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Abstract—GPUs are used to speed up many scientific compu-
tations; however, to use several networked GPUs concurrently,
the programmer must explicitly partition work and transmit
data between devices. We propose DistCL, a novel framework
that distributes the execution of OpenCL kernels across a GPU
cluster. DistCL makes multiple distributed compute devices
appear to be a single compute device. DistCL abstracts and
manages many of the challenges associated with distributing
a kernel across multiple devices including: (1) partitioning
work into smaller parts, (2) scheduling these parts across the
network, (3) partitioning memory so that each part of memory
is written to by at most one device, and (4) tracking and
transferring these parts of memory. Converting an OpenCL
application to DistCL is straightforward and requires little
programmer effort. This makes it a powerful and valuable
tool for exploring the distributed execution of OpenCL kernels.
We compare DistCL to SnuCL, which also facilitates the
distribution of OpenCL kernels. We also give some insights:
distributed tasks favor more compute bound problems and
favour large contiguous memory accesses. DistCL achieves a
maximum speedup of 29.1 and average speedups of 7.3 when
distributing kernels among 32 peers over an Infiniband cluster.

I. INTRODUCTION

Recently, there has been significant interest in using
GPUs for general purpose and high performance computing.
Significant speedups have been demonstrated when porting
applications to a GPU [1] [2]; however, additional speedups
are still possible beyond the computational capabilities af-
forded by a single GPU. Therefore, it is no surprise that
modern computing clusters are starting to include multiple
GPUs [3]. However, distributing a data-parallel task across
a cluster still involves the following steps:

1) partitioning work into smaller parts,
2) scheduling these parts across the network,
3) partitioning memory so that each part of memory is

written to by at most one device, and
4) tracking and transferring these parts of memory.

This paper introduces DistCL, a framework for the distri-
bution of OpenCL kernels across a cluster. To simplify this
task, DistCL takes advantage of three insights:

1) OpenCL tasks (called kernels) contain threads (called
work-items) that are organized into small groups (called
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work-groups). Work-items from different work-groups can-
not communicate during a kernel invocation. Therefore,
work-groups only require that the memory they read be up-
to-date as of the beginning of the kernel invocation. So,
DistCL must know what memory a work-group reads, to
ensure that the memory is up-to-date on the device that runs
the work-group. DistCL must also know what memory each
work-group writes, so that future reads can be satisfied. But
no intra-kernel synchronization is required.

2) Most OpenCL kernels make only data-independent
memory accesses; the addresses they access can be predicted
using only the immediate values they are passed and the
geometry they are invoked with. This means that their ac-
cesses can be efficiently determined before they run. DistCL
requires that kernel writes be data-independent.

3) Kernel memory accesses are often contiguous. This is
because contiguous accesses fully harness the wide memory
buses of GPUs [2]. DistCL does not require contiguous
accesses for correctness, but they improve distributed per-
formance because contiguous accesses made in the same
work-group can be treated like a single, large access when
tracking writes and transferring data between devices.

In OpenCL (and DistCL) memory is divided into large
device-resident arrays called buffers. DistCL introduces the
concept of meta-functions: simple functions that describe
the memory access patterns of an OpenCL kernel. Meta-
functions are programmer-written kernel-specific functions
that relate a range of work-groups to the parts of a buffer
that those work-groups will access. When a meta-function
is passed a range of work-groups and a buffer to consider,
it divides the buffer into intervals, marking each interval
either as accessed or not accessed by the work-groups.
DistCL takes advantage of kernels with sequential access
patterns, which have fewer (larger) intervals, because it can
satisfy their memory accesses with fewer I/O operations.
By dividing up buffers, meta-functions allow DistCL to
distribute an unmodified kernel across a cluster. To our
knowledge, DistCL is the first framework to do so.

In addition to describing DistCL, this paper evaluates the
effectiveness of kernel distribution across a cluster based on
the kernels’ memory access patterns and their compute-to-
transfer ratio. It also examines how the performance of var-
ious OpenCL and network operations affect the distribution
of kernels.



This paper makes the following primary contributions:
• The introduction of DistCL and its concept of meta-

functions, which allow for the distribution of unmodi-
fied kernels.

• An evaluation of how the properties of different kernels
affect their performance when distributed.

This paper first describes the OpenCL execution model
and why it is a good candidate for distributed execution
(Section II). Then, it describes DistCL using vector addition
as an example, in particular looking at how DistCL handles
each step involved with distribution (Section III). Focus
then shifts to analysis; the benchmarks are introduced and
grouped into three categories: linear runtime benchmarks,
compute intensive benchmarks, and benchmarks that involve
inter-node communication (Section IV). Results for these
benchmarks are presented (Section V). A comparison with
SnuCL [4] is also provided. Finally, conclusions are drawn
about how the properties of an OpenCL kernel and cluster
hardware impact distributed performance (Section VII).

II. OPENCL

OpenCL is a popular framework for programming multi-
core processors such as CPUs, GPUs, and other proces-
sors in heterogeneous computing systems. Conceptually, an
OpenCL program consists of three main components: a
host - a regular processing environment which runs a host
program; an OpenCL platform which exposes a standard-
ized interface to the host program; and a set of compute
devices, the accelerators attached to the host, which can be
programmed using OpenCL. The host program can create
an OpenCL context where compute devices within the same
context can share OpenCL objects such as data buffers,
programs and kernels. Using this OpenCL context, the host
program orchestrates the execution of OpenCL kernels on
compute devices. When an OpenCL kernel executes on a
device, it does so using a special programming model that
was developed with massive parallelism in mind.

