
IEEE TRANSACTIONS ON COMPUTERS 1

DART: A Programmable Architecture for NoC
Simulation on FPGAs

Danyao Wang, Member, IEEE, Charles Lo, Member, IEEE Jasmina Vasiljevic, Member, IEEE
Natalie Enright Jerger, Member, IEEE and J. Gregory Steffan, Senior Member, IEEE

Abstract—The increased demand for on-chip communication
bandwidth as a result of the multi-core trend has made packet-
switched networks-on-chip (NoCs) a more compelling choice for
the communication backbone in next-generation systems [1].
However, NoC designs have many power, area, and performance
trade-offs in topology, buffer sizes, routing algorithms and flow
control mechanisms—hence the study of new NoC designs can
be very time-intensive. To address these challenges, we propose
DART, a fast and flexible FPGA-based NoC simulation archi-
tecture. Rather than laying the NoC out in hardware on the
FPGA like previous approaches [2], [3], our design virtualizes
the NoC by mapping its components to a generic NoC simulation
engine, composed of a fully-connected collection of fundamental
components (e.g., routers and flit queues). This approach has two
main advantages: (i) since it is virtualized it can simulate any
NoC; and (ii) any NoC can be mapped to the engine without
rebuilding it, which can take significant time for a large FPGA
design. We demonstrate (i) that an implementation of DART on
a Virtex-II Pro FPGA can achieve over 100× speedup over the
cycle-based software simulator Booksim [4], while maintaining
the same level of simulation accuracy, and (ii) that a more
modern Virtex-6 FPGA can accommodate a 49-node DART
implementation.

Index Terms—Network-on-chip, simulation, FPGA.

I. INTRODUCTION

As more cores are incorporated into a single chip, packet-
switched networks-on-chip (NoCs) have emerged as a com-
pelling replacement of traditional bus-based on-chip intercon-
nects. NoCs provide higher overall bandwidth, more efficient
use of shared on-chip resources, and a modular design that is
easier to design, verify and fabricate. NoC designs are sensitive
to many parameters such as topology, buffer sizes, routing
algorithms, and flow control mechanisms. Hence, detailed
NoC simulation is essential to accurate full-system evaluation.

To study the performance trade-offs of NoCs, software
simulation is used widely, both as stand-alone network sim-
ulators [4], [5] and as the interconnect component of large
full-system simulators [6], [7]. Software simulation has the
advantages of being very flexible, easy to program, fast to
compile, and deterministic (making it amenable to debugging).
However, software simulation of large NoCs is slow, which
adds to the already burdensome computation required to per-
form detailed full-system simulation. To maintain reasonable
simulation times, the user may need to simulate at a higher
level of abstraction. For example, instead of a cycle-accurate

Department of Electrical and Computer Engineering, University of Toronto,
ON.
E-mail: {wangda,locharl1,vasiljev,enright,steffan}@eecg.toronto.edu

Fig. 1. DART Simulator architecture on the FPGA

model of the router’s microarchitecture, using a simple ideal
switch that does not model the resource contention within
the router reduces the amount of computation required for
simulation.

The increased on-chip logic and memory capacities of
FPGAs (Field Programmable Gate Arrays) allow an entire on-
chip system to be prototyped or emulated on a single device.
Several FPGA-based NoC emulators [2], [3], [8], [9] that
reduce simulation time by several orders of magnitude have
been proposed. These dramatic speedups are possible because
the emulator is constructed by laying out the entire NoC on the
FPGA, allowing the hardware to exploit all available fine and
coarse grain parallelism between the emulated events in the
NoC. However, this direct approach has three key drawbacks
relative to software simulation: (i) any change in the simulated
NoC requires manual redesign of the emulator HDL, (ii)
redesign in turn requires complete compilation/synthesis of
the FPGA design, which can take hours, or up to a day for a
large design, and (iii) the maximum simulatable NoC size is
determined by the FPGA capacity.

A. Flexible NoC Simulation Engine

We bridge the speed and usability gap between software
and hardware approaches of NoC simulation by proposing a
novel overlay architecture for FPGA-based NoC simulation.
The simulator architecture, which we call DART, provides a

Digital Object Indentifier 10.1109/TC.2012.121 0018-9340/12/$31.00 © 2012 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 2

parametrized model of a generic NoC where the parameters
can be set by software to simulate different NoCs without
modifying the hardware simulator on the FPGA. Fig. 1
shows the organization of DART, which consists of a fully-
connected collection of fixed-function components that model
the building blocks of an NoC: traffic generators, routers
and queues. Configurable parameters within each node allows
behaviors of individual nodes to be altered to match nodes
in the simulated NoC. The global interconnect provides all-
to-all communication between DART nodes, thus allowing
simulation of different topologies. In addition, the simulated
time is decoupled from the FPGA cycles through the use of
a global time counter. It is incremented once every simulated
cycle after all network transfers for that cycle are simulated,
which may take a variable number FPGA cycles. Virtualizing
simulation time allows us to optimize the DART components
for area efficiency. DART also supports virtualized router
contexts to allow a larger number of simulated router nodes
than physical nodes.

