA
Copyright 2015 ACM ISBN 978-1-4503-4034-2/15/12 ...$15.00.

Silicon interposer

3D DRAM

3D DRAM

3D DRAM

3D DRAM

64-core CPU chip

3D DRAM
3D DRAM

3D DRAM 3D DRAM

Silicon interposer 16-core CPU chip
(a) (b)

Figure 1: (a) An example interposer-based system in-

tegrating a 64-core processor chip with four 3D stacks

of DRAM, (b) and a 64-core system composed of four

16-core processor chips.

Moore’s Law has conventionally been used to increase
integration, from floating point units to memory con-
trollers, from GPUs to IO and the South Bridge. How-
ever going forward, almost everything that can be easily
integrated has already been integrated! What remains
is largely implemented in disparate process technolo-
gies (e.g., memory, analog) [7]. This is where the sec-
ond trend comes into play, which is the maturation of
die-stacking technologies. Die stacking enables the con-
tinued integration of system components in tradition-
ally incompatible processes. A key initial application
of die-stacking is silicon interposer-based integration of
multiple 3D stacks of DRAM, shown in Figure 1(a) [1,
7, 13, 26], potentially providing several gigabytes of in-
package memory1 with bandwidths already starting at
128GB/s (per stack) [16].

The use of an interposer presents new opportunities;
if one has already paid for the interposer to integrate
memory, any additional benefits from exploiting the in-
terposer can come at a relatively small incremental cost.
One recent work considers using the additional routing
resources (wires) and possibly devices (if an “active” in-
terposer is used) to extend the traditional multi-core
NoC [13]. We study how the interposer can be used to
(at least in part) address the increasing costs of man-
ufacturing chips in a leading-edge process technology.
We propose to use the interposer to “disintegrate” a
large multi-core chip into several small chips, such as
in Figure 1(b). The chips are cheaper to manufacture
due to a combination of higher yield and better pack-

1
Several gigabytes of memory is unlikely to be sufficient for high-

performance systems and will likely still require tens or hundreds of
gigabytes of conventional (e.g., DDR) memory outside of the proces-
sor package. Management of a multi-level memory hierarchy is not
the focus of this work.

16.5mm x 18mm = 297mm2 16.5mm x 9mm = 148.5mm2

(a) (b)

Figure 2: Example 300mm wafers with two different chip

sizes of (a) 297mm2 and (b) 148.5mm2 (half), showing

the overall number of chips and the impact on yield of

an example defect distribution.

ing of rectangular die on a round wafer. Unfortunately,
this approach fragments the NoC such that each chip
contains only a piece of the overall network, and com-
munications between chips must take additional hops
through the interposer. This paper explores how to dis-
integrate a multi-core processor on an interposer while
addressing the problem of a fragmented NoC.

2. BACKGROUND AND MOTIVATION
2.1 Disintegrating to Manage Silicon Costs
Manufacturing costs of integrated circuits are increas-
ing at a dramatic rate. To reduce the cost of manu-
facturing a system on a chip, we can reduce the size
of the chip. A larger chip’s cost comes from two main
sources. The first is geometry: fewer larger chips fit in
a wafer. Figure 2 shows two 300mm wafers, one filled
with 297mm2 chips, and the other with 148.5mm2 chips
(half the size). We can pack 192 larger chips in a single
wafer. The smaller chips can be packed more tightly
(i.e., utilizing more of the area around the periphery of
the wafer) resulting in 395 chips (more than 2×192).

The second cost of a larger chip is due to manufac-
turing defects. A defect that renders a large die inop-
erable wastes more silicon than one that kills a smaller
die. Figure 2 illustrates an example defect distribution
(identical for both wafers) that renders some fraction
of the chips inoperable. This reduces the 192 original
large die to 162 good die per wafer (GDPW), resulting
in a ∼16% yield loss. For the half-sized die, we go from
395 die to 362 GDPW for a ∼8% yield loss. In general,
a smaller chip gets you more chips, and more of them
work.

While smaller chips result in lower costs, the down-
side is that they also provide less functionality (e.g.,
half the area yields half the cores). If we could manu-
facture several smaller chips and combine them together
into a single system, then we would be able to have the
functionality of a larger chip while maintaining the eco-
nomic advantages of the smaller chips. Ignoring for the
time being exactly how multiple chips could be com-
bined back together, Table 1 summarizes the impact
of implementing a 64-core system ranging from a con-
ventional 64-core monolithic chip all the way down to

Cores Per

Chip

Chips Per

Wafer

Chips per

Package

Area per

Chip (mm2)

Chip

Yield

Good Die

Per Wafer

Good SoCs

per Wafer

64 192 1 297.0 84.5% 162 162

32 395 2 148.5 91.7% 362 181

16 818 4 74.3 95.7% 782 195

8 1,664 8 37.1 97.8% 1,627 203

4 3,391 16 18.6 98.9% 3,353 209

Table 1: Example yield analysis for different-sized multi-

core chips. A “SoC” here is a 64-core system, which may

require combining multiple chips for the rows in the table

corresponding to chips with less than 64 cores each.

Figure 3: Average number of 64-core SoCs per wafer per

100MHz bin from Monte Carlo simulations of 100 wafers.

building it from sixteen separate quad-core chips.The
last column in Table 1 shows that using a collection of
quad-core chips to assemble a 64-core SoC yields 29%
more working parts than the monolithic-die approach.

The results in Table 1 assume the usage of known-
good-die (KGD) testing techniques so that individual
chips can be tested before being assembled together to
build a larger system. If die testing is used, then the
chips potentially can also be speed-binned prior to as-
sembly. We used Monte Carlo simulations to consider
three scenarios: (1) a 300mm wafer is used to implement
162 monolithic good die per wafer (as per Table 1), (2)
the wafer is used to implement 3,353 quad-core chips,
which are then assembled without speed binning into
209 64-core systems, and (3) the individual die from
the same wafer are sorted so that the fastest sixteen
chips are assembled together, the next fastest sixteen
are combined, and so on. Figure 3 shows the num-
ber of 64-core systems per wafer in 100MHz speed bins,
averaged across one hundred wafer samples per sce-
nario. The Monolithic 64-core chip and 16 quad-core
approaches have similar speed distributions. However
with speed binning, we avoid the situation where over-
all system speed is slowed down by the presence of a
single slow chip, resulting in significantly faster average
system speeds (the mean shifts by ∼400 MHz) and more
systems in the highest speed bins (which usually carry
the highest profit margins).

2.2 Options for Integrating Multiple Chips
We consider four technologies to reassemble multiple
smaller chips into a larger system: multi-socket boards,
multi-chip modules (MCM), silicon interposer-based in-
tegration (2.5D), and vertical 3D chip stacking.

Multi-socket: Symmetric multi-processing (SMP)
systems on multiple sockets have been around for
decades. The primary downsides are that the band-
width and latency between sockets is worse than some
of the packaging technologies discussed below (resulting

in a higher degree of non-uniform memory accesses or
NUMA). The limitation comes from a combination of
the limit on the per-package pin count and the intrin-
sic electrical impedance between chips (e.g., C4 bumps,
package substrate metal, pins/solder bumps, printed
circuit board routing).

Multi-chip Modules: MCMs take multiple chips and
place them on the same substrate within the package.
This avoids the pin count limitations of going package-
to-package, but the bandwidths and latencies are still
constrained by the C4 bumps and substrate routing that
connect the silicon die.

Silicon Interposers: A silicon interposer is effec-
tively a large chip upon which other smaller die can be
stacked. The micro-bumps (µbumps) used to connect
the individual die to the interposer have greater density
than C4 bumps (e.g., ∼9× better assuming 150µm and
50µm pitches for C4 and µbumps), and the impedance
across the interposer is identical to conventional on-chip
interconnects (both are made with the same process).
The main disadvantage is the cost of the additional in-
terposer.