A. Kernel Programming Model

The threads of an OpenCL kernel invocation execute
in a theoretical grid called an NDRange. The NDRange
can be one-dimensional (linear), two-dimensional (rectan-
gular), or three-dimensional (rectangular prism-shaped). An
n-dimensional NDRange is specified by n positive integers,
each being the NDRange’s size in one dimension. The
size and dimensionality of the NDRange is decided by
the host program. At the finest granularity, this NDRange
contains unit-sized work-items. These work-items are the
threads of an OpenCL kernel invocation and each run their
own instance of the kernel function. Each work-item has a
unique n-dimensional global ID which are its coordinates
in the NDRange. Similarly, the size of the NDRange is the
invocation’s global size.

Figure 1. A 2D NDRange with a total of 4 × 4 = 16 work-groups and
16 × 16 = 256 work-items.

The NDRange is also divided up into equally-sized n-
dimensional regions called work-groups. Each work-item be-
longs to exactly one work-group, and has an n-dimensional
local ID based on its position in the work-group. Simi-
larly, the size of the work-groups is the invocation’s local
size. OpenCL devices schedule work at the work-group
granularity. Therefore, the work-items contained within a
work-group are all guaranteed to be executing at the same
time and on the same core (compute unit) of the target
compute device. However, there are no guarantees on the
scheduling order of work-groups. Work-items within the
same work-group are guaranteed to see each other’s memory
accesses, but work-items in different work-groups are not.
Fig. 1 shows an example two-dimensional NDRange. The
NDRange consists of 16 work-groups where each work-
group contains 16 work-items for a total of 256 work-items.

III. DISTCL

DistCL executes on a cluster of networked computers.
OpenCL host programs use DistCL by creating one context
with one command queue for one device. This device
represents the aggregate of all the devices in the cluster.
When a program is run with DistCL, identical processes
are launched on every node. When the OpenCL context
is created, one of those nodes becomes the master. The
master is the only node that is allowed to continue executing
the host program. All other nodes, called peers, enter an
event loop that services requests from the master. Nodes
communicate in two ways: messages to and from the master,
and raw data transfers that can happen between any pair of
nodes.

To run a kernel, DistCL divides its NDRange into smaller
grids called subranges. Kernel execution gets distributed
because these subranges run on different peers. DistCL
must know what memory a subrange will access in order
to distribute the kernel correctly. This knowledge is pro-
vided to DistCL with meta-functions. Meta-functions are
programmer-written, kernel-specific callbacks that DistCL
uses to determine what memory a subrange will access.
DistCL uses meta-functions to divide buffers into arbitrarily-
sized intervals. Each interval of a buffer is either accessed or



1 k e r n e l void v e c t o r ( g l o b a l i n t ∗a , g l o b a l i n t ∗b ,
g l o b a l i n t ∗o u t )

2 {
3 i n t i = g e t g l o b a l i d ( 0 ) ;
4 o u t [ i ] = a [ i ] + b [ i ] ;
5 }

Listing 1. OpenCL kernel for vector addition.
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0 256k 512k 768k 1M

0 1 2 3

Figure 2. Vector’s 1-dimensional NDRange is partitioned into 4 subranges.

not. DistCL stores the intervals calculated by meta-functions
in objects called access-sets. Once all the access-sets have
been calculated, DistCL can initiate the necessary transfers
needed to allow the peers to run the subranges they have
been assigned. Recall the important distinction between
subranges which contain threads and intervals which contain
data. The remainder of this section describes the execution
process in more detail, illustrating each step with a vector
addition example, whose kernel source code is given in
Listing 1.

A. Partitioning

Partitioning divides the NDRange of a kernel execution
into smaller grids called subranges. DistCL never fragments
work-groups, as that would violate OpenCL’s execution
model and could lead to incorrect kernel execution. For
linear (1D) NDRanges, if the number of work-groups is a
multiple of the number of peers, each subrange will be equal
in size. Otherwise, some subranges will be one work-group
larger than others. DistCL partitions a multidimensional
NDRange along its highest dimension first, in the same way
it would partition a linear NDRange. If the subrange count
is less than the peer count, DistCL will continue to partition
lower dimensions.

Multidimensional arrays are often organized in row-major
order, so highest-dimension-first partitioning frequently re-
sults in subranges accessing contiguous regions of memory.
Transferring fragmented regions of memory requires multi-
ple I/O operations to avoid transferring unnecessary regions,
whereas large contiguous regions can be sent all at once.

Our vector addition example has a one-dimensional
NDRange. Assume it runs with 1M = 220 work-items on
a cluster with 4 peers. Assuming 1 subrange per peer, the
NDRange will be partitioned into 4 subranges, each with a
size of 256k work-items, as shown in Figure 2.

B. Dependencies

The host program allocates OpenCL buffers and can read
from or write to them through OpenCL function calls.
Kernels are passed these buffers when they are invoked. For
example, the three parameters, a, b, and out in Listing 1
are buffers.

DistCL must know what parts of each buffer a subrange
will access in order to create the illusion of many compute
devices with separate memories sharing a single memory.
The set of addresses in a buffer that a subrange reads
and writes are called its read-set and write-set, respec-
tively. DistCL represents these access-sets with concrete
data-structures and calculates them using meta-functions.
Access-sets are calculated every kernel invocation, for every
subrange-buffer combination, because the access patterns of
a subrange depend on the invocation’s parameters, partition-
ing, and NDRange. In our vector addition example with 4
subranges and 3 buffers, 24 access-sets will be calculated:
12 read-sets and 12 write sets.

An access-set is a list of intervals within a buffer. DistCL
represents addresses in buffers as offsets from the beginning
of the buffer; thus an interval is represented with a low and
high offset into the buffer. These intervals are half open; low
offsets are part of the intervals, but high offsets are not.

