
Evaluating the Memory System Behavior of
Smartphone Workloads

G. Narancic1, P. Judd1, D. Wu1, I. Atta1, M. Elnacouzi1, J. Zebchuk1,
J. Albericio1, N. Enright Jerger1, A. Moshovos1, K. Kutulakos2, and S. Gadelrab3

1Department of Electrical and Computer Engineering, University of Toronto
2Department of Computer Science, University of Toronto

3Qualcomm
1{patrick.judd, perwudi.wu}@mail.utoronto.edu; {iatta, michel.elnacouzi, zebchuck, jorge, enright, moshovos}@eecg.toronto.edu

2kyros@cs.toronto.edu
3sgadelra@qti.qualcomm.com

Abstract—Modern smartphones comprise several processing
and input/output units that communicate mostly through main
memory. As a result, memory represents a critical performance
bottleneck for smartphones. This work1 introduces a set of
emerging workloads for smartphones and characterizes the
performance of several memory controller policies and address-
mapping schemes for those workloads. The workloads include
high-resolution video conferencing, computer vision algorithms
such as upper-body detection and feature extraction, computa-
tional photography techniques such as high dynamic range imag-
ing, and web browsing. This work also considers combinations
of these workloads that represent possible use cases of future
smartphones such as detecting and focusing on people or other
objects in live video. While some of these workloads have been
characterized before, this is the first work that studies address
mapping and memory controller scheduling for these workloads.
Experimental analysis demonstrates: (1) Most of the workloads
are either memory throughput or latency bound straining a
conventional smartphone main memory system. (2) The address
mapping schemes that balance row locality with concurrency
among different banks and ranks are best. (3) The FR-FCFS
with write drain memory scheduler performs best, outperforming
some more recently proposed schedulers targeted at multi-
threaded workloads on general purpose processors. These results
suggest that there is potential to improve memory performance
and that existing schedulers developed for other platforms ought
to be revisited and tuned to match the demands of such
smartphone workloads.

I. INTRODUCTION

Smartphones currently represent one of the largest com-
puting device markets with unit shipments projected to rise
further [33]. As Figure 1 illustrates, a modern high-end smart-
phone architecture comprises general purpose and graphics
processors, one or more display controllers, a number of
sensors such as accelerometers and a touch screen, and other
processing units such as video encoders and wireless modems.

Much of the communication among the hardware units
happens through the main memory system. As a result, smart-
phone performance often depends heavily on the main memory
system design. While smartphone designs can borrow from

1This work was supported by NSERC, Qualcomm, the Canadian Foun-
dation for Innovation, and the Ontario Research Fund. Kutulakos was also
supported by NSERC DAS, RTI, RGPIN, and GRAND NCE grants.

Device Display

Local Storage

Specialized 
Hardware 
Elements

Main 
Memory

Encoder/Decoder

External 
Display

Modem

Central 
Processing 

Unit

Graphics 
Processing 

Unit

Main 
Camera

Front 
Camera

Smartphone-like System

Fig. 1: Smartphone Architecture

conventional computer designs, the physical, energy and power
constraints of smartphones are different. Moreover, while a
smartphone can be used as a desktop or laptop replacement,
typical use cases may be different. The inclusion of several
sensors and I/O devices in smartphones enable additional
applications while the physical properties and interfaces favor
different types of interaction. Smartphones are increasingly
used for media-rich applications such as video conferencing,
computer vision, and computational photography.

Accordingly, the first contribution of this work is that it
presents a set of potential smartphone workloads that may
strain existing memory systems. The second contribution of
this work is that it studies the main memory performance of the
presented workloads. The goal of this study is to understand
how well existing memory controller policies work for these
workloads and to identify opportunities for performance im-
provement, if any. The workloads include high-definition video
conferencing, a number of computer vision and computational
photography algorithms, and optical character recognition.
While these workloads can be used as standalone applications,
we also study combinations representative of potential use
cases where the workloads serve as building blocks for more
elaborate applications.

This work characterizes the main memory behavior of these
workloads considering the impact of the address mapping



scheme and of four different memory scheduling policies.
Finally, it characterizes the applications identifying those that
are memory throughput-, memory latency- or computation-
bound. The results demonstrate that: (1) The address mapping
schemes that balance spatial locality within DRAM rows and
concurrency across banks and ranks perform best; (2) A simple
FR-FCFS scheduler with write-drain performs best, narrowly
outperforming other more complex schedulers. This suggests
that the latter designs should be revisited and tuned according
to the demands of smartphone workloads; (3) Some of the
applications strain existing memory systems; and (4) there is
significant room for improving memory system performance
by making better scheduling decisions. These results can
serve as motivation for future work in memory controller and
memory system design for smartphones.

The rest of this paper is organized as follows. Section II de-
scribes the smartphone workloads. Section III and IV describe
the experimental methodology and present the experimental
analysis, respectively. Section V reviews related work, while
Section VI summarizes this work.

II. SMARTPHONE WORKLOADS

This section describes workloads that are representative of
typical and future use cases of smartphone devices. These
include a video conference workload, a set of computer vision,
computational photography workloads, and optical character
recognition. As smartphones incorporate multiple, high res-
olution cameras, such workloads will become increasingly
popular either in stand-alone form or as components of more
elaborate applications. Accordingly, Section II-A describes a
set of workloads that combine some of the aforementioned
applications to model additional smartphone use cases.

Video Conference Workload (VCW). The first workload
models one side of a two-way video conferencing system. In
this video conferencing workload (VCW), each side encodes
and transmits a video stream from its camera while at the
same time receiving, decoding, and displaying a video stream
from the other side. To model future generation smartphones,
the workloads uses 1080p video encoded with the H.264
encoding standard [38]. VCW models the memory traffic of
five components: camera, encoder, wireless modem, decoder
and display.