3D Stacking: Vertical stacking combines multiple
chips, where each chip is thinned and implanted with
through-silicon vias (TSV) for vertical interconnects.
3D has the highest potential bandwidth, but has the
greatest cost and overall process complexity as nearly
every die must be thinned and processed for TSVs. �

The SMP and MCM approaches are less desirable as
they do not provide adequate bandwidth for arbitrary
core-to-core cache coherence without exposing signifi-
cant NUMA effects, and they also have higher energy-
per-bit costs compared to the die-stacked options. As
such, we do not consider them further. 3D stacking by
itself is not (at least at this time) as an attractive of a
solution because it is more expensive and complicated,
introduces potentially severe thermal issues, and may
be an overkill in terms of how much bandwidth it can
provide. This leaves us with silicon interposers.

2.3 Are (Active) Interposers Practical for
NoCs?

The interposer is effectively a very large chip. Current
approaches use passive interposers [7, 12] where the in-
terposer has no devices, only routing. This greatly re-
duces the critical area (Acrit) of the interposer (i.e., un-
less a defect impacts a metal route, there are no tran-
sistors that can be affected), resulting in high yields.
Based on our previous chip cost analysis, it would seem
prohibitively expensive to consider an active interposer,
but having the flexibility of placing routers on the inter-
poser enables many more interesting NoC organizations.
While the interposer could be implemented in an older
process technology2 [25] that is less expensive and more

2
While an older process technology does not provide the same metal

density at the lowest layers (e.g., M1), the long-haul NoC links would
be routed in thicker upper-level metal layers that can be supported
in older technology generations. The NoC’s clock speed is likely in
the 1-2 GHz range, which has been a practical speed for many gen-
erations of devices. Using an older process would require more area

D0 500 1000 1500 2000 2500

Passive 98.5% 97.0% 95.5% 94.1% 92.7%

Active 1% 98.4% 96.9% 95.4% 93.9% 92.5%

Active 10% 98.0% 96.1% 94.2% 92.4% 90.7%

Fully-active 87.2% 76.9% 68.5% 61.5% 55.6%

Table 2: Yield rates for 24mm×36mm interposers vary-

ing the active devices/transistors from none (passive) to

100% filled (fully-active) across different defect rates (D0

in defects per m2).

mature (i.e., lower defect rates), such a large chip, per-
haps near the reticle limit, would still not be expected
to be cheap if the yield rates remain low.

For regular chips, it is typically desirable to maximize
functionality by cramming in as many transistors into
one’s chip-area budget. However, making use of every
last mm2 of the interposer would lead to a very high
fraction of the area being critical Fraccrit multiplied
over a very large area (Acrit = chip-area ×Fraccrit),
thereby leading to low yields and high costs. However,
there is no need to use the entire interposer; its size is
determined by the geometry of the chips and memory
stacked upon it, therefore using more or fewer devices
has no impact on its final size. As such, we advocate
using a Minimally-active Interposer: implement the de-
vices required for the functionality of the system (in our
case it would be routers and repeaters), but no more.
This results in a sparsely-populated interposer with a
lower Fraccrit and therefore a lower cost.

We used the same yield model from our earlier cost
analysis to estimate the yields of different interposer
options: a passive interposer, a minimally-active in-
terposer, and a fully-active interposer. The interposer
size assumed throughout this work is 24mm×36mm
(864mm2), and we assume six metal layers in the inter-
poser. For a passive interposer, Fraccrit for the logic
is zero (it remains non-zero for the metal layers). For
a fully-active interposer (i.e., if one fills the entire in-
terposer with transistors), we use the same Acrit from
Table 4. For a minimally-active interposer, we esti-
mate the total interposer area needed to implement our
routers (logic) and links (metal) to be only 1% of the to-
tal interposer area. To be conservative, we also consider
a minimally-active interposer where we pessimistically
assume the router logic consumes 10× more area al-
though the metal utilization is unchanged. Minimizing
utilization of the interposer for active devices also mini-
mizes the potential for undesirable thermal interactions
resulting from stacking highly active CPU chips on top
of the interposer.

Table 2 shows estimated yield rates for the different
interposer options. We show the same defect rate (2000)
from Table 1, plus four other rates.3 The two lowest
rates reflect that the interposer is likely to be manu-
factured in an older, more mature process node with

than in a leading edge process (but there is plenty of spare room on
the interposer).
3
These defect rates are selected simply to show a range of potential

yield rates and for qualitatively demonstrating the tradeoffs among
the different options. These rates are not in any way chosen to be rep-
resentative of any specific processes, technology generations, device
types, foundries, etc.

lower defect rates. The passive interposer has a non-
perfect yield rate (<100%) as it still uses metal layers
that can be rendered faulty by manufacturing defects.
At the other extreme is a fully-active interposer, where
the higher defect rates (1,500-2,500 defects per m2) re-
sult in very low yields. This is not surprising given that
a defect almost anywhere on the interposer could ren-
der it a loss. This is the primary reason why one would
likely be skeptical of active interposers. However, Ta-
ble 2 shows that when using only the minimum amount
of active area necessary on the interposer, the yield rates
are not very different from the passive interposer. The
vast majority of the interposer is not being used for de-
vices; defects that occur in these “white space” regions
do not impact the interposer’s functionality. So even
with the conservative assumption that the NoC routers
consume 10% of the interposer area at the highest de-
fect rates considered, our model predicts yields of over
90%. As a result, we believe that augmenting an oth-
erwise passive interposer with just enough logic to do
what one needs has the potential to be economically vi-
able,4 and it should be sufficient for NoC-on-interposer
applications.

It is important to note that the above yield models
cannot replace a complete cost analysis. However, the
lack of publicly available data makes it incredibly dif-
ficult to provide meaningful dollar-for-dollar cost com-
parisons. Factors such as additional costs for the extra
masks (mask set costs are effectively amortized over the
all units shipped) for an active interposer and additional
processing steps (incurred per unit) must be combined
with the yield analysis to arrive at a final decision as to
whether a given SoC should use an active interposer.

2.4 The Research Problem
Taking the cost argument alone to its logical limit would
lead one to falsely conclude that a large chip should
be disintegrated into an infinite number of infinites-
imally small die. The countervailing force is perfor-
mance: While breaking a large system into smaller
pieces may improve overall yield, going to a larger num-
ber of smaller chips increases the amount of chip-to-chip
communication that must be routed through the inter-
poser. In an interposer-based multi-core system with a
NoC distributed across chips and the interposer, smaller
chips create a more fragmented NoC resulting in more
core-to-core traffic routing across the interposer, which
eventually becomes a performance bottleneck. Figure 4
shows the cost reduction for three different defect rates,
all showing the relative cost benefit of disintegration.
The figure also shows the relative impact on perfor-
mance.5 So while more aggressive levels of disintegra-
tion provide better cost savings, it is directly offset by

4
Today, active interposers are economically challenging. However,

this research is targeted at systems which may not be manufactured
for another 5-8 years (or more), at which point the economics of die
stacking, the impact of the slowing of Moore’s Law/Dennard scaling,
etc. will have likely shifted what is practical and cost effective.
5
We show the average message latency for all traffic (coherence and

main memory) in a synthetic uniform-distribution workload, where
CPU chips and the interposer respectively use 2D meshes vertically
connected through µbumps. See Section 4 for full details.

Figure 4: Normalized cost and execution time (lower is

better for both) for different multi-chip configurations.

64 cores per chip corresponds to a single monolithic 64-

core die, and 4 cores per chip corresponds to 16 chips,

each with four cores. Cost is shown for different de-

fect densities (in defect/m2), and the average message

latency is normalized to the 16 quad-core configuration.

a reduction in performance.
The problem explored in the remainder of this paper

is how one can get the cost benefits of a disintegrated
chip organization while providing a NoC architecture
that, while physically fragmented across multiple chips,
still behaves (performance-wise) at least as well as one
implemented on a single monolithic chip.