For instance, subrange 1 in Figure 2 contains global IDs
from the interval [256k, 512k). As seen in Listing 1, each
work-item produces a 4-byte (sizeof (int)) integer, so
subrange 1 produces the data for interval [1 MB, 2 MB) of
out. Subrange 1 will also read the same 1 MB region from
buffers a and b to produce this data. The intervals [0 MB, 1
MB) and [2 MB, 4 MB) of a, b and out are not accessed
by subrange 1.

1) Calculating Dependencies: To determine the access-
sets of a subrange, DistCL uses programmer-written, kernel-
specific meta-functions. Each kernel has a read meta-
function to calculate read-sets and a write meta-function to
calculate write-sets.

DistCL passes meta-functions information regarding the
kernel invocation’s geometry. This includes the invoca-
tion’s global size (global in Listing 2), the current sub-
range’s size (subrange), and the local size (local).
DistCL also passes the immediate parameters of the kernel
(params) to the meta-function. The subrange being con-
sidered is indicated by its starting offset in the NDRange
(subrange_offset) and the buffer being considered
is indicated by its zero-indexed position in the kernel’s
parameter list (param_num).

DistCL builds access-sets one interval at a time, progress-
ing through the intervals in order, from the beginning of the
buffer to the end. Each call to the meta-function generates a
new interval. If and only if the meta-function indicates that
this interval is accessed, DistCL includes it in the access-set.

To call a meta-function, DistCL passes the low offset of
the current interval through start and the meta-function
sets next_start to its end. The meta-function’s return
value specifies whether the interval is accessed. Initially
setting start to zero, DistCL advances through the buffer
by setting the start of subsequent calls to the previ-
ous value of next_start. When the meta-function sets
next_start to the size of the buffer, the buffer has been



1 i n t i s b u f f e r r a n g e r e a d v e c t o r (
2 c o n s t vo id ∗∗params , c o n s t s i z e t ∗g l o b a l ,
3 c o n s t s i z e t ∗ subrange , c o n s t s i z e t ∗ l o c a l ,
4 c o n s t s i z e t ∗ s u b r a n g e o f f s e t , unsigned i n t param num ,
5 s i z e t s t a r t , s i z e t ∗ n e x t s t a r t )
6 {
7 i n t r e t = 0 ;
8 ∗ n e x t s t a r t = s i z e o f ( i n t ) ∗ g l o b a l [ 0 ] ;
9 i f ( param num != 2) {

10 s t a r t /= s i z e o f ( i n t ) ;
11 r e t = r e q u i r e r e g i o n ( 1 , g l o b a l , s u b r a n g e o f f s e t ,

subrange , s t a r t , n e x t s t a r t ) ;
12 ∗ n e x t s t a r t ∗= s i z e o f ( i n t ) ;
13 }
14 re turn r e t ;
15 }

Listing 2. Read meta-function.

1 i n t r e q u i r e r e g i o n ( i n t dim , c o n s t s i z e t ∗ t o t a l s i z e ,
c o n s t s i z e t ∗ r e q u i r e d s t a r t , c o n s t s i z e t
∗ r e q u i r e d s i z e , s i z e t s t a r t , s i z e t ∗ n e x t s t a r t ) ;

Listing 3. require region helper function.

fully explored and the access-set is complete.
2) Rectangular Regions: Many OpenCL kernels structure

multidimensional arrays into linear buffers using row-major
order. When these kernels run, their subranges typically
access one or more linear, rectangular, or prism-shaped
areas of the array. Though these areas are contiguous in
multidimensional space, they are typically made up of many
disjoint intervals in the linear buffer. Recognizing this,
DistCL has a helper function, called require_region,
that meta-functions can use to identify which linear intervals
of a buffer constitute any such area.
require_region, whose prototype is shown in List-

ing 3, operates over a hypothetical dim-dimensional grid.
Typically, each element of this grid represents an el-
ement in a DistCL buffer. The size of this grid in
each dimension is specified by the dim-element ar-
ray total_size. require_region considers a rect-
angular region of that grid whose size and offset
into the grid are specified by the dim-element arrays
required_size and required_start, respectively.
Given this, require_region calculates the linear inter-
vals that correspond to that region if the elements of this
dim-dimensional grid were arranged linearly, in row-major-
order. Because there may be many such intervals, the return
value, start parameter and next_start parameter of
require_region work the same way as in a meta-
function, allowing the caller to move linearly through the
intervals, one at a time. If a kernel does not access memory
in rectangular regions, it does not have to use the helper
function.

Even though vector has a one-dimensional NDRange,
require_region is still used for its read meta-function
in Listing 2. This is because require_region not only
identifies the interval that will be used, but also iden-
tifies the intervals on either side that will not be used.
require_region is passed global as the hypothetical
grid’s size, making each grid element correspond to an inte-

m( )

0

m( )

m( )

Figure 3. The read meta-function is called for buffer a in subrange 1 of
vector.

ger, the datatype changed by a single work-item. Therefore,
lines 10 and 12 of Listing 2 translate between elements and
bytes, which differ by a factor of sizeof (int).

Figure 3 shows what actually happens when the meta-
function is called on buffer a for subrange 1. In Figure 3a,
the first time the meta-function is called, DistCL passes in 0
as the start of the interval and the meta-function calculates
that the current interval is not in the read set, and that the
next interval starts at an offset of 1MB. Next, in Figure 3b,
DistCL passes in 1MB as the start of the interval. The meta-
function calculates that this interval is in the read-set and that
the next interval starts at 2MB. Finally, in Figure 3c, DistCL
passes in 2MB as the start of the interval. The meta-function
calculates that this interval is not in the read-set and that it
extends to the end of the buffer which has a size of 4 MB.

C. Scheduling Work

The scheduler is responsible for deciding when to run
subranges and on which peer to run them. The scheduler runs
on the master and broadcasts messages to the peers when it
assigns work. DistCL uses a simple scheme for determining
where to run subranges. If the number of subranges equals
the number of peers, each peer gets one subrange; however,
if the number of subranges is fewer, some peers are never
assigned work.