Figure 2 shows the frame processing where the encoding
and decoding proceed concurrently performing the following
steps: The camera stores a raw image in memory (E1). The
hardware encoder loads the image from memory (E2), encodes
it into a video frame in the H.264 format, and stores the result
in memory (E3). The modem loads the frame for transmis-
sion (E4). The modem receives an encoded video frame and
stores it to memory (D1). The decoder loads the frame (D2),
decodes it into an image format suitable for the display and
writes it back to memory (D3). Finally, the image is loaded
and displayed on screen (D4). The above process repeats at
a pre-specified frame rate. All communication between the
various units is done through memory due to requirements
of the multimedia frameworks of commonly used smartphone

operating systems; the video processing elements do not have
coherent caches. Many different implementations of H.264
encoding/decoding exist. Section III-C details the modeling
methodology used.

Scale Invariant Feature Transform (SIFT). The Scale In-
variant Feature Transform (SIFT) identifies distinctive regions
in an image (“keypoints”) and represents them compactly as
128-dimensional feature vectors (“keypoint descriptors”) [22].
These descriptors quickly and compactly identify similarities
across images and are frequently used in object recognition
and image stitching. We adopt the SIFT nearest-neighbor
algorithm matching scheme.

Speeded Up Robust Features (SURF). SURF uses basic
mathematical approximations and image transforms to sim-
plify computation and is much faster than SIFT [2]. The SURF
detector produces 64-dimensional feature vectors reducing
computation and matching time. We use SURF with a nearest
neighbors matching algorithm.

Face detection. Face detection locates human faces in an
image, the first stage in a facial recognition process. We
assume that the recognition will be done on the server side on
a database of faces, so the smartphone will only be responsible
for localizing the face and generating the search key. Face uses
the face detection program in libface [17] which implements
the Viola-Jones face detector [36] that uses simple rectangular
features that can be computed in constant time. Libface uses
classifiers trained for specific features, e.g., eyes, nose and
mouth, as well as classifiers for whole faces.

High Dynamic Range (HDR). HDR imaging overcomes
the limited range of digital cameras by taking a series low-
dynamic range photographs (e.g., 8- or 12-bits per color chan-
nel) while varying the exposure time. These photos are then
merged into a single photo with a higher dynamic range (i.e.,
higher bit depth). The HDR workload uses pfscalibrate

which implements the HDR composting technique described
by Robertson et al. [31].

Image Denoising. Image denoising removes noise from a
digital image. A problem of simple denoising algorithms is
that they also remove fine structure, detail and texture. Denoise
uses the non-local means image denoising algorithm [3], which

Camera Display

Main Memory

Encoder Modem Decoder

Smartphone 1

Modem

Smartphone 2

Channel

E1 E2 E3 E4 D1 D2 D3 D4

Fig. 2: Frame Processing in a Video Conferencing Workload



preserves fine structure in the image. It finds similar patches
in the image and uses the information from these patches to
separate the noise from the fine structure.

Upper Body Detection. Upper body detection detects a
human’s upper body and determines the relative pose of their
head and arms. Pose detection is particularly useful because
it can infer a person’s attitude or action. Upperbody uses the
algorithm presented by Eichner et al. [8] which models the
body as six connected components: the head, the torso, two
upper arms, and two lower arms.. It is a fairly unconstrained
algorithm in that it allows the arms to be in any position and
only requires that the head be above the torso and that the
subject be facing directly forward or backward.

Image Segmentation. Image segmentation (segment) divides
an image into a set of regions that are relevant for specific tasks
(e.g., recognition, foreground-background separation, medical
image analysis, image compositing). Segment uses the image
segmentation algorithm of Felzenszwalb and Huttenlocher [10]
which represents the image as a graph where the nodes
are pixels and edges connect adjacent pixels. The edges are
weighted with the difference in pixel intensities of the two
connected nodes. The algorithm is linear in the number of
graph edges and processes edges in order of descending
weight. This creates a non-sequential access pattern in the
workload.

Web-browsing. The web browsing workload (bbench) runs
BBench [11], a web-browsing benchmark over Arora [24], a
lightweight internet browser.

A. Combined Workloads

In current and future systems, users are likely to run the
above mentioned workloads in various combinations. Here we
explore some plausible combinations that are likely to stress
our memory system. Cataloguing photos is a common usage
scenario for smartphones that uses many image processing
algorithms. Segmentation can be used to separate the people
in the image from the background. Face detection can identify
any people in the image. SURF might be running in the
background to identify the location of the photograph; upper
body detection might be try to identify a physical activity in a
photograph. Hence, we model a combination of face, segment,
surf, and upperbody (Combo 1).

Video conferencing may often be accompanied by various
computer vision applications. With limited bandwidth, for
example, face detection can highlight a region of interest for
the video encoder, allowing it to allocate more bits for the face
region or it could be used to fetch online information about the
person in view. HDR and image denoising are useful for videos
in poor lighting conditions. They can improve overall image
quality by reducing over- and under-saturation. In addition,
a user might be browsing the web, e.g., to access shared
documents or looking up related information. We model these
scenarios with combinations of VCW with: face, HDR, denoise
and bbench; these are respresented by Combos 2-4 in Table I.
Table I summarizes the combined workloads.