3. ARCHITECTING THE NOC FOR MULTI-
CHIP INTERPOSERS

The analysis in the preceding section shows that there
are economic incentives for disintegrating a large multi-
core chip into smaller die, but that doing so induces per-
formance challenges with respect to the interconnect.
We now discuss how to address these issues.

3.1 Baseline Multi-chip NoC Topologies
In an interposer-based system employing a monolithic
multi-core chip, the NoC traffic can be cleanly separated
into cache coherence traffic routed on the CPU layer,
and main memory traffic on the interposer layer [13].
This minimizes interference and contention between the
traffic types and more easily allows for per-layer cus-
tomized topologies that best match the respective traf-
fic patterns. When the multi-core chip has been broken
down into smaller pieces, coherence traffic between cores
on different chips must now venture off onto the inter-
poser. As a result, this mixes some amount of coherence
traffic in with the main memory traffic, which in turn
disturbs the traffic patterns observed on the interposer.

Figure 5 shows per-link traffic for a horizontal set
of routers across the interposer for several topologies.
The first is the baseline case for a monolithic 64-core
chip stacked on an interposer that also implements a
2D mesh. All coherence stays on the CPU die, and
memory traffic is routed across the interposer, which
results in relatively low and even utilization across all
links. Figure 5(b) shows four 16-core chips on top of the
same interposer mesh. Traffic between chips must now
route through the interposer, which is reflected by an in-
crease particularly in the middle link right between the
two chips. Figure 5(c) shows the same four chips, but
now stacked on an interposer with a concentrated-mesh

Li
n

k
U

ti
liz

at
io

n

(a) (c) (b)

Monolithic 64-core chip
on 2D Mesh

4x 16-core chips
on 2D Mesh

4x 16-core chips
on Concentrated Mesh

Figure 5: Link utilization from a single “horizontal” row

of routers on the interposer for (a) a monolithic 64-core

chip stacked on a interposer with a 2D mesh, (b) four

16-core chips stacked on a 2D mesh, and (c) four 16-core

chips stacked on a concentrated mesh.

network. Any traffic from the left side chips to the right
must cross the middle links, causing further contention
with memory traffic. The utilization of the middle link
clearly shows how the bisection-crossing links can easily
become bottlenecks in multi-chip interposer systems.

In addition to regular and concentrated mesh topolo-
gies, shown in Figure 6(a) and (b), we consider two ad-
ditional baseline topologies for the interposer portion of
the NoC to address the traffic patterns induced by chip
disintegration. The first is the “Double Butterfly” [13]
that optimizes the routing of traffic from the cores to
the edges of the interposer where the memory stacks re-
side. The Double Butterfly in Figure 6(c) has the same
number of nodes as the CMesh, but provides the same
bisection bandwidth as the conventional mesh. Next,
we consider the Folded Torus,6 shown in Figure 6(d).
Similar to the Double Butterfly, the Folded Torus pro-
vides twice the bisection bandwidth compared to the
CMesh. The Folded Torus actually can provide “faster”
east-west transit as each link spans a distance of two
routers, but main-memory traffic may not be routed as
efficiently as a Double Butterfly due to the lack of the
“diagonal” links. Both of these topologies assume the
same 4-to-1 concentration as the CMesh.

3.2 Misaligned Topologies
When using either Double Butterfly or Folded Torus
topologies on the interposer layer, overall network per-
formance improves substantially over either the conven-
tional or concentrated meshes (see Section 5). However,
the links that cross the bisection between the two halves
of the interposer still carry a higher amount of traffic
and continue to be a bottleneck for the system. We
now introduce the concept of a “misaligned” interposer
topology. For our concentrated topologies thus far, ev-
ery four CPU cores in a 2×2 grid share an interposer
router that was placed in between them, as shown in
both perspective and side/cross-sectional views in Fig-
ure 7(a). So for a 4×4 16-core chip, there would be four
“concentrating”router nodes aligned directly below each
quadrant of the CPU chip.

A misaligned interposer network offsets the location
of the interposer routers. Cores on the edge of one chip
now share a router with cores on the edge of the adja-
cent chip as shown in Figure 7(b). The change is sub-

6
This is technically a 2D Folded Torus, but omit the “2D” for brevity.

(c) (d)

(a) (b)

Mesh Concentrated Mesh

Double Butterfly Folded Torus

Figure 6: Baseline topologies for the interposer portion

of the NoC, including (a) 2D Mesh, (b) 2D Concentrated

Mesh, (c) Double Butterfly, and (d) 2D Folded Torus.

The squares on the edges are memory channels; the four

large shaded boxes illustrate the placement of four 16-

core chips above the interposer.

tle but important: with an “aligned” interposer NoC,
the key resources shared between chip-to-chip coher-
ence and memory traffic are the links crossing the bi-
section line, as shown in the bottom of Figure 7(a). If
both a memory-bound message (M) and a core-to-core
coherence message (C) wish to traverse the link, then
one must wait as it serializes behind the other. With
misaligned topologies, the shared resource is now the
router. As shown in the bottom of Figure 7(b), this
simple shift allows chip-to-chip and memory traffic to
flow through a router simultaneously, thereby reducing
queuing delays for messages to traverse the network’s
bisection cut.

Depending on the topology, interconnect misalign-
ment can be applied in one or both dimensions. Fig-
ure 8(a) shows a Folded Torus misaligned in the X-
dimension only, whereas Figure 8(b) shows a Folded
Torus misaligned in both X- and Y-dimensions. Note
that misalignment changes the number of nodes in the
topology (one fewer column for both examples, and one
extra row for the X+Y case). For the Double Butter-
fly, we can only apply misalignment in the X-dimension
as shown in Figure 8(c) because misaligning in the Y-
dimension would change the number of rows to five,
which is not amenable to this butterfly organization.

3.3 The ButterDonut Topology
One of the key reasons why both Double Butterfly (DB)
and Folded Torus (FT) topologies perform better than
the CMesh is that they both provide twice the bisec-
tion bandwidth. In the end, providing more band-
width tends to help both overall network throughput
and latency (by reducing congestion-related queuing de-
lays). One straightforward way to provide more bisec-
tion bandwidth is to add more links, but if not done
carefully, this can cause the routers to need more ports
(higher degree), which increases area and power, and

(a) (b)

C M M

Left chip Right chip

Figure 7: Perspective and side/cross-sectional views of

(a) 4-to-1 concentration from cores to interposer routers

aligned beneath the CPU chips, and (b) 4-to-1 concen-

tration misaligned such that some interposer routers are

placed “in between” neighboring CPU chips. The cross-

sectional view also illustrates the flow of example coher-

ence (C) and memory (M) messages.

(a) (b) (c)

Folded Torus(X) Folded Torus(X+Y) Double Butterfly (X)

Figure 8: Example implementations of misaligned inter-

poser NoC topologies: Folded Torus misaligned in the (a)

X-dimension only, (b) both X and Y, and (c) a Double

Butterfly misaligned in the X-dimension.

can decrease the maximum clock speed of the router.
Note that the topologies considered thus far (CMesh,
DB, FT) all have a maximum router degree of eight for
the interposer-layer routers (i.e., four links concentrat-
ing from the cores on the CPU chip(s), and then four
links to other routers on the interposer).

By combining different topological aspects of both
DB and FT topologies, we can further increase the in-
terposer NoC bisection bandwidth without impacting
the router complexity. Figure 9 shows our ButterDonut
topology, which is a hybrid of both the Double Butterfly
and the Folded Torus. 7 All routers have at most four
interposer links (in addition to the four links to cores on
the CPU layer); this is the same as CMesh, DB, and FT.
However, as shown in Figure 9(a), the ButterDonut has
twelve links crossing the vertical bisection (as opposed
to eight each for DB and FT, and four for CMesh).