D. Transferring Buffers

When DistCL executes a kernel, the data produced by
the kernel is distributed across the peers in the cluster. The
way this data is distributed depends on how the kernel
was partitioned into subranges, how these subranges were
scheduled, and the write-sets of these subranges. DistCL
must keep track of how the data in a buffer is distributed, so
that it knows when it needs to transfer data between nodes
to satisfy subsequent reads - which may not occur on the
same peer that originally produced the data.

DistCL represents the distribution of a buffer in a similar
way to how it represents dependency information. The buffer
is again divided into a set of intervals, but this time each
interval is associated with the ID of the node that has last
written to it. This node is referred to as the owner of that
interval.

1) Buffers: Every time the host program creates a buffer,
the master allocates a region of host (not device) memory,
equal in size to the buffer, which DistCL uses to cache
writes that the host program makes to the buffer. Whether
the host program initializes the buffer or not, the buffer’s



dependency information specifies the master as the sole
owner of the buffer. Additionally, each peer allocates, but
does not initialize an OpenCL buffer of the specified size.
Generally, most peers will never initialize the entire contents
of their buffers because each subrange only accesses a
limited portion of each buffer.

2) Satisfying Dependencies: When a subrange is assigned
to a peer, before the subrange can execute, DistCL must
ensure that the peer has an up-to-date copy of all the
memory in the subrange’s read-set. For every buffer, DistCL
compares the ownership information to the subrange’s read-
set. If data in the read-set is owned by another node, DistCL
initiates a transfer between that node and the assigned node.
Once all the transfers have completed, the assigned peer can
execute the subrange. When the kernel completes, DistCL
also updates the ownership information to reflect the fact that
the assigned peer now has the up-to-date copy of the data
in the subrange’s write-set. DistCL also implements host-
enqueued buffer reads and writes using this mechanism.

3) Transfer Mechanisms: Peer-to-peer data transfers in-
volve both intra-peer and inter-peer operations. For memory
reads, data must first be transferred from the GPU into a
host buffer. Then, a network operation can transfer that host
buffer. For writes, the host buffer is copied back to the
GPU. DistCL uses an OpenCL mechanism called mapping
to transfer between the host and GPU.

IV. EXPERIMENTAL SETUP

Eleven applications, from the Rodinia benchmark suite
v2.3 [5] [6], AMD APPSDK [7], and GNU libgcrypt [8],
were used to evaluate our framework. Each benchmark was
run three times, and the median time was taken. This time
starts when the host initializes the first buffer and ends when
it reads back the last buffer containing the results, thereby
including all buffer transfers and computations required to
make it seem as if the cluster were one GPU with a single
memory. The time for each benchmark is normalized against
a standard OpenCL implementation using the same kernel
running on a single GPU, including all transfers between
the host and device. We group the benchmarks into three
categories:

1) Linear compute and memory characteristics: nearest
neighbor, hash, Mandelbrot;

2) Compute-intensive: binomial option, Monte Carlo;
3) Inter-node communication: n-body, bitonic sort, back

propagation, HotSpot, k-means, LU decomposition.
These benchmarks were chosen to represent a wide range

of data-parallel applications. They will provide insight into
what type of workloads benefit from distributed execution.
The three categories of problems give a spread of asymp-
totic complexities. This allows the effect of distribution,
which primarily affects memory transfers, to be studied
with tasks of varying compute-to-transfer ratios. The im-
portant characteristics of the benchmarks are summarized

in Table I, and each is described below. We excluded
Rodinia benchmarks that required image support, contained
data-dependent writes, or contained too few work-groups.
From the remaining benchmarks, five were chosen. For
the Rodinia benchmarks, many of the problem sizes are
quite small, but they were all run with the largest possible
problem size, given the input data distributed with the suite.
The worst relative standard deviation in runtime for any
benchmark is 11%, with the Rodinia benchmarks’ runtime
varying the most due to their smaller problem sizes. For the
non Rodinia benchmarks, it was usually under 1%.

A. Linear Compute and Memory

All linear benchmarks consist of n work-items and a
single kernel invocation. For these benchmarks the amount
of data transfered scales linearly with the problem size.
The compute-to-transfer ratio remains constant regardless of
problem size.
Nearest neighbor. This benchmark determines the nearest
locations to a specified point from a list of available lo-
cations. Each work-item calculates the Euclidean distance
between a single location and the specified point. The input
buffer consists of n coordinates and the output is a n-
element buffer of distances. Since 12 bytes are transferred
per distance calculation, this benchmark has a very low
compute-to-transfer ratio and is therefore poorly suited to
distribution.
Hash. The hash benchmark attempts to find the hash
collision of a sha-256 hash, similar to Bitcoin [9] miners.
Each kernel hashes its global ID and compares it to the
provided hash. Hash is well-suited to distribution because
the only data transmitted is the input hash and a single byte
from each work-item that indicates whether a collision was
found.
Mandelbrot. This benchmark uses an iterative function to
determine whether or not a point is a member of the Mandel-
brot set. Each work-item iterates over a single point which it
determines using its global ID. This benchmark is well suited
to distribution because it has similar characteristics to the
hash benchmark. There are no input buffers and only an n-
element buffer that is written back after the kernel execution,
giving it a high compute-to-transfer ratio.