TABLE I: Workload Summary

SIFT Feature descriptors using nearest neighbor
SURF Faster feature detection using approximation

and image transformations
face face detection w/ libface & Viola-Jones face

detector
hdr High Dyanmic Range using pfscalibrate

denoise Non-local means algorithm
upperbody Algorithm proposed by Eichner et al. [8]

segment Algorithm by Felzenszwalb and Huttenlocher [10]
Multi-stream workloads

VCW camera, encoder (H.264), wireless modem,
decoder and display

Combo 1 face + segment + surf + upperbody
Combo 2 bbench + hdr + VCW

Combo 3 bbench + denoise + face + VCW

Combo 4 bbench + face + hdr + VCW

III. EXPERIMENTAL SETUP

Smartphone architectures, as Figure 1 shows, are similar to
modern personal computers, but commonly include additional
units. Such units include one or more cameras, specialized
hardware elements such as wireless transceivers, accelerome-
ters, and gyroscopes. Since these components in a smartphone
typically communicate and coordinate through main memory,
we focus on providing an accurate timing model for main
memory and use trace-based models for the rest of elements.

A. Tracing methodology

We use PIN to dynamically instrument the applications to
capture their memory access stream during execution [23].
A simple trace that records a sequence of memory accesses
with no additional information is not appropriate for studying
memory controller performance as it will allow references
to proceed unrestricted, resulting in an artificially high con-
currency in the memory system. For example, without this
information, dependent requests (e.g., chacing pointers) could
be issued concurrently, and requests that are separated by
several instructions may be issued immediately one after the
other. Our trace collection tool analyzes the real data-flow at
execution time. We track dependencies at word granularity
through registers and memory, and appropriately annotate the
resulting traces. To model computational distances we annotate
each memory reference with the number of instructions that
executed since the last memory reference it depends upon. By
scaling the computational distances we mimic the behavior of
processing elements with different levels of concurrency.

B. Simulation methodology

We use an in-house simulation engine which models all the
cores and PEs. The components of the system are fed with the
trace of memory references which also contains dependencies
and computational distances. The simulator uses a modified
version of DRAMSIM2 which incorporates the policies stud-
ied. Section III-D details the simulated memory. Table IIIa



lists the simulated system components and Table IIIc details
their configuration. Initially, we consider in-order processing
cores that have an IPC equal to 1. Section IV-C considers cores
capable of exploiting more instruction level parallelism.

The workloads are executed on conventional processing
cores. In order to model such devices, we used 16 KB and
64 KB caches as representative of typical L1 and L2 cache
sizes, respectively. As Section III-C explains, we used slightly
different cores for VCW due to its high memory demands.

For the computer vision and computational photography
workloads, we study two different input sets: low resolution
100 × 100 pixel images and high resolution 12 MegaPixel

(MP) images. Depending on the application, these workloads
can be used with the direct input from the camera or with
a scaled image. For example, HDR can be used to process
large images directly from the camera, while a face detection
system for video might scale images prior to processing in
order to meet real-time constraints. For bbench, we simulate
2B instructions, and 10B for the rest of workloads.

C. Constructing the Video Conference Workload (VCW)

VCW requires of a more complex tracing methodology. We
model it by creating a trace of the memory traffic for each
component and synchronizing the rate at which these traces
are played back. For the video encoder and decoder, we use
PIN [23] to instrument a software implementation of the H.264
standard. We use FFmpeg [1], an open-source video encoder
and decoder which uses the libx264 [35] library to perform
H.264 encoding. To model on-the-fly encoding, we disable the
lookahead and b-frame options that use future information to
encode the current frame. We create per-frame traces to record
all main memory traffic and to record relevant meta-data (e.g.,
frame size). We mimic a typical double-buffering scheme for
both the encoder and decoder. This is done by post-processing
the traces to redirect the input and output frame data structures
into different memory locations between subsequent frames.

For the video encoder and decoder we simulate pro-
grammable ILP cores. We found that using the aforementioned
typical caches sizes resulted in disproportionally large memory
traffic as these were not large enough to capture the local
processing buffers. Accordingly, we increased the cache size
in order to capture much of the local processing buffers. We
chose the cache size based on the knee in the hit rate vs. cache
size curve. Table IIIa reports these caches size.

To model the camera, modem and display, we create
synthetic sequential streams of either read or write requests
that scan through the frame buffers used by the encoder
and decoder. This appropriately models the memory traffic to
stream raw and encoded image data between the devices.

We obey all the timing and sequence constraints to repro-
duce the sequence of actions shown previously in Figure 2.
This synchronizes the actions of the camera, encoder and
modem on one end, and the modem, decoder, and display
on the other end. We also synchronize the entire process to
transmit and receive at the same frame rate. Our camera,
modem and display models include parameters for the ratio

TABLE II: Main Memory Parameters

Technology DDR3 SDRAM (800 MHz)
Capacity 4 GB
Channels 1

2 per channel, 16 Micron DDR3 [25]Ranks
32 Megabit, ×4 DRAM devices

Banks 8 per rank
Rows 16,384 per bank

2,048 (groups of 8)Columns
64B cache line per column

Data bus 64 bits
Bandwidth Max. 11.92 GB/s

of local to system clock, the maximum number of in-flight
requests (Table IIIc).

D. Memory system

Our goal is to model a system representative of future smart-
phone platforms which will use better memory technology.
We use DDR3, with the parameters shown in Table II, as a
proxy for the timing of future LPDDR42. Current LPDDR3 is
insufficient for some of the workloads and this is why existing
platforms are not capable of supporting them. Moreover,
LPDDR3 is optimized for power which is not the target of
this work. Based on these parameters, our addressing schemes
use one bit to specify the rank, three bits to specify the bank,
fourteen bits to specify the row, and eight bits to specify the
column. The least significant six bits are ignored since we
assume that devices operate at a 64B granularity.