Similar to the DB and FT topologies, the Butter-
Donut can also be “misaligned” to provide even higher
throughput across the bisection. An example is shown
in Figure 9(b). Like the DB, the misalignment tech-
nique can only be applied in the X-dimension as the
ButterDonut still makes use of the Butterfly-like diag-
onal links.

Topologies can be compared among several different
metrics. Table 3 shows all of the concentrated topolo-

7
“Butter” comes from the Butterfly network, and “Donut” is chosen

because they are torus-shaped and delicious.

(a) (b)

ButterDonut Misaligned ButterDonut(X)

Figure 9: The (a) aligned and (b) misaligned But-

terDonut topologies combine topological elements from

both the Double Butterfly and Folded Torus.

Topology Nodes Links Diameter Avg Hop Bisection Links

CMesh 24 (6x4) 38 8 3.33 4

DoubleButterfly 24 (6x4) 40 5 2.70 8

FoldedTorus 24 (6x4) 48 5 2.61 8

ButterDonut 24 (6x4) 44 4 2.51 12

FoldedTorus(X) 20 (5x4) 40 4 2.32 8

DoubleButterfly(X) 20 (5x4) 32 4 2.59 8

FoldedTorus(XY) 25 (5x5) 50 4 2.50 10

ButterDonut(X) 20 (5x4) 36 4 2.32 12M
is

al
ig

n
ed

Table 3: Comparison of the different interposer NoC

topologies studied in this paper. In the node column,

n×m in parenthesis indicates the organization of router

nodes. Bisection Links are the number of links crossing

the vertical bisection cut.

gies considered in this paper along with several key
network/graph properties. The metrics listed corre-
spond only to the interposer’s portion of the NoC (e.g.,
nodes on the CPU chips are not included), and the link
counts exclude both connections to the CPU cores as
well to the memory channels (this is constant across
all configurations, with 64 links for the CPUs and 16
for the memory channels). Misaligned topologies are
annotated with their misalignment dimension in paren-
thesis, for example, the Folded Torus misaligned in the
X-dimension is shown as“FoldedTorus(X)”. As shown in
the earlier figures, misalignment can change the number
of nodes (routers) in the network. From the perspec-
tive of building minimally-active interposers, we want
to favor topologies that minimize the number of nodes
and links to keep the interposer’s Acrit as low as possi-
ble. At the same time, we would like to keep network
diameter and average hop count low (to minimize ex-
pected latencies of requests) while maintaining high bi-
section bandwidth (for network throughput). Overall,
the X-misaligned ButterDonut topology has the best
properties out of all of the topologies except for the link
count, for which it is a close second behind DoubleBut-
terfly(X). ButterDonut(X) combines the best of all of
the other non-ButterDonut topologies, while providing
50% more bisection bandwidth.

3.4 Deadlock Freedom
The Folded Torus and ButterDonut topologies are sus-

ceptible to network-level deadlock due to the presence
of rings within a dimension of the topology. Two ap-
proaches have been widely employed to avoid deadlock
in torus networks: virtual channels [9] and bubble flow
control [28]. We leverage recently proposed flit-level

bubble flow control [8, 24] to avoid deadlock in these
rings. As the ButterDonut topology only has rings
in the X-dimension, bubble flow control is applied in
that dimension only and typical wormhole is applied
for packets transiting through the Y-dimension.8 For
the Folded Torus, bubble flow control must be applied
in both dimensions. As strict dimension order rout-
ing cannot be used in the ButterDonut topology (pack-
ets can change from X to Y and from Y to X dimen-
sions), an additional virtual channel is required. We
modify the original routing algorithm for the Double-
Butterfly [13]; routes that double-back (head E-W and
then W-E on other links) are not possible due to disin-
tegration. Table-based routing based on extended des-
tination tag routing coupled with extra VCs maintain
deadlock freedom for these topologies.

4. METHODOLOGY
In this section, we discuss the methodology for the cost
and yield analysis in Section 2. We also describe the
simulation framework and workloads used in the evalu-
ation of disintegrated interposer-based systems.

4.1 Yield and Cost Models
For the yield and relative cost figures used in Section 2,
we make use of analytical yield models, a fixed cost-
per-wafer assumption, automated tools for computing
die-per-wafer [14], and consider a range of defect densi-
ties. All analyses assume a 300mm wafer. Our baseline
monolithic 64-core die size is 16.5mm × 18mm (same
assumption as used in the recent interposer-NoC pa-
per [13]). Smaller-sized chips are derived by halving
the longer of the two dimensions (e.g., 32-core chip is
16.5mm × 9mm). The yield rate for individual chips is
estimated using a simple classic model [29]:

Y ield =

(
1 +

D0

n Acrit

α

)−α
where D0 is the defect density (defects per m2), n is
equal to the number of vulnerable layers (13 in our anal-
yses, corresponding to one layer of devices and 12 metal
layers), Acrit is the total vulnerable area (i.e., a defect
that occurs where there are no devices does not cause
yield loss), which is the product of the chip area and
Fraccrit, and α is a clustering factor to model the fact
that defects are typically not perfectly uniformly dis-
tributed. We ran our experiments for several other val-
ues of α, but the overall results were not qualitatively
different. For Acrit, we assume different fractions of the
total chip area are critical depending on whether it is a
device or metal layer. Our model values are listed in Ta-
ble 4 for reproducibility, but it should be noted that the
exact parameters here are not crucial: the main result
(which is not new) is that smaller chips are cheaper.

For the speed binning results in Section 2, we sim-
ulate the yield of a wafer by starting with the good-
die-per-wafer based on the geometry of the desired chip
(Table 1). For each quad-core chip, we randomly select
8
This discussion treats diagonal links as Y-dimension links.

Parameter Value

n 13

Fraccrit (wire) 0.2625

Fraccrit (logic) 0.7500

a 1.5

Table 4: Parameters for the chip yield calculations.

its speed using a normal distribution (mean 2400MHz,
standard deviation of 250MHz).9 Our simplified model
treats a 64-core chip as the composition of sixteen ad-
jacent (4×4) quad-core clusters, with the speed of each
cluster chosen from the same distribution as the indi-
vidual quad-core chips. Therefore the clock speed of the
64-core chip is the minimum from among its constituent
sixteen clusters. For each configuration, we simulate
100 different wafers worth of parts, and take the aver-
age over the 100 wafers. Similar to the yield results, the
exact distribution of per-chip clock speeds is not so crit-
ical: so long as there exists a spread in chip speeds, bin-
ning and reintegration via an interposer can potentially
be beneficial for the final product speed distribution.10

4.2 Performance Model and Workloads
To evaluate the performance of various interposer NoC
topologies for our disintegrated systems, we use a cycle-
level network simulator [17] with the configuration pa-
rameters listed in Table 5. We use DSENT [30] as de-
scribed below to estimate frequency, area, and power for
the different topologies. We assume all NoC topologies
are clocked at 1GHz. Long links needed by some topolo-
gies are properly repeated in order to meet timing. All
configurations assume an appropriately sized mesh on
the core dies (e.g., a 16-core chip uses a local 4×4
mesh). All interposer networks use 4-to-1 concentra-
tion except for the mesh. There are two DRAM stacks
on each of the two sides of the interposer. Each DRAM
stack provides four independent memory channels, for
a system-wide total of 16 channels. Each DRAM chan-
nel consists of a 128-bit data bus operating at 1.6GHz.
DRAM-specific timing (e.g., bank conflicts, refresh) are
modeled. The interposer network dimensions include
the end nodes that interface with the DRAM memory
channels.