B. Compute-Intensive

Binomial option. Binomial Option is used to value Amer-
ican options and is common in the financial industry. It
involves creating a recombinant binomial tree that is n levels
deep, where n is the number of iterations. This creates a tree
with n+1 leaf nodes and one work-item calculates each leaf.
The n+1 work-items take the same input, and only produce
one result. Therefore, as the number of iterations is increased
the amount of computation grows quadratically, as the tree
gets both taller and wider, while the amount of data that
needs to be transferred remains constant. This benchmark



Table I
BENCHMARK DESCRIPTION

Benchmark Description Source Inputs Complexity Work-Items Kernels Problem Size
per Kernel (bytes)

Nearest Nearest neighbor Rodinia 42764 locations(n) O(n) n 1 12n
neighbor search

24M points(n)
Mandelbrot Mandelbrot set AMD x: 0 to 0.5, y: -0.25 to 0.25 O(kn) n 1 4n

calculation max iterations(k) 1000
Hash sha-256 cracking Libgcrypt 24M hashes(n) O(n) n 1 32 + n

Bitonic Parallel sort AMD 32M elem.(n) O(n lg2 n) n
2 lg2 n 4n

Binomial Binomial American AMD 786432 samp.(k) O(kn2) k(n+ 1) 1 32k
option pricing 767 iterations(n)

Monte Monte Carlo Asian AMD 4k sums(n) O(knm2) m2

8n k 2m2(2n+ 1)
Carlo option pricing 1536 samp.(m), 10 steps(k)

n-body n-body simulation AMD 768k bodies(n), 1,8 iter.(k) O(kn2) n k 16n
k-means k-means clustering Rodinia 819200 points(n) kern. 1 O(nk) n 1 8nk

34 features(k), 5 clusters(c) kern. 2 O(nck) variable 4(2nk + c)
Back neural network Rodinia 4M input nodes(n) kern. 1 O(nk) nk 2 4(kn+ 3n+ 2k + 4)

propagation training 16 hidden nodes(k) kern. 2 O(nk) 4(kn+ 2n+ k + 3)

HotSpot Heat transfer Rodinia chip dim.(n) 1k, time-steps: O(n2) 256d n
16−2x e

2 d kx e 4
(
d n
16−2x e(

32
8−x )

)2
)

per-kernel(x) 5, total(k) 60 +4n2

matrix dim.(n) 2k kern. 1 O(n) 16 k + 1 4n2

LUD LU-decomposition Rodinia n
16 − 1 iterations (k) kern. 2 O(n2) 2n− 32(i+ 1) k 4n2

current iter. denoted(i) kern. 3 O(n3) (n− 16(i+ 1))2 k 4n2

is very well suited to distribution. Since all samples can
be valued independently, only a single kernel invocation is
required.
Monte Carlo. This benchmark uses the Monte Carlo
method to value Asian options. Asian options are far more
challenging to value than American options, so a stochastic
approach is employed. This benchmark requires mn2

8 work-
items and m kernel invocations, where n is the number of
options, and m the number of steps used.

C. Inter-node communication

These benchmarks all have inter-node communication
between kernel invocations, as opposed to the other bench-
marks where nodes only need to communicate with the
master. The inter-node communication allows the full path
diversity of the network to be used when data is being
updated between kernels. These benchmarks, like the others,
require a high compute-to-transfer ratios to see a benefit
from distribution.
n-body. This benchmark models the movement of bodies
as they are influenced by each other’s gravity. For n bodies
and k iterations, this benchmark runs k kernels with n work-
items each. Each work-item is responsible for updating the
position and velocity of a single body, using the position
and mass of all other bodies in the problem. Data transfers
occur initially (when each peer receives the initial position,
mass, and velocity for the bodies it is responsible for),
between kernel invocations (when position information must
be updated globally), and at the end (when the final positions
are sent back to the host). As the number of bodies increases,
the amount of computation required increases quadratically,
while the amount of data to transfer only increases linearly,
meaning that larger problems are better suited to distribution.
Bitonic sort. Bitonic sort is a type of merge sort well suited
to parallelization. For an n-element array, it requires n

2 lg2 n
comparisons, each of which are performed by a work-item,

through lg2 n kernel invocations. Each kernel invocation is
a global synchronization point and could potentially involve
data transfers. Bitonic sort divides its input into blocks which
it operates on independently. While there are more blocks
than peers, no inter-node communication takes place; only
when the block are split between peers does communication
begin.
k-means. This benchmark clusters n points into c clusters
using k features. This benchmark contains two kernels: The
first, which is only executed once, simply transposes the
features matrix. The second kernel is responsible for the
clustering. This kernel is executed until the result converges,
which varies depending on the input data. For the largest
input set available it took 20 kernel invocations before
convergence. Both kernels consist of n work-items. For the
first kernel, each work-item reads a row of the input array
and writes it to a column of the output array. This results
in a non-ideal memory access pattern for the writes. The
second kernel reads columns of the features matrix, and the
entirety of the cluster matrix which contains the centroid
coordinates of each of the existing clusters. The writes of
this kernel are contiguous because each work-item uses its
one-dimensional global ID as an index into the array where
it writes its answer.
Back propagation. This benchmark consists of the training
of a two-layer neural network and contains two kernels. For a
network with n input nodes and k hidden nodes, each kernel
requires nk work-items. The work is divided such that each
work-item is responsible for the connection between an input
node and one of the hidden nodes. As the number of input
nodes grows, the amount of computation required increases
linearly since the number of hidden nodes is fixed for this
benchmark.
HotSpot. This benchmark models processor temperature
based on a simulated power dissipation profile. The chip
is divided into a grid and there is a work-item responsible



for calculating the temperature in each cell of the grid. The
temperature depends on power produced by the chip at that
cell, as well as the temperature of the four neighboring cells.
To avoid having to transfer data between work-groups at
each time-step this benchmark uses a “pyramid” approach.
Since we need the temperature of all neighboring cells
when updating the temperature, we will always read the
temperature for a larger region than we will write. If we read
an extra x cells in each direction we can find the temperature
after x time-steps without any memory transfers. For each
time-step, we calculate the updated temperature for a region
that is smaller by one in each direction and that region then
becomes the input for the next time-step. This creates a
“pyramid” of concentric input regions of height x. While this
results in less memory transfers it does mean that some work
will be duplicated as there will be multiple work-groups
calculating the temperature of overlapping regions during
intermediate time-steps. The total amount of computation
performed increases with x, while the amount of memory
transferred decreases.
LU decomposition. This benchmarks factors a square
matrix into unit lower triangular, unit upper triangular and
diagonal matrices. LU decomposition consists of three ker-
nels that calculate the diagonal, perimeter, and remaining
values, respectively. These kernels operate over a square
region of the matrix, called the area of interest. The problem
is solved in 16× 16 element blocks so for a matrix of size
n×n, LU decomposition requires n