We examine two memory controller configurations, Limited
and Large, as Table IIIb shows. Large assumes nearly unlim-
ited resources for the memory scheduler (given the number of
devices and the number of requests they can issue), while Lim-
ited assumes more realistically constrained resources. Study-
ing two configurations allows us to: (1) Determine whether
better scheduling decisions could improve performance, and
(2) whether the workloads are memory- or compute-bound.
Memory-bound workloads should benefit from the additional
resources in the Large configuration, while compute-bound
workloads should experience similar behavior for both Large
and Limited configurations.

We use a single transaction queue per channel and a single
command queue per rank. The write queue holds data from
the moment a write request arrives at the controller until
the scheduler issues that particular write. For the write drain
mode, the write queue keeps write requests until the number
of requests exceeds the high watermark and triggers the write
drain mode. When in the write drain mode, only write requests
are translated and issued until the number of requests falls
below the low watermark.

We evaluate four memory scheduling policies: First-Ready
First Come, First Served with and without the write drain (FR-
FCFS-WD and FR-FCFS, respectively), Thread-Clustering

2Our configuration offers a bandwidth of 11.92GB/s while LPDDR4 is
expected to provide 12.8GB/s/channel[5]



TABLE III: System Configurations

(a) Simulated system

Cores (x4) in-order, 16KB+16KB L1s,
64KB L2 (priv.)

Additional devs. Camera, modem, display, en-
coder, and decoder

Simulated clock 1600 MHz
Total outstanding memory operations

Read 8
16 (Limited)Write
128 (Large)

(b) Schedulers

Limited Large
Transaction queue entries 24 512

Command queue entries 8 512
TF scheduler CQ entries 20 1024

Maximum row accesses 32 1024
Write queue parameters

Entries 16 64
Low Watermark 8 50
High Watermark 12 60

(c) Additional devices configuration

Camera Enc. Modem Dec. Disp.
Clock (Mhz) 160 3200 800 3200 160

Cache size (KB) - 256 - 128 -
Read max. ops. 16 8 16 8 16
Write max. ops. 16 16 16 16 16

(TCM) [20], and Thread-Fair (TF) [9]. FR-FCFS is a simple,
greedy scheduling policy which selects the oldest command
of all ready-to-issue commands in a given cycle. FR-FCFS
treats reads and writes the same; however, writing data requires
changing the direction of transfer on the data bus which
incurs additional latency. FR-FCFS-WD attempts to avoid
excessive switching by placing writes into a write queue and
then draining writes only when the occupancy of that queue
exceeds a threshold. TCM groups threads into two classes:
latency-sensitive which issue infrequent memory requests and
bandwidth-sensitive which issue large numbers of memory
requests and have a high degree of memory level parallelism.
Latency-sensitive threads are given higher priority. We repli-
cate additional settings for the TCM memory scheduler as
suggested by Kim et al. [20]. TF prioritizes reads over writes;
read row hits are given the highest priority. If there are no row
hits, the request that is at the head of the transaction buffer is
given priority. Otherwise, requests are served oldest first. We
implement TF without a transaction queue to allow issuing
write hits while not in the write drain mode, or read hits while
in write drain mode, as required by the scheduler.

IV. EVALUATION

This section presents our experimental results. We initially
restrict attention to the VCW workload as it places a high

Fig. 3: Address mapping schemes showing which bits are used to
specify the row (R), column (C), bank (B) and rank (K).

demand on memory and consists of a number of different
threads. Section IV-A shows the impact of the address mapping
schemes on the VCW performance. Section IV-B studies the
performance of our multi-stream workloads under four mem-
ory scheduling policies. And finally, the effects of accelerating
the computation are studied in Section IV-C.

A. Address Mapping Schemes

The address mapping scheme refers to how logical addresses
are assigned to physical memory locations. Functionally, any
bit from the logical address can be used to determine the rank,
bank, column or row. However, the address mapping can have
a significant impact on the timing and scheduling of memory
systems servicing realistic memory access patterns.

We consider the nine address mappings shown in Figure 3.
We use an acronym for each scheme showing the order,
starting from the most significant bit (MSB), in which address
bits are used to specify the row (R), column (C), bank (B)
and rank (K). The XOR scheme is adapted from the scheme
proposed by Lin et al. [21] and the “*” filed indicates that
the Bank[1:0] bits are calculated as the XOR of the “*” bits
and the Row[1:0] bits. We also consider the scheme used as
part of the minimalist open-page (MOP) policy proposed by
Kaseridis et al. [18]. We model 4GB of memory and all
requests operate at a granularity of 64 byte cache lines.

Generally, an address mapping scheme should balance rank
and bank concurrency with row-buffer hit locality to provide
the best overall performance. To reason about these trade offs it
is useful to consider how the mapping scheme affects latency
with a sequential access stream. In a sequential stream, the
lower address bits change more frequently than the higher
bits. Using the lowest bits to select the column will result
in many accesses to the same rank, bank, and row. The first
request in such a scenario will incur the row access latency
and subsequent requests to sequential addresses will result in
row buffer hits, resulting in lower latency. Conversely, if we
use the lower bits for selecting the bank or rank then accesses
can proceed concurrently across ranks and banks; however,
adjacent accesses will suffer through a row activation latency.