To evaluate the baseline and proposed NoC designs,
we use both synthetic traffic patterns and SynFull traf-
fic models [3]; these two evaluation approaches cover
a wide range of network utilization scenarios and ex-
ercise both cache coherence traffic and memory traffic.
For the SynFull workloads, we run multi-programmed
combinations composed of four 16-way multi-threaded
applications from PARSEC [5]. The threads of the ap-
plications are distributed across the 64 cores and they

9
These values are not meant to be representative of any specific pro-

cessor, SoC, technology generation, etc., but are chosen as a working
example.

10
Expenses associated with the binning process are not included our

cost metric, as such numbers are not readily available, but it should
be noted that the performance benefits of binning could incur some
overheads. Similarly, disintegration into a larger number of smaller
chips requires a corresponding increase in assembly steps, for which
we also do not have relevant cost information available.

Table 5: NoC simulation parameters.

share all 16 memory channels. We construct workload
combinations based on their memory traffic intensity.
For synthetic traffic patterns, we use uniform random
traffic where we varied the ratio of coherence and mem-
ory requests injected into the network, but the majority
of our results are reported with a 50-50 ratio between
coherence and memory traffic. Other ratios did not re-
sult in significantly different behaviors. We validate our
network-level simulations by running a subset of PAR-
SEC [5] in full-system simulation using gem5 [6] and
booksim [17]. Each workload is run on 64 out-of-order
2GHz cores with 32KB of private L1 and 512KB private
L2 cache per core. Each program is executed for over
one billion instructions.

With the exception of the cost-performance analysis
in Section 5.4, our performance results do not factor in
benefits from speed binning individual chips in a disin-
tegrated system. Our performance comparisons across
different granularities of disintegration show only the
cycle-level tradeoffs of the different configurations. If
the binning benefits were included, then the overall per-
formance benefits of our proposal would be even greater.

Power and area are modeled using DSENT [30]. Re-
sults are collected using a 45nm bulk/SOI low-Vt pro-
cess node with 3.4mm2 cores, with a worst-case CPU-
layer core-to-core link length of 2.0mm (1.6mm CPU
width, plus 0.4mm for µbump area). Frequency was
swept to determine the maximum operating point for
each topology. Long link lengths are faithfully modeled
across each topology. µbump power was computed using
the activity factors measured from simulation, a system
voltage of 0.9V, and a µbump capacitance of 0.7fF [15].

5. EXPERIMENTAL EVALUATION
In this section, we explore network performance un-
der different chip-size assumptions and compare latency
and saturation throughput across a range of aligned
and misaligned topologies. Our evaluation features syn-
thetic and SynFull traffic patterns and full-system simu-
lations. We also evaluate the power and area of the pro-
posed topologies and present a unified cost-performance
analysis.

5.1 Performance
Figure 10(a) shows the average packet latency for the
Mesh, CMesh, DB, FT, and ButterDonut topologies as-
suming uniform random traffic with 50% coherence re-
quests and 50% memory requests at a 0.05 injection
rate. At a low injection rate, latency is primarily de-

(a) (b)

Figure 10: Average packet latency for different inter-

poser NoC topologies. The x-axis specifies the individual

chip size (16 = four 16-core chips, 64 = a single mono-

lithic 64-core chip). Results are grouped by (a) aligned

and (b) misaligned topologies. Traffic is split 50-50 be-

tween coherence and memory, with a 0.05 injection rate.

termined by hop count; as expected, the mesh performs
the worst. As the number of cores per die decreases,
the mesh performance continues to get worse as more
and more packets must pay the extra hops on to the
interposer to reach their destinations. For the other
topologies, performance actually improves when going
from a monolithic die to disintegrated organizations.
This is because the static routing algorithms keep co-
herence messages on the CPU die; in a monolithic chip,
the coherence messages miss out on the concentrated,
low hop-count interposer networks. DB, FT, and But-
terDonut all have similar performance due to similar
hop counts and bisection bandwidths. At low loads,
results are similar for other coherence/memory ratios
as the bisection links are not yet a bottleneck. The
results show that any of these networks are probably
good enough to support a disintegrated chip at low traf-
fic loads. Disintegrating a 64-core CPU into four chips
provides the best performance, although further reduc-
tion in the sizes of individual chips (e.g., to 8 or even
4 cores) does not cause a significant increase in average
packet latency.

Figure 10(b) shows the average packet latency for FT,
DB, and ButterDonut along with their misaligned vari-
ants. Note that the y-axis is zoomed in to make it
easier to see the differences among the curves. The
misaligned topologies generally reduce network diam-
eter/hop count, and this is reflected by the lower laten-
cies. The FT enjoys the greatest relative reductions in
latency from misalignment.

The results in Figure 10 use synthetic uniform ran-
dom traffic. Figure 11 shows average packet latency
results when the system executes multi-programmed
SynFull workloads. The results are for a system con-
sisting of four 16-core CPU chips. The SynFull re-
sults show a greater difference in the performance be-
tween the different topologies as the workloads exer-
cise a greater diversity and less uniform set of routes.
Across the workloads, the misaligned ButterDonut(X)

Figure 11: Average packet latency results for different

multi-programmed SynFull workloads with varying net-

work load intensities.

Figure 12: Distribution of message latencies (0.05 injec-

tion rate).

and FT(XY) consistently perform the best.
Figure 12 shows histograms for several interposer

topologies’ packet latencies for a system with four 16-
core chips running uniform random traffic at a 0.05 in-
jection rate. The CMesh suffers from both the highest
average and highest variance in packet latency. The
other higher-bandwidth solutions all have similarly low
and tight latency distributions, with the ButterDonut
performing the best. The low average hop counts of
these NoCs keep average latency down, and the higher
bandwidth reduces pathological traffic jams that would
otherwise result in longer tails in the distributions.

Figure 13 shows the full-system results for several
PARSEC benchmarks normalized to a mesh network.
These results are consistent with the network latency
results in Figure 10. For workloads with limited net-
work or memory pressure, many topologies exhibit sim-
ilar network latencies which results in little full-system
performance variation across topologies. Blackscholes
puts limited pressure on the memory system and there-
fore sees little difference across topologies. Ferret is
more memory intensive and benefits from topologies
with higher bandwidth to memory and lower diameter.

5.2 Load vs. Latency Analysis
The SynFull simulations hint at the impact of net-
work load on the performance of the NoC. To generate
latency-load plots, we revert back to synthetic uniform
random traffic (50-50 cache and memory). We evaluate
a system with four 16-core chips. Figure 14(a) and (b)
show the latency-load curves for the same topologies
shown earlier in Figure 10. For the aligned topologies,
the CMesh quickly saturates as its four links crossing
the bisection of the chip quickly become a bottleneck.
The remaining topologies maintain consistently low la-
tencies up until they hit saturation. The misaligned
topologies generally follow the same trends, although

Figure 13: Normalized run-time for full-system simula-

tion with a four 16-core chips.

0

10

20

30

40

50

0
.0
1

0
.0
2

0
.0
3

0
.0
4

0
.0
5

0
.0
6

0
.0
7

0
.0
8

0
.0
9

0
.1
0

0
.1
1

0
.1
2

A
ve

ra
ge

 P
ac

ke
t

La
te

n
cy

Injection Rate

Mesh
CMesh
FoldedTorus
DoubleButterfly
ButterDonut

0

10

20

30

40

50

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0
.0

9

0
.1

0

0
.1

1

0
.1

2

A
ve

ra
ge

 P
ac

ke
t

La
te

n
cy

Injection Rate

FoldedTorus
FoldedTorus (X)
FoldedTorus (XY)
DoubleButterfly
DoubleButterfly (X)
ButterDonut
ButterDonut (X)

(a) (b)

Figure 14: Latency and saturation throughput for (a)

conventional NoC topologies and (b) misaligned topolo-

gies.