16 −1 iterations. At each
iteration the region of interest shrinks, losing 16 rows from
the top and 16 columns from the left. Each iteration, the
diagonal kernel updates a single block; the perimeter kernel
updates the top 16 rows and left-most 16 columns of the area
of interest; and the internal kernel updates the entire area of
interest. After all the iterations, the diagonal kernel is run
again to cover the bottom right block. While the perimeter
and internal kernels can scale well, performance is limited
by the diagonal kernel which consists of a single work-group
and cannot be parallelized. This benchmark is not well suited
to DistCL because of its inter-node communication, complex
access pattern, and lack of parallelism.

D. Cluster

Our framework is evaluated using a cluster with an Infini-
band interconnect [10]. The configurations and theoretical
performance are summarized in Table II. The cluster consists
of 49 nodes. Though there are two GPUs per node, we use
only one to focus on distribution between machines. We
present results for 1, 2, 4, 8, 16 and 32 nodes.

We use three microbenchmarks to test the cluster and
to aid in understanding the overall performance of our
framework. The results of the microbenchmarks are reported
in Table III. We first test the performance of memcpy(), by
copying a 64 MB array between two points in host memory.
We initialize both arrays to insure that all the memory was

Table II
CLUSTER SPECIFICATIONS

Number of Nodes 49
GPUs Per Node 2 (1 used)

GPU NVIDIA Tesla M2090
GPU memory 6 GB

Shader / Memory clock 1301 / 1848 MHz
Compute units 16

Processing elements 512
Network 4× QDR Infiniband (4× 10 Gbps)

CPU Intel E5-2620
CPU clock 2.0 GHz

System memory 32 GB

Table III
MEASURED CLUSTER PERFORMANCE

Transfer type Test 64MB Latency 8B Latency
ms (Gbps) ms (Mbps)

In-memory Single thread memcpy() 26.5 (20.3) 0.0030 (21)
Inter-device OpenCL map for reading 36.1 (14.9) 0.62 (0.10)
Inter-node Infiniband round trip time 102 (10.5) 0.086 (3.0)

paged-in before running the timed portion of the code. The
measured memory bandwidth was 20.3 Gbps.

To test OpenCL map performance, a program was written
that allocates a buffer, executes a GPU kernel that increments
each element of that buffer, and then reads that buffer back
with a map. The program executes a kernel to ensure that
the GPU is the only device with an up-to-date version of
the buffer. Every time the host program maps a portion of
the buffer back, it reads that portion, to force it to be paged
into host memory. The program reports the total time it took
to map and read the updated buffer. To test the throughput
of the map operation, the mapping program reads a 64MB
buffer with a single map operation. Only the portion of the
program after the kernel execution completes gets timed.
We measured 14.9 Gbps of bandwidth between the host and
the GPU. The performance of an 8-byte map was measured
to determine its overhead. An 8-byte map takes 620 µs,
equivalent to 100 kbps. This shows that small fragmented
maps lower DistCL’s performance.

The third program tests network performance. It sends a
64MB message from one node to another and back. The
round trip time for Infiniband took 102 ms and each one-
way trip took only 51 ms on average, yielding a transfer
rate of 10.5 Gbps. Since Infiniband uses 8b/10b encoding
this corresponds to a signalling rate of 13.1 Gbps. This still
fall short of the maximum signalling rate of 40 Gbps. Even
using a high-performance Infiniband, network transfers are
slower than maps and memory copies. For this reason it
is important to keep network communication to a minimum
to achieve good performance when distributing work. Infini-
band is designed to be low-latency, and as such its invocation
overhead is lower than that of maps.

E. SnuCL

We compare the performance of DistCL with SnuCL1 [4],
another framework that allows OpenCL code to be dis-

1Version 1.2 beta, downloaded November 15th 2012.



tributed across a cluster. SnuCL can create the illusion that
all OpenCL devices on the cluster belong to a single local
context. To distribute a task with SnuCL, the programmer
must partition the work into many kernels, ensuring that
no two kernels write to the same buffer. SnuCL trans-
fers memory between nodes automatically, but requires the
programmer to divide their dataset into many buffers to
ensure that each buffer is written to by only one node. For
efficiency, the programmer should also divide up the buffers
that are being read, to avoid unnecessary data transfers.
The more regular a kernel’s access pattern, the larger each
buffer can be, and the fewer buffers there will be in total.
With SnuCL, the programmer uses OpenCL buffer copies
to transfer data. SnuCL will determine if a buffer copy is
internal to a node, in which case it uses a normal OpenCL
copy, or if it is between nodes, in which case it uses MPI.
If subsequent kernel invocations require a different memory
division, this task again falls to the programmer.