Figure 4 shows the frame rate of VCW for all address
mapping schemes, with Limited and Large memory controller
configurations. KBCR is the worst performing scheme as it
uses the lowest bits to select the row, resulting in frequent



0

10

20

30

40

50

60
F

ra
m

e
 R

a
te

 (
fr

a
m

e
s/

se
c)

Limited Large

Fig. 4: Frame rate of VCW with different address mapping schemes
for Limited and Large configurations (using FR-FCFS as scheduling
policy)

row conflicts. KBRC is the second worst performer since the
row uses the second lowest set of bits while bank and rank
use the highest bits. As a result, row switching still happens
fairly frequently and little parallelism is exploited. The rest
of the schemes use the highest bits for row, reducing row
conflict frequency. RCBK and RCKB use the lowest bits for
bank and rank, causing sequential accesses to be spread across
banks and ranks increasing parallelism. However, this also
increases the time between same-row accesses, increasing the
chance that the row will be closed. RBKC, RKBC and XOR
show the best performance because column bits are the lowest
making sequential accesses hit in the same row. This shows
that exploiting row locality is more beneficial than parallelism
for vcw. Although XOR performs best, it is less than 1.5%
faster than RKBC. The XOR scheme requires tuning to achieve
good performance for different workloads. Accordingly, we
use the simpler RKBC scheme for the rest of our analysis.

Comparing Large and Limited, the extra resources provided
by Large improve performance by 2.5 frames/sec, suggests that
better memory scheduling decisions can improve performance.

B. Memory Scheduler Policies

This section compares the performance of different memory
scheduler policies for our multi-stream workloads. First we
focus on VCW and then we annalyze the behavior of our
combined workloads.

1) Video Conference Workload: Figure 5a shows the frame
rate for all policies, for both Limited and Large configu-
rations. As expected, the Large configuration outperforms
the Limited configuration for all policies, which implies that
VCW is memory bound. Within either configuration, the best
scheduling policy (FR-FCFS-WD) is over 6% faster than the
slowest policy (TCM). FR-FCFS-WD and TF both offer good
performance, with FR-FCFS-WD being only 0.2% and 1.7%
faster for the Limited and Large configurations respectively.
TCM and TF offer benefits for modern desktop and server
platforms, but the results in Figure 5a indicate that such
designs need to be revisited and properly tuned before they
can offer similar benefits for smartphone platforms.

45

46

47

48

49

50

51

52

53

54

55

Limited Large

F
ra

m
e

 R
a

te
 (

fr
a

m
e

s/
se

c)

FR-FCFS FR-FCFS-WD

TCM TF

(a) Frame rate

0

50

100

150

200

250

300

350

400

450

Limited Large

A
v

e
ra

g
e

 A
cc

e
ss

 L
a

te
n

cy
 (

D
R

A
M

 c
y

cl
e

s)

FR-FCFS

FR-FCFS-WD

TCM

TF

(b) Average latency

Fig. 5: DRAM performance for VCW w/ different memory
schedulers.

Figure 5b shows the average access latency with the four
schedulers. Large results in higher access latency compared to
Limited since it delays old requests in favor of new ones that hit
in open rows. Given that performance is better with Large we
conclude that VCW is memory-throughput bound. Comparing
FR-FCFS with FR-FCFS-WD under Limited, we observe that
write drain increases latency by 2%, while under Large write
drain reduces latency by 22%. This is the result of the larger
write buffers in Large which can delay writes longer and avoid
frequent contention with reads. Although TF has frame rates
almost as fast as FR-FCFS-WD, its average read latency is
18% to 22% higher. This suggests that TF is sacrificing latency
to increase utilization and throughput, and since this results in
good performance, it provides additional evidence that VCW

is memory throughput limited. Further analysis of TF reveals
that, on average, it has 2.6% to 8% fewer row buffer hits
than FR-FCFS-WD, which likely results in higher power and
energy consumption. However, an investigation of power and
energy is beyond the scope this work.

2) Combined Workloads: Figure 6a shows the slowdown
experienced by individual benchmarks when run in a com-
bined workload. Since the individual applications have very
different execution times, the longest running application in
each combination suffers much less slowdown than the others.
This is explains the results for surf in Combo 1 and face in
Combo 3 and Combo 4.

The metric used to study the performance of our com-
bined workloads is the fair speedup or harmonic mean of
speedups [32]. This metric is the harmonic mean of the per-



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fa
ce

se
g

m
e

n
t

su
rf

u
p

p
e

rb
o

d
y

h
a

r.
m

e
a

n

b
b

e
n

ch

h
d

r

v
cw

h
a

r.
 m

e
a

n

b
b

e
n

ch

d
e

n
o

is
e

fa
ce

v
cw

h
a

r.
 m

e
a

n

b
b

e
n

ch

fa
ce

h
d

r

v
cw

h
a

r.
 m

e
a

n

Combo 1 Combo 2 Combo 3 Combo 4

S
p
e
e
d
u
p

(a) Normalized speedup of individual benchmarks with FR-FCFS-
WD when run as part of combined workload

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Combo 1 Combo 2 Combo 3 Combo 4

F
a

ir
 S

p
e

e
d

u
p

FR-FCFS FR-FCFS-WD

TCM TF

(b) Fair speedup of combined workloads w/ different memory sched-
ulers.

Fig. 6: Combined workloads with Limited configuration and
compute ratio of one.

application speedups running the applications in the combo
with respect to running the application alone in the system.
Figure 6b shows the fair speedup for the combined workloads
when using different memory schedulers. On average, FR-
FCFS-WD offers the best performance, with a fair speedup
7.5% higher than the worst policy (FR-FCFS), and 3.9%
higher than the second best policy (TCM). Note that while
TCM has the worst performance for VCW running alone
(Section IV-B), it is the second best policy for the combined
workloads. But the simpler FR-FCFS-WD still performs bet-
ter. Again, memory schedulers designed for highly threaded
desktop and server systems might need to be re-examined and
tuned for smartphone workloads.