FT(XY) shows a substantially higher saturation band-
width. The reason is that the Butterfly-derived topolo-
gies are optimized for east-west traffic to route memory
traffic, and as a result are slightly imbalanced. Look-
ing back at Figure 9, ButterDonut has 12 links across
the east-west bisection, but only eight links going across
the north-south cut. FT(XY) on the other hand has ten
links across both bisections, and scales out better. The
cost (see Table 3) is that FT(XY) has 25% more router
nodes and 39% more links than ButterDonut.

Figure 15 further breaks down the load-latency curves
into (a) memory traffic only, and (b) cache coherence
traffic only. The results are fairly similar across the two
traffic types, with the memory traffic having a slightly
larger spread in average latencies due to the higher di-
versity in path lengths (memory requests always have to
travel farther to the edges). The plots come from the
same set of experiments, and therefore the saturation
onset occurs at the same point in both graphs.

In general, from standard topologies to their mis-
aligned variants, latency decreases and saturation
throughput improves. Saturation throughput improve-
ments come from taking pressure off of the east-west
bisection links in the aligned topologies. Latency reduc-
tions come from shorter hop counts in these networks.

5.3 Power and Area Results
In Figure 16, we show power and area results normal-
ized to a mesh for each topology. Longer links for some

0

10

20

30

40

50

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0
.0

9

0
.1

0

0
.1

1

0
.1

2

A
ve

ra
ge

 P
ac

ke
t

La
te

n
cy

Injection Rate

Mesh

CMesh

FoldedTorus

FoldedTorus (X)

FoldedTorus (XY)

DoubleButterfly

ButterDonut

ButterDonut (X)
0

10

20

30

40

50

0
.0
1

0
.0
2

0
.0
3

0
.0
4

0
.0
5

0
.0
6

0
.0
7

0
.0
8

0
.0
9

0
.1
0

0
.1
1

0
.1
2

A
ve

ra
ge

 P
ac

ke
t

La
te

n
cy

Injection Rate

(a) (b)

Figure 15: Latency and saturation throughput separated

into (a) only memory messages, and (b) only core-to-core

coherence messages.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Dynamic Power Global Wire Area Active Area

N
o

rm
al

iz
e

d
 t

o
 M

e
sh

CMesh
Folded Torus
Folded Torus (X)
Folded Torus (XY)
DBFly
DBFly (X)
ButterDonut
ButterDonut (X)

Figure 16: Power and area results in 45nm normalized

to mesh.

topologies (e.g., FT(XY), DB and ButterDonut) lead
to increased global wiring area; however increases are
minor and do not exhaust the routing budget of the
interposer. Likewise, longer links will consume more
dynamic power (due to the presence of more repeaters);
however the absolute power consumed by these topolo-
gies is small and will have a negligible impact on the
overall thermals of the system. Although not shown,
DSENT reports reduced clock frequency for all topolo-
gies with longer links; ButterDonut has the lowest oper-
ating frequency due to long links. However, it can still
be clocked at 2.5GHz which is more than sufficient to
saturate the DRAM bandwidth. Power results assume
1GHz frequency for all topologies.

5.4 Combining Cost and Performance
Higher levels of disintegration (smaller chips) can re-
sult in lower overall cost based on our analysis from
Section 2 due to better yields and more chips per wafer.
The smaller chips can potentially decrease interconnect
performance due to fragmentation of the NoC, but the
finer-grained binning also increases average CPU clock
speeds. To put it all together, we consider two figures
of merit (FOM) based on cost and performance, or “de-
lay” for brevity.11 The first, FOM×, is the product of
delay and cost, which gives both factors similar influ-
ence. The second, FOM∧, is delaycost, which provides a
greater emphasis on performance. The rationale for the
performance-heavy FOM is that for high-end servers,

11
Our delay metric is the average network latency adjusted by the

average clock-speed improvement due to binning (Monte Carlo sim-
ulations were repeated for all chips sizes considered) assuming that
only 30% of performance is impacted by the CPU frequency while
the NoC frequency remains unchanged. 20% of total performance is
impacted by network latency. The cost metric is the cost per 64-
core system (considering yield and chips per wafer). As we are only
comparing interposer-based systems, the cost of the interposer is not
factored into the cost metric. Both delay and cost are normalized
against the monolithic 64-core.

0%

5%

10%

15%

20%

25%

30%

4 8 16 32 64

FO
M

 Im
p

ro
ve

m
e

n
t

(D
e

la
y

x
C

o
st

)

Mesh
CMesh
FoldedTorus (XY)
ButterDonut (X)
ButterDonut
Folded Torus
DBFly -1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

4 8 16 32 64

FO
M

 Im
p

ro
ve

m
e

n
t

(D
e

la
y

^
C

o
st

)

(a) (b)

Figure 17: Figures of Merit based on (a) delay × cost,

and (b) delaycost. The x-axis specifies cores per chip

(64=monolithic).

even relatively smaller performance differentiations at
the high-end can translate into substantially higher sell-
ing prices and margins.

Figure 17(a) and (b) show FOM× and FOM∧, re-
spectively. For the cost-delay product (FOM×), even
though higher levels of disintegration cause average
NoC performance to degrade, these are more than off-
set by the cost benefits combined with CPU frequency
improvements. The exponential FOM∧ tells a more in-
teresting story. For a basic Mesh on the interposer, the
performance loss due to disintegration actually hurts
more than the cost reductions help until one gets down
to using 8-core chips or smaller. The CMesh provides
an initial benefit with two 32-core chips, but the lower
bisection bandwidth of the CMesh is too much of a drag
on performance, and further disintegration is unhelpful.
The FOM∧ results show that the remaining topologies
are effectively able to ward off the performance degrada-
tions of the fragmented NoC sufficiently well that the
combination of binning-based improvements and con-
tinued cost reductions allow more aggressive levels of
disintegration.

With different FOMs, the exact tradeoff points will
shift, but FOM∧ in particular illustrates that simple dis-
integration (using Mesh, CMesh) alone may not be suffi-
cient to provide a compelling solution for both cost and
performance. However, interposer-based disintegration
appears promising when coupled with an appropriate
redesign of the interposer NoC topology.

6. OTHER ISSUES AND OPPORTUNITIES
6.1 Clocking Across Chips
The NoCs span multiple die and the interposer. Thus
far we have modeled a fully-synchronous NoC where
all nodes on all chips are clocked together. Consid-
ering die-to-interposer and die-to-die parametric varia-
tions and the possibility of implementing the interposer
and individual chips in different technology generations,
building a high-speed, low-skew, low-jitter global clock
tree across multiple chips and the interposer is likely to
be very challenging. While it makes sense to run each
chip’s portion of the NoC at the same clock speed (oth-
erwise the slowest portion will likely become a bottle-
neck), from a physical-design perspective it is easier to
clock chips independently. Thus, each chip’s NoC por-
tion operates in its own local timing domain, thereby

Figure 18: Impact of clock crossing latency on average

packet latency with 16-core die.

requiring domain-crossing synchronizing FIFOs when
going from CPU chip to interposer, and vice versa. If
all domains operate at roughly the same frequency, the
domain-crossing FIFOs may be relatively low latency
(consisting of phase-detection logic and some registers).
If each portion runs at arbitrary clock speeds, then
higher-latency synchronizers may be needed.