The buffers in SnuCL are analogous to the intervals
generated by meta-functions in DistCL. However, in SnuCL,
buffers must be explicitly created, resized and redistributed
when access patterns change, whereas DistCL manages
changes to intervals automatically. SnuCL does not abstract
the fact that there are multiple devices, it only automates
transfers and keeps track of memory placement. When using
SnuCL, the programmer is presented with a single OpenCL
platform that contains as many compute devices as are
available on the entire cluster. The programmer is then re-
sponsible for dividing up work between the compute devices.
Existing OpenCL code can be linked to DistCL without
any algorithmic modification, reducing the likelihood of
introducing new bugs. If SnuCL is linked to existing code
all computation would simply happen on a single compute-
device, as the code must be modified before SnuCL can
distribute it.

We ported five of our benchmarks to SnuCL. We did not
compare DistCL and SnuCL using the Rodinia benchmarks.
While porting the Rodinia benchmarks to DistCL involved
only the inclusion of meta-functions, porting the Rodinia
benchmarks to SnuCL is a much more involved process
involving modifications that would alter the characteris-
tics of the Rodinia benchmarks. We were also unable to
compare against inter-node communication benchmarks due
a (presumably unintentional) limitation in SnuCL’s buffer
transfer mechanism. The one exception was n-body, which
ran correctly for a single iteration, removing the need for
inter-node communication and turning it into a compute-
intensive benchmark.

Since kernels and buffers are subdivided to run using
SnuCL, sometimes kernel arguments or the kernel code
itself must be modified to preserve correctness. For example
Mandelbrot requires two arguments that specify the initial
x and y values used by the kernel. To ensure work is not
duplicated, no two kernels can be passed the same initial
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Figure 4. Speedup of distributed benchmarks using DistCL.

coordinates. Kernels such as n-body require an additional
offset parameter because per-peer buffers can be accessed
using the new global ID, but globally shared buffers must
be accessed with what would be the global ID if the problem
were solved using a single NDRange. Hash also required an
offset parameter since it used a work-item’s global ID as
the preimage. Similar changes must be made for any kernel
that uses the value of its global ID or an input parameter to
determine what part of a problem it is working on, rather
than data from an input buffer.

V. RESULTS AND DISCUSSION

Figure 4 shows the speedups obtained by distributing
the benchmarks using DistCL, compared to using normal
OpenCL on a single node. Compute-intensive benchmarks
see significant benefit from being distributed, with binomial
achieving a speedup of over 29x when run on 32 peers.
The more compute-intensive linear benchmarks, hash and
Mandelbrot, also see speedup when distributed. Of the inter-
node communication benchmarks, only n-body benefits from
distribution, but it does see almost perfect scaling from
1-8 peers and speedup of just under 15x on 32 peers.
For the above benchmarks, we see better scaling when the
number of peers is low. While the amount of data transferred
remains constant, the amount of work per peer decreases, so
communication begins to dominate the runtime.

The remaining inter-node communication and linear
benchmarks actually run slower when distributed versus
using a single machine. These benchmarks all have very low
compute-to-transfer ratios, so they are not good candidates
for distribution. For the Rodinia benchmarks in particular,
the problem sizes are very small. Aside from LU decompo-
sition, they took less than three seconds to run. Thus, there
is not enough work to amortize the overheads.

Figure 5 shows the speedups attained, by running the
benchmarks on DistCL and SnuCL, relative to normal
OpenCL run on a single node. Overall, the speedups are
comparable, especially for the more compute-intense bench-
marks, which saw the most speed up. Thus, when DistCL
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and SnuCL are both capable of distributing workloads,
those that distribute well see good performance using either
framework. When SnuCL runs faster than DistCL, it is
because SnuCL forces the task of tracking buffers onto the
programmer, whereas DistCL uses extra synchronization in
its dependency tracking algorithms.

Figure 6 show a run-time breakdown of the benchmarks
for the 8 peer case. Each run is broken down into five
parts: buffer, the time taken by host program buffer reads
and writes; execution, the time during which there was at
least one subrange execution but no inter-node transfers;
transfer, the time during which there was at least one
inter-node transfer but no subrange executions; overlapped
transfer/execution, the time during which both subrange
execution and memory transfers took place; and other/sync,
the average time the master waited for other nodes to update
their dependency information.

The benchmarks which saw the most speedup in Figure 4
also have the highest proportion of time spent in execution.
The breakdowns for binomial, Monte Carlo, and n-body are
dominated by execution time; whereas, the breakdowns for
nearest neighbor, back propagation and LU decomposition
are dominated by transfers and buffer operations, which is
why they did not see a speedup. One might wonder why

Mandelbrot sees a speedup, but bitonic and k-means do
not, despite the proportion of time they spent in execution
being similar. This is because Mandelbrot and hash are
dominated by host buffer operations, which also account
for a significant portion of execution with a single GPU.
In contrast, Bitonic and k-means have higher proportions of
inter-node communication, which map to much faster intra-
device communication on a single GPU.

Table IV show the amount of time spent managing de-
pendencies. This includes running meta-functions, building
access-sets and updating buffer information. Table IV also
shows the time spent per kernel invocation, and the time as a
proportion of the total runtime. Benchmarks that have fewer
buffers like Mandelbrot and Bitonic Sort spend less time
applying dependency information per kernel invocation than
benchmarks with more buffers. LU decomposition has the
most complex access pattern of any benchmark. Its kernels
operate over non-coalescable regions that constantly change
shape. Further, the fact that none of LU decomposition’s
kernels update the whole array means that ownership in-
formation from previous kernels is passed forward, forcing
the ownership information to become more fragmented,
and take longer to process. With the exception of LU
decomposition, the time spent managing dependencies is
low, demonstrating that the meta-function based approach
is intrinsically efficient.