For Combo 2, 3 and 4, FR-FCFS-WD and TCM improve
the fairness by speeding up the slowest applications in the
combinations, hdr and denoise by 28− 43%. These speedups
occur at the expense of small slowdowns in bbench and VCW of
5− 16%. As this shows, it can be difficult to characterize the
performance of different schedulers for such multi-threaded
workloads. A user might have priorities and preferences other
than simple fairness; future memory scheduler research should
examine how tradeoffs between applications can be adjusted
to best meet the users needs, instead of focusing on total
throughput or fairness.

44

46

48

50

52

54

56

58

Limited Large

F
ra

m
e

 R
a

te
 (

fr
a

m
e

/s
e

c)

x1 x2 x4 x8 xINF

(a) Frame rate

8.5

9

9.5

10

10.5

11

Limited Large

D
R

A
M

 B
a

n
d

w
id

th
 (

G
B

/s
e

c)

x1 x2 x4 x8 xINF

(b) Bandwidth

Fig. 7: Performance and bandwidth of VCW with varying
computation ratios for Limited and Large configurations.

C. Effect of Faster Compute Engines

Through either faster or specialized processing units, it may
be possible to accelerate the computation part of a workload.
This section studies the effect of such acceleration on memory
system performance. We model the effects of acceleration
using the computational distance which is the number of
instructions between dependent memory operations.

Figures 7, 8 and 9 show the effect on execution for all
individual workloads when varying the computation ratio.
The computation ratio models processing engines that can
process the computation at a faster rate than one instruction
per cycle. Specifically, a computation ratio of N represents a
compute engine that can execute N independent instructions
per cycle. An ideal, unrealistic accelerator that can perform any
computation in zero cycles would have infinite an computation
ratio.

1) Video Conference Workload: As Figure 7 shows, using
an ideal accelerator improves performance by 10% for VCW

while the Large configuration results in performance improve-
ments of 5% on average. These results suggest that parts of
VCW are compute bound while others are memory bound.
Figure 7b shows that VCW is relatively close to the theoretical
bandwidth limit of the system (11.92 GB/s), suggesting that
VCW is bound by available memory throughput and not by
memory latency. This result highlights the importance of
memory controller design; a custom accelerator would be
limited by memory performance.



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

denoise face hdr segment sift surf upperbody

E
x

e
cu

ti
o

n
 T

im
e

 (
se

c)
x1

x2

x4

x8

xINF

5
.0
6

5
.0
6

(a) Execution Time

0

2

4

6

8

10

12

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

denoise face hdr segment sift surf upperbody

D
R

A
M

 B
a

n
d

w
id

th
 (

G
B

/s
e

c)

x1 x2 x4 x8 xINF

(b) Bandwidth

Fig. 8: Performance and bandwidth of computer vision work-
loads with high resolution images with varying computation
ratios for Limited and Large configurations.

2) Computer Vision Workloads: For the computer vision
workloads with high resolution images, Figure 8 shows that
there are two classes of workloads When increasing the com-
putation ratio, the performance of hdr, sift and upperbody is not
affected. This suggests that these benchmarks are completely
memory bound. The other applications exhibit performance
improvements with increasing computation ratios. However,
in most cases these benefits quickly plateau, suggesting that
the workloads are mostly memory bound when they have a
computation ratio of eight. However, surf is almost 3× slower
with a computation ratio of eight compared to an infinite
computation ratio, suggesting that it is still compute bound
at this point.

The compute-bound nature of some workloads is further
highlighted by looking at their bandwidth consumption. As
Figure 8b shows, surf has much lower bandwidth consumption
than the other workloads, emphasizing that computation is the
bottleneck and not memory. Even with an infinite computation
ratio, surf still uses less bandwidth than the other workloads
suggesting that its performance has become bound by memory
latency rather than memory throughput.

With sufficiently high computation ratios, the other bench-
marks all become memory throughput limited since their band-
width is relatively close to the maximum available bandwidth
in the system. For most of these workloads, the increased

flexibility available with Large results in higher bandwidth
usage and better performance. This encourages work on novel
memory controllers that can exploit this potential without
using impractically large structures. However, face and surf
are the two exceptions that benefit little from Large and are
less likely to benefit from memory controller advances.

0

5

10

15

20

25

30

35

40

45

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

bbench denoise face hdr segment sift surf upper

body

E
x

e
cu

ti
o

n
 T

im
e

 (
m

s)

x1

x2

x4

x8

xINF

(a) Execution Time

0

2

4

6

8

10

12

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

Li
m
it
e
d

La
rg
e

bbench denoise face hdr segment sift surf upper

body

D
R

A
M

 B
a

n
d

w
id

th
 (

G
B

/s
e

c)

x1 x2 x4 x8 xINF

(b) Bandwidth

Fig. 9: Evaluation of the web browsing and computer vision
workloads with low-resolution images.

Figure 9 shows that the behavior of the computer vision
workloads changes drastically for the low-resolution images;
almost all of the workloads become compute bound. It also
shows that bbench is initially compute bound. Furthermore,
as the computation ratio increases, more benchmarks stay
compute bound with a compute ratio of eight, including hdr,
segment, and sift.

V. RELATED WORK

This work examines the performance of memory subsystem
for smartphone workloads. We focused on policies recently
proposed for chip multiprocessors: Thread Clustering [20]
and Thread Fair [9], which target chip-multiprocessors. In
this section, we discuss other relevant memory controller
policies, literature targeting smartphone characterization and
benchmarking.