We repeated some of our experiments where each
crossing from a CPU chip to the interposer, and back,
must incur an additional 1 to 5 cycles for the FIFOs to
synchronize between clock domains. Figure 18 shows
the average latency for uniform random traffic on a four
16-core configuration. The additional latency affects all
of the topologies in a uniform manner, effectively off-
setting the performance in proportion to the penalty of
crossing timing domains. This shifts the trade-off point
in terms of how aggressively one can/should disinte-
grate a large chip. The higher degree of disintegration
(smaller chips) increases the amount of traffic that goes
chip-to-chip. Referring back to Figure 10, going from
a monolithic chip to four 16-core chips decreases aver-
age packet latency by about 5 cycles. From Figure 18,
this would suggest that a domain-crossing FIFO latency
of 3-4 cycles would be tolerable to maintain the same
performance levels as the original monolithic chip.

6.2 New Chip-design Concerns
This work assumes the disintegration of a multi-core
chip into smaller die, with the implicit assumption that
all die are identical. This creates a new physical de-
sign and layout challenge as each die must implement a
symmetric interface; for example, a given die could be
placed on the left side of the interposer or the right, and
that same exact die must correctly interface with the
interposer regardless of its mounting position. Conven-
tional SoCs have no such requirements for their layouts.
This extends beyond functional interfaces, to issues such
as power delivery (the power supply must be reliable in-
dependent of chip placement) and thermal management
(temperature may vary depending on chip location).
Many of these challenges are more in the domain of
physical design and EDA/CAD tool optimization, but
we mention it here to paint a fair picture of some of the
other challenges for interposer-based disintegration.

6.3 Software-based Mitigation of Multi-Chip
Interposer Effects

Disintegration introduces additional challenges and
opportunities for optimization at the software level.
With a monolithic 64-core NoC, there is already

0

10

20

30

40

50

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0
.0

9

0
.1

0

0
.1

1

0
.1

2

0
.1

3

A
ve

ra
ge

 P
ac

ke
t

La
te

n
cy

Injection Rate

No Interposer NoC
Mesh
CMesh
FoldedTorus
FoldedTorus (X)
FoldedTorus (XY)
DoubleButterfly
DoubleButterfly (X)
ButterDonut
ButterDonut (X)

0

10

20

30

40

50

0
.0
1

0
.0
2

0
.0
3

0
.0
4

0
.0
5

0
.0
6

0
.0
7

0
.0
8

0
.0
9

0
.1
0

0
.1
1

0
.1
2

0
.1
3

A
ve

ra
ge

 P
ac

ke
t

La
te

n
cy

Injection Rate

(a) (b)

Figure 19: Load-latency curves for a monolithic 64-core

chip stacked on the interposer, with traffic separated into

(a) memory-only and (b) coherence-only traffic.

non-uniformity in latency between various source-
destination pairs as hop count increases, which can be
exacerbated in a disintegrated system. Careful schedul-
ing to place communicating threads on the same chips
could reduce chip-to-chip traffic and alleviate conges-
tion on the interposer. Similarly, careful data-allocation
to place frequently used data in the 3D stacks close to
the threads that use the data can minimize memory la-
tency and cut down on cross-interposer traffic. Coordi-
nating scheduling decisions to simultaneously optimize
for both coherence and memory traffic could provide
further benefits but would require support from the op-
erating system. While we believe there are many in-
teresting opportunities to involve the software layers to
help mitigate the impacts of a multi-chip NoC organi-
zation, we leave it for future research.

6.4 Non-disintegrated Interposer NoCs
Prior work from Enright Jerger et al. did not contem-
plate using the interposer for chip disintegration [13].
However, they evaluate several different interposer NoC
topologies for improving system interconnect perfor-
mance. Figure 19 replicates that type of study by evalu-
ating a monolithic 64-core chip stacked on an interposer,
but we consider several of the topologies introduced in
this paper. For the memory traffic in Figure 19(a),
the results show that our new approach of misaligned
topologies improves upon the prior topologies even for
a non-disintegrated system. Our best performing topol-
ogy, ButterDonut(X), provides a ∼9% improvement in
average packet latency over the best prior topology (the
aligned DB). Optimizing NoC designs for an interposer-
based monolithic SoC was not the goal of our work, but
the additional improvements are a welcome result.

7. RELATED WORK
In this section, we discuss related work in the ar-
eas of multi-die systems, hierarchical networks, 3D
NoC designs, and multi-NoC designs. Brick and Mor-
tar [21] integrates heterogeneous components on in-
dividual die connected through an interposer using a
highly-reconfigurable network substrate that can ac-
commodate different router architectures and topolo-
gies [20]. This flexibility leads to a high Acrit which
negatively impacts interposer yield. Our system, with
less heterogeneity, performs well with a regular topology
which reduces areas to improve yield and cost.

Through interposer-based disintegration, we have es-
sentially constructed a set of hierarchical topologies (lo-
cally with each die, and globally on the interposer).
Hierarchical NoCs have been explored for single-chip
systems. To improve latency for local references, bus-
based local networks have been employed [10, 31] with
different strategies for global connections. Buses and
rings [2] are effective for a small number of nodes; al-
though we use a mesh, alternative intra-die topologies
could further reduce complexity and improve latency.

Our 2.5D NoCs bear some similarity to 3D die stacked
NoCs [19, 22, 27, 35]. These NoCs are typically identical
across all layers and assume arbitrary or full connectiv-
ity within a layer. Our system does not allow arbitrary
connectivity within the core layer as it consists of mul-
tiple die. Considering the system constraints for the hy-
brid memory cube, Kim et al. route all traffic through a
memory-centric network leading to longer core-to-core
latencies [18]; similarly, we route some core-to-core traf-
fic through the interposer but develop optimized topolo-
gies to offset negative performance impacts.

When using multiple networks to improve perfor-
mance [4, 11, 13, 23, 32, 34, 33], traffic can be parti-
tioned across these networks uniformly or functionally.
We take a functional partitioning approach: memory
traffic uses the interposer, while core traffic stays on the
local core mesh; however, due to the presence of mul-
tiple separate die for our cores, our partitioning is not
strict (some core traffic must use the interposer network
to reach remote cores).

8. CONCLUSIONS
We explored the potential for leveraging interposers
that are already present for memory integration as a
substrate for reintegration of a disintegrated multi-core
chip. Our analysis suggests that disintegrating com-
plex chips may be a promising approach for improving
yield and reducing costs. However, the economic bene-
fits may only be realized if the system design can over-
come the performance effects of the disintegrated archi-
tecture. We introduce minimally-active interposers as
a potentially practical (cost-effective) way to build NoC
logic on the interposer. We examine the traffic impact
of chip-to-chip coherence traffic across the interposer,
which lead to the development of the new, interposer-
specific, concept of misaligned NoCs. Handling both co-
herence and memory traffic across the interposer lead to
the creation of the ButterDonut topology that combines
the strengths of the previously proposed Double But-
terfly with a classic Folded Torus approach. The com-
bination of these contributions show that the perfor-
mance impact of multi-chip interposer systems can be
addressed, which leads us to conclude that interposer-
based disintegration is a promising approach for build-
ing future SoCs.

Acknowledgments
The authors would like to thank the anonymous review-
ers for their suggestions on how to improve this work.
This work was supported in part by the Natural Sci-

ences and Engineering Research Council of Canada and
the Canadian Foundation for Innovation. AMD, the
AMD Arrow logo, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. Other product
names used in this publication are for identification pur-
poses only and may be trademarks of their respective
companies.

9. REFERENCES
[1] Advanced Micro Devices, Inc., “AMD Ushers in a New Era

of PC Gaming with RadeonTM R9 and R7 300 Series
Graphics Line-Up including World’s First Graphics Family
with Revolutionary HBM Technology,” June 16, 2015, press
Release from http://www.amd.com.

[2] R. Ausavarungnirun, C. Fallin, X. Yu, K. Change,
G. Nazario, R. Das, G. Loh, and O. Mutlu, “Design and
evaluation of hierarchical rings with deflection routing,” in
Proceedings of the International Symposium on Computer
Architecture and High Performance Computing, 2014.