An interesting characteristic of HotSpot is that the
compute-to-transfer ratio can be altered by changing the
pyramid height. The taller the pyramid the higher the
compute-to-transfer ratio. However, this comes at the price
of doing more computation than necessary. Figure 7 shows
the speedup of HotSpot run with a pyramid height of 1, 2,
3, 4, 5, and 6. The distributed results are for 8 peers. Single
GPU results were acquired using conventional OpenCL. In
both cases, the speedups are relative to that framework’s
performance using a pyramid height of 1. The number of
time-steps used was 60 to ensure that each height was a
divisor of the number of time-steps. We can see that for
a single GPU, the preferred pyramid height is 2. However,
when distributed the preferred size is 5. This is because
with 8 peers we have more compute available but the
cost of memory transfers is much greater, which shifts the
sweet spot toward a configuration that does less transfer per
computation.

Benchmarks like Hotspot and LU decomposition that
write to rectangular areas of two-dimensional arrays need
special attention when being distributed. While the rectan-
gular regions appear contiguous in two-dimensional space,
in a linear buffer, a square region is, in general, not a single
interval. This means that multiple OpenCL map and network
operations need to be performed every time one of these
areas is transferred.

We modified the DistCL scheduler to divide work along
the y-axis to fragment the buffer regions transfered between
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Table IV
EXECUTION TIME SPENT MANAGING DEPENDENCIES

Total Per Kernel Invocation Percent of
Benchmark Time (µs) Time (µs) Runtime
Mandelbrot 109 109 0.097
Hash 112 112 0.15
Nearest neighbor 120 120 0.62
Binomial 126 126 0.0043
Monte Carlo 1500 150 0.028
n-body 166 166 0.00045
Bitonic Sort 29900 91.9 2.9
k-means 30400 1450 4.6
Back propagation 434 217 0.017
HotSpot 23500 981 5.9
LUD 2.31× 107 60400 30

peers. This results in performance that is 204× slower
on average across all pyramid heights, for 8 peers. This
demonstrates that the overhead of invoking I/O operations
on a cluster is a significant performance consideration.

In summary, not only does DistCL have similar perfor-
mance to SnuCL, but it is easier to use. DistCL also exposed
important characteristics regarding distributed OpenCL exe-
cution. Distribution amplifies the performance characteristics
of GPUs. Global memory reads become even more expen-
sive compared to computation, and the aggregate compute
power is increased. Further, the performance gain seen by
coalesced accesses is not only realized in the GPU’s bus, but
across the network as well. Synchronization - now a whole-
cluster operation - becomes even higher latency. There are
also aspects of distributed programming not seen with a
single GPU. Sometimes, it is better to transfer more data
with few transfers than it is to transfer little data with many
transfers.

VI. RELATED WORK

As described in IV-E, SnuCL is another framework that
distributes OpenCL kernels across a cluster. SnuCL can
create the illusion that all the OpenCL devices in a cluster
belong to a local context, and can automatically copy buffers
between nodes based on the programmer’s placement of
kernels. As opposed to SnuCL, DistCL not only abstracts
inter-node communication, but also the fact that there are
multiple devices in the cluster.

Other prior work also proposes to dispatch work to
remote GPUs in a cluster environment as if they were
local. rCUDA [11] provides this functionality for Nvidia
devices and Mosix VCL [12] provides this functionality
for OpenCL on Linux-based systems. Hybrid OpenCL [13],
dOpenCL [14], and Distributed OpenCL [15] provide
this functionality cross vendor and cross platform. In
clOpenCL [16] each remote node is represented locally as a
separate platform. All these works, as well as SnuCL, require
the programmer to create a separate set of buffers and kernel
invocations for each device and rely on explicit commands
from the host program for communication between peers.
libWater [17] is also similar to the above works, but takes
advantage of task dependencies inferred using the OpenCL
event model to automatically schedule tasks efficiently.

Partitioning of a single kernel invocation has been ad-
dressed in a limited fashion. CUDASA [18] extends the
CUDA [19] programming model to include network and bus
levels on top of the pre-existing kernel, block and thread
levels. Although CUDASA does provide a mechanism for
the programmer to distribute a kernel between computers,
it requires them to make explicit function calls to move
memory between computers. The kernel code must also be
modified in order to be distributed.

Work by Kim et al. [20] transparently distributes OpenCL
kernels between multiple GPUs on the same PCIe bus.
Instead of using meta-functions, it uses compiler analysis
and sample runs of certain work-items to determine the
memory accesses that will be performed by a subset of
a kernel. Since the kernel is only divided among local
GPUs there is no need to worry about network delays or
manage multiple processes. Our approach to dividing up
kernels falls somewhere between these two approaches. It
allows programmers to direct the framework using relevant
information about a kernel’s memory accesses, but relieves
them of the burden of having to manually partition the work
or buffers making the code more portable.

VII. CONCLUSION

We present DistCL, a framework for distributing the
execution of an OpenCL kernel across a cluster, causing
that cluster to appear as if it were a single OpenCL device.
DistCL shows that it is possible to efficiently run kernels
across a cluster while preserving the OpenCL execution
model. To do this, DistCL uses meta-functions that abstract
away the details of the cluster and allow the programmer
to focus on the algorithm being distributed. We believe the
meta-function approach imposes less of a burden than any
other OpenCL distribution system to date. Speedups of up
to 29 on 32 peers are demonstrated.

With a cluster, transfers take longer than they do with a
single GPU, so more compute-intense approaches perform
better. Also, certain access patterns generate fragmented
memory accesses. The overhead of doing many fragmented



I/O operations is profound and can be impacted by parti-
tioning.

By introducing meta-functions, DistCL opens the door to
distributing unmodified OpenCL kernels. DistCL allows a
cluster with 214 processing elements to be accessed as if it
were a single GPU. Using this novel framework, we gain
insight into both the challenges and potential of unmodified
kernel distribution. In the future, DistCL can be extended
with new partitioning and scheduling algorithms to further
exploit locality and more-aggressively schedule subranges.
DistCL is available at http://www.eecg.toronto.edu/∼enright/
downloads.html.
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