A. Memory Controller Policies

We categorize the memory scheduling policies into two
groups based on their primary optimization metric: perfor-
mance or power/energy. Performance-oriented schedulers ei-
ther focus on the performance of the memory subsystem or
the applications. The memory subsystem performance is often



measured as bandwidth utilization or efficiency. While this
value is ought to be high, it does not necessarily reflect
the performance of the applications, which might find some
memory requests more useful than others. Ishii et al. divide
thread execution into phases; memory- and non-memory in-
tensive [16]. Non-memory intensive phases are prioritized over
memory intensive ones. In addition, while refreshing one rank,
write operations are executed on the opposing rank, which
aims to reduce the interference of writes and reads. Some
schedulers are designed for multi-threaded environments and
often target fairness [27], [28] or system throughput [19], [15].

Power and energy consumption are becoming increasingly
important in all modern systems. Energy usage is often tightly
coupled with improving performance, whereas power con-
siderations are often harmful to the application performance.
Memory throttling has been proposed to restrict the maximum
number of accesses within a fixed time window [14], [12].
Deng et al. propose reducing the frequency of the DIMM
modules to limit power [6]. The scheduler detects the system’s
tolerance to diminished performance, slack, and adjusts the
frequency accordingly.

B. Benchmarks

The San Diego Vision Benchmark Suite (SD-VBS) includes
computer vision workloads [34]. The benchmark suite includes
Disparity Map, Feature Tracking, Image Segmentation, SIFT,
Robot Localization, SVM, Face Detection, Image Stitching
and Texture Synthesis. Their experimental analysis looks at
the execution time breakdown of each program in terms of
the major kernels and how they scale with image size along
with estimating the potential parallelism in each workload.

MEVBench is a Mobile Computer Vision Benchmarking
Suite [4]. MEVBench uses some benchmarks from SD-VBS
and adds SURF, HOG, FAST, BRIEF, Adaboost, K Nearest
Neighbors, Object Recognition and Augmented Reality. For
some benchmarks both single and multithreaded applications
are used. They use both physical and simulated systems for
both mobile and desktop processors. Analysis includes IPC,
memory activity, and multithreaded and SSE speedup. The
workloads we study partially overlap with the workloads
studied in the aforementioned works. MobileBench includes
a broad range of real-world smart phone applications [29].
This suite covers general and realistic web browsing by using
the publicly available BBench, education web browsing, photo
viewing, and video playback. However, our work focuses on
memory system behavior and thus complements these exist-
ing studies. However, our work focuses on memory system
behavior and thus complements these existing studies.

C. Smartphone Characterization

To date, there have been few studies characterizing smart-
phone workloads. Recent work analyzes branch prediction,
cache behavior, TLBs and overall system performance, for
a set of audio, video, interactive gaming and web-browsing
benchmarks targeting smartphones [11]. We complement their

work by focusing on memory system performance and incor-
porate some different workloads.

Duan et al. explore memory energy optimizations in smart-
phones [7]. They introduce a hybrid memory organization
combining RAM and Phase-change Memory (PCM). Huang et
al. examine overall workload performance, taking into account
telecom carriers transmission parameters [13], such as packet
retransmission and 3G network delays. Wang et al. analyze
web-browser behavior on smartphones and correlate it with
network round-trip time and OS services [37].

Pandiyan et al. perform energy characterization of the
MobileBench benchmark suite by instrumenting the Android
framework on Galaxy S III smart phone[29]. Then, by us-
ing simulation they study how different microarchitectural
aspects affect the performance of applications running in
a smart phone. Specifically, they focus on the implications
of improving branch prediction, TLB management, and L2
cache performance (by both improving its replacement and
prefetching) Qian et al. discover inter-layer inefficiencies by
profiling Android platforms through an innovative cross-layer
approach [30]. Murmuria et al. present a methodology to mea-
sure and model power usage on smartphones. To do so they
use the operating system?s power management module [26].

VI. CONCLUSIONS

We have developed a set of smartphone workloads and stud-
ied how they stress main memory. These workloads include a
high definition video conference workload as well as a range
of computational photography and computer vision workloads.
To model realistic smartphone usage scenarios, we combine
various applications to model a photo cataloguing system and
various advanced video conference scenarios that incorporate
image processing and web browsing activity. Many of these
workloads are memory throughput bound; they strain existing
memory systems. When processing small images, many of
these algorithms become compute limited; our results suggest
that more specialized compute engines may provide enough
compute performance to make them memory bound.

Our evaluation shows that the address mapping scheme used
by memory must balance row buffer locality and concurrency
across banks and ranks. Carefully selecting the address map-
ping scheme can improve performance by as much as 10%
over a reasonable but unbalanced mapping scheme. Memory
scheduling policies impact performance; recently proposed
policies that improve the performance of highly-threaded
desktop and server workloads need to be revisited and tuned
in order to provide similar benefits for smartphone workloads.
For VCW, a simple FR-FCFS-WD policy provides the best
performance and reduces average read latency by up to 22%
compared to other schedulers. With our combined workloads,
FR-FCFS-WD provides the best fair speedup. However, our
analysis suggests there is much potential for work that better
balances the performance of individual applications with the
priorities of the smartphone user.

REFERENCES

[1] FFmpeg multimedia framework, December 2001.



[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust
features (surf). Comput. Vis. Image Underst., 110(3):346–359, June
2008.

[3] A. Buades, B. Coll, and J. M. Morel. A review of image denoising
algorithms, with a new one. Multiscale Modeling and Simulation, 4:490–
530, 2005.

[4] J. Clemons, H. Zhu, S. Savarese, and T. Austin. Mevbench: A mobile
computer vision benchmarking suite. In Workload Characterization
(IISWC), 2011 IEEE International Symposium on, nov. 2011.

[5] D. Skinner (Micron Technology). Lpddr4 moves mobile. In In JEDEC
Mobile Forum Conference, 2013.