[3] M. Badr and N. Enright Jerger, “SynFull: Synthetic traffic
models capturing a full range of cache coherence
behaviour,” in Intl. Symp. on Computer Architecture, June
2014.

[4] J. Balfour and W. J. Dally, “Design tradeoffs for tiled CMP
on-chip networks,” in Intl. Conf. on Supercomputing, 2006.

[5] C. Bienia, “Benchmarking Modern Processors,” Ph.D.
dissertation, Princeton University, 2011.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “gem5: A Multiple-ISA Full System
Simulator with Detailed Memory Model,” Computer
Architecture News, vol. 39, June 2011.

[7] B. Black, “Die Stacking is Happening,” in Intl. Symp. on
Microarchitecture, Davis, CA, December 2013.

[8] L. Chen and T. M. Pinkston, “Worm-bubble flow control,”
in 19th Intl. Symp. on High Performance Computer
Architecture, February 2013.

[9] W. Dally and B. Towles, Principles and Practices of
Interconnection Networks. Morgan Kaufmann, 2003.

[10] R. Das, S. Eachempati, A. K. Mishra, V. Narayanan, and
C. R. Das, “Design and evaluation of a hierarchical on-chip
interconnect for next-generation cmps,” in Intl. Symp. on
High Performance Computer Architecture, 2009.

[11] R. Das, S. Narayanasamy, S. K. Satpathy, and
R. Dreslinski, “Catnap: Energy proportional multiple
network-on-chip,” in Intl. Symp. on Computer Architecture,
2013.

[12] Y. Deng and W. Maly, “Interconnect Characteristics of
2.5-D System Integration Scheme,” in Intl. Symp. on
Physical Design, Sonoma County, CA, April 2001, pp.
171–175.

[13] N. Enright Jerger, A. Kannan, Z. Li, and G. H. Loh, “NoC
architectures for silicon interposer systems,” in 47th
Intl. Symp. on Microarchitecture, Cambridge, UK,
December 2014, pp. 458–470.

[14] M. Hackerott, “Die Per Wafer Calculator,” Informatic
Solutions, LLC, 2011.

[15] Institute of Microelectronics, “Process Design Kit (PDF)
for 2.5D Through Silicon Interposer (TSI) Design
Enablement & 2.5D TSI Cost Modeling,” August 2012.

[16] JEDEC, “High Bandwidth Memory (HBM) DRAM,”
http://www.jedec.org/standards-documents/docs/jesd235.

[17] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour,
B. Towles, J. Kim, and W. J. Dally, “A detailed and flexible
cycle-accurate network-on-chip simulator,” in
Intl. Symp. on Performance Analysis of Systems and
Software, 2013.

[18] G. Kim, J. Kim, J.-H. Ahn, and J. Kim, “Memory-centric
system interconnect design with hybrid memory cubes,” in
Intl. Conf. on Parallel Architectures and Compilation
Techniques, 2013.

[19] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie,
N. Vijaykrishnan, M. S. Yousif, and C. R. Das, “A Novel
Dimensionally-Decomposed Router for On-Chip
Communication in 3D Architectures,” in 34th
Intl. Symp. on Computer Architecture, San Diego, CA,
June 2007.

[20] M. M. Kim, J. D. Davis, M. Oskin, and T. Austin,
“Polymorphic on-chip networks,” in Intl. Symp. on
Computer Architecture, 2008.

[21] M. M. Kim, M. Mehrara, M. Oskin, and T. Austin,
“Architectural implications of brick and mortar silicon
manufacturing,” in Intl. Symp. on Computer Architecture,
2007.

[22] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan,
and M. Kandemir, “Design and Management of 3D Chip
Multiprocessors Using Network-in-Memory,” in 33rd
Intl. Symp. on Computer Architecture, Boston, MA, June
2006, pp. 130–141.

[23] P. Lotfi-Kamran, B. Grot, and B. Falsafi, “NOC-Out:
Microarchitecting a Scale-Out Processor,” in Intl. Symp. on
Microarchitecture, Vancouver, BC, December 2012, pp.
177–187.

[24] S. Ma, Z. Wang, Z. Liu, and N. Enright Jerger, “Leaving
one slot empty: Flit bubble flow control for torus
cache-coherent NoCs,” IEEE Transactions on Computers,
vol. 64, pp. 763–777, March 2015.

[25] N. Madan and R. Balasubramonian, “Leveraging 3D
Technology for Improved Reliability,” in 40th
Intl. Symp. on Microarchitecture, Chicago, IL, December
2007, pp. 223–235.

[26] M. O’Connor, “Highlights of the High-Bandwidth Memory
(HBM) Standard,” in Memory Forum Workshop, June
2014.

[27] D. Park, S. Eachempati, R. Das, A. K. Mishra, Y. Xie,

N. Vijaykrishnan, and C. R. Das, “MIRA: A Multi-layered
On-chip Interconnect Router Architecture,” in
Intl. Symp. on Computer Architecture, Beijing, China,
June 2008, pp. 251–261.

[28] V. Puente, C. Izu, R. Beivide, J. A. Gregorio, F. Vallejo,
and J. M. Prellezo, “The adaptive bubble router,” Journal
of Parallel and Distributed Computing, vol. 64, no. 9, pp.
1180–1208, 2001.

[29] C. H. Stapper, “The Effects of Wafer to Wafer Defect
Density Variations on Integrated Circuit Defect and Fault
Distributions,” IBM Journal of Research and Development,
vol. 29, pp. 87–97, January 1985.

[30] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller,
A. Agarwal, L.-S. Peh, and V. Stojanovic, “DSENT - a tool
connecting emerging photonics with electronics for
opto-electronic networks-on-chip modeling,” in NOCS, May
2012.

[31] A. N. Udipi, N. Muralimanohar, and R. Balasubramonian,
“Towards scalable, energy-efficient, bus-based on-chip
networks,” in Intl. Symp. on High Performance Computer
Architecture, 2010.

[32] S. Volos, C. Seiculescu, B. Grot, N. K. Pour, B. Falsafi, and
G. D. Micheli, “CCNoC: Specializing On-Chip Interconnects
for Energy Efficiency in Cache Coherent Servers,” in 6th
NOCS, Lyngby, Denmark, May 2012, pp. 67–74.

[33] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C.-C. Miao, J. Brown, and
A. Agarwal, “On-chip interconnection architecture of the
Tile Processor,” Micro, IEEE, vol. 27, no. 5, pp. 15 –31,
Sept.-Oct. 2007.

[34] Y. J. Yoon, N. Concer, M. Petracca, and L. Carloni,
“Virtual channels vs. multiple physical networks: a
comparative analysis,” in Design Automation Conference,
2010.

[35] A. Zia, S. Kannan, G. Rose, and H. J. Chao,
“Highly-scalable 3D Clos NoC for Many-core CMPs,” in
NEWCAS Conference, Montreal, Canada, June 2010, pp.

229–232.

	Introduction
	Background and Motivation
	Disintegrating to Manage Silicon Costs
	Options for Integrating Multiple Chips
	Are (Active) Interposers Practical for NoCs?
	The Research Problem

	Architecting the NoC for Multi-Chip Interposers
	Baseline Multi-chip NoC Topologies
	Misaligned Topologies
	The ButterDonut Topology
	Deadlock Freedom

	Methodology
	Yield and Cost Models
	Performance Model and Workloads

	Experimental Evaluation
	Performance
	Load vs. Latency Analysis
	Power and Area Results
	Combining Cost and Performance

	Other Issues and Opportunities
	Clocking Across Chips
	New Chip-design Concerns
	Software-based Mitigation of Multi-Chip Interposer Effects
	Non-disintegrated Interposer NoCs

	Related Work
	Conclusions
	References