[6] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini.
MemScale: active low-power modes for main memory. In Proc. of
the international conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[7] R. Duan, M. Bi, and C. Gniady. Exploring memory energy optimizations
in smartphones. In Proceedings of the 2011 International Green
Computing Conference and Workshops, IGCC ’11, 2011.

[8] M. Eichner, M. Marin-Jimenez, A. Zisserman, and V. Ferrari. 2d ar-
ticulated human pose estimation and retrieval in (almost) unconstrained
still images. Int. J. Comput. Vision, 99(2):190–214, Sept. 2012.

[9] K. Fang, N. Iliev, E. Noohi, S. Zhang, and Z. Zhu. Thread-fair memory
request reordering. In 3rd JILP Workshop on Computer Architecture
Competitions: Memory Scheduling Championship, MSC, 2012.

[10] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image
segmentation. Int. J. Comput. Vision, 59(2):167–181, Sept. 2004.

[11] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi,
C. Emmons, and N. Paver. Full-system analysis and characterization of
interactive smartphone applications. In IEEE International Symposium
on Workload Characterization, pages 81–90, 2011.

[12] H. Hanson and K. Rajamani. What computer architects need to know
about memory throttling. In Computer Architecture, volume 6161 of
Lecture Notes in Computer Science, pages 233–242, 2012.

[13] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl.
Anatomizing application performance differences on smartphones. In
Proceedings of the 8th international conference on Mobile systems,
applications, and services, MobiSys ’10, pages 165–178, 2010.

[14] I. Hur and C. Lin. A comprehensive approach to DRAM power
management. In Proc, of International Symposium on High Performance
Computer Architecture, pages 305 –316, feb. 2008.

[15] T. Ikeda, S. Takamaeda-Yamazaki, N. Fujieda, S. Sato, and K. Kise.
Request density aware fair memory scheduling. In 3rd JILP Workshop
on Computer Architecture Competitions: Memory Scheduling Champi-
onship, MSC, 2012.

[16] Y. Ishii, K. Hosokawa, M. Inaba, and K. Hiraki. High performance mem-
ory access scheduling using compute-phase prediction and writeback-
refresh overlap. In 3rd JILP Workshop on Computer Architecture
Competitions: Memory Scheduling Championship, MSC, 2012.

[17] A. Jironkin, A. Bhatt, G. Caulier, and M. Wiesweg. libface library, May
2012.

[18] D. Kaseridis, J. Stuecheli, and L. K. John. Minimalist open-page: a
DRAM page-mode scheduling policy for the many-core era. In Proc.
of the International Symposium on Microarchitecture, 2011.

[19] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A scal-
able and high-performance scheduling algorithm for multiple memory
controllers. In HPCA, pages 1–12, 2010.

[20] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread
cluster memory scheduling: Exploiting differences in memory access
behavior. In Proceedings of the 2010 43rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO ’43, 2010.

[21] W.-F. Lin, S. Reinhardt, and D. Burger. Reducing DRAM latencies with
an integrated memory hierarchy design. In High-Performance Computer
Architecture (HPCA), 2001.

[22] D. G. Lowe. Object recognition from local scale-invariant features. In
Proceedings of the International Conference on Computer Vision-Volume
2 - Volume 2, ICCV ’99, pages 1150–, 1999.

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In The 2005
ACM SIGPLAN conference on Programming language design and
implementation, pages 190–200, 2005.

[24] B. Meyer and J. Wieczorek. Arora lightweight webkit-based web
browser, August 2012.

[25] Micron. 1Gb: ×4, ×8, ×16 DDR3 SDRAM features, 2007.

[26] R. Murmuria, J. Medsger, A. Stavrou, and J. Voas. Mobile application
and device power usage measurement. SERE, 2012.

[27] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling
for chip multiprocessors. In Proceedings of the 40th Annual IEEE/ACM
Int’l Symposium on Microarchitecture, MICRO 40, 2007.

[28] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared dram systems. In
Proce. of the International Symposium on Computer Architecture, pages
63–74, 2008.

[29] D. Pandiyan, S.-Y. Lee, and C.-J. Wu. Performance, energy character-
izations and architectural implications of an emerging mobile platform
benchmark suite - mobilebench. In IISWC, pages 133–142. IEEE, 2013.

[30] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck.
Profiling resource usage for mobile applications: A cross-layer approach.
In Proceedings of the 9th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’11, pages 321–334, New York,
NY, USA, 2011. ACM.

[31] M. A. Robertson, S. Borman, and R. L. Stevenson. Dynamic range im-
provement through multiple exposures. In The International Conference
on Image Processing, ICIP99, pages 159–163. IEEE, 1999.

[32] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultane-
ous multithreaded processor. In Proceedings of the Ninth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS IX, pages 234–244, New York, NY, USA,
2000. ACM.

[33] N. Trevet, Khronos Group. SOC Programming Tutorial. In HOT Chips
Conference. 2012.

[34] S. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie,
and M. Taylor. Sd-vbs: The san diego vision benchmark suite. In IEEE
Int’l Symposium on Workload Characterization (IISWC), 2009.

[35] VideoLAN Organisation. x264 software library, February 2012.
[36] P. Viola and M. Jones. Rapid object detection using a boosted cascade of

simple features. In Computer Vision and Pattern Recognition, CVPR’01,
pages 511–518, 2001.

[37] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. Why are web browsers
slow on smartphones? In Proc. of the 12th Workshop on Mobile
Computing Systems and Applications, HotMobile ’11, 2011.

[38] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra. Overview of
the H.264/AVC video coding standard. Circuits and Systems for Video
Technology, IEEE Transactions on, 13(7):560 –576, july 2003.