B. Contributions

This work makes the following contributions: (i) an abstrac-
tion model for NoC simulation on FPGAs and the demon-
stration of the feasibility of a software configurable FPGA-
based NoC simulator with negligible area overhead relative
to existing emulators that do not support configuration; (ii)
evaluation of the implementation of a nine-node DART using
a Xilinx Virtex-II FPGA, and a forty-nine-node DART using
a Virtex-6 FPGA; (iii) a comparison of the performance of the
DART simulator to the well-known software NoC simulator
Booksim and the demonstration of over 100-fold speedup.

II. RELATED WORK

A. Software NoC Simulators

Most NoC simulators are written in software so they are
easy to develop and modify, and can be designed to be very
accurate. Stand-alone network simulators such as Booksim [4]
and SICOSYS [5] are used widely by researchers. Their
modular design allows variations of network components such
as routing algorithms and allocators to be easily incorporated.
Both Booksim and SICOSYS use synthetic traffic, where pack-
ets are injected according to a random process. Synthetic traffic
stresses network resources and provides a good estimate of the
network’s performance under worst-case traffic scenarios.

Full system simulators such as GEMS [10] and SimFlex [6]
enable computer architects to study the interaction between
processor architecture and other system components using real
applications. They incorporate NoC simulators to model the
communication fabric. Different simulators model the NoC at
varying levels of detail. SimFlex has a simple network model
that assumes perfect routers with infinite switching bandwidth
and computes packet delay based solely on the topology of
the network and the latency/bandwidth properties of the links.
These simplified assumptions may lead to underestimates of
network latencies when there is congestion. GEMS’s Gar-
net [7] interconnect simulator provides a more accurate model

of a classic five-stage pipelined router with virtual channels,
and hence can provide better estimates of system performance.

Although software simulators offer many advantages, the
most important being the ease to add and modify models,
they can be slow. Typical simulation speeds range from the
low KIPS (Thousands of Instructions per Second) to 100s of
KIPS, depending on the detail level of the models [11]. Paral-
lelizing the software simulators and leveraging modern multi-
core processors to improve simulation speed is non-trivial, as
NoC simulation is communication-intensive and requires fine-
grained synchronization. Naı̈ve parallelization can incur high
synchronization cost. DARSIM [12] and HORNET [13] are
parallel NoC simulators that achieve good scalability for up
to four to six threads in cycle-accurate mode, which requires
two global synchronizations per simulated cycle. Relaxing this
constraint allows good scaling to eight to twelve threads at the
cost of lower accuracy.

B. FPGA-based NoC Models

With advances in process technology, newer FPGAs offer
enough logic and memory capacity to implement a complete
digital system on a single chip. As a performance evaluation
platform for NoCs, FPGAs have two advantages over soft-
ware simulators. First, the fine-grained parallelism in NoC
simulation can be exploited by a large collection of dedicated
function units. Second, the high amount of communication that
is expensive to implement in a coarse-grained thread model is
easily accommodated by the abundance of wires available to
connect functional units. As a result, FPGA-based NoC models
can be orders of magnitude faster than software simulation.

Genko et al. [3] describe an emulation platform that consists
of programmable traffic generators and receptors that drive
a 6-switch NoC and is 2600-fold faster than a SystemC
simulation of the same network. While this platform supports
programmable traffic patterns and statistics counters, changing
the configuration of the network requires re-synthesis of
the emulator. DRNoC [2] circumvents this requirement by
leveraging the partial reconfigurability of Xilinx FPGAs. The
DRNoC host FPGA is divided into grids; each grid slot can
be dynamically reconfigured to implement a new component
to model different networks. However, partial reconfiguration
requires a special design flow and incurs area overheads; it
is also only available for select devices. In contrast, DART’s
configuration interface is based on a generic shift register and
is portable to any FPGA.

NoCem [8] improves emulation density over Genko et al.’s
design [3] and implements a 9-node mesh network on a
single FPGA by eliding the router pipeline details and virtual
channels. Instead of sacrificing these important details, we
employ a simple design for each DART Router: each has
multiple input ports but only one output port, and models the
all-to-all switching in a simulated router by routing one input
port per DART cycle.

All of the aforementioned NoC evaluation platforms do not
distinguish between the FPGA-based evaluation architecture
and the architecture of the modeled NoC. As a result, to study
a different NoC, the emulator must be modified and the FPGA

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 3

synthesis-place-route steps are repeated. This process is labor-
intensive and time consuming. Moreover, they do not allow
emulation performance to be traded off for other important
criteria such as the implementation area.

Wolkotte et al. [9] allow performance/area trade-offs by
virtualizing a single router on an FPGA. An NoC with multiple
routers is simulated by iterating multiple contexts through the
router model. An off-chip ARM processor stores N contexts
for the router model and orchestrates the emulation of the
N-node network. This approach allows the router model to
be much more detailed, although changing the router con-
figuration still requires hardware changes. In addition, the
off-chip ARM/FPGA communication link is a performance
bottleneck. DART also supports virtualization of routers but
virtualization is achieved without requiring expensive off-chip
memory accesses.

Papamichael [14] proposes two FPGA-based NoC simulator
designs: a direct-mapped and a virtualized design. The direct-
mapped approach directly instantiates the desired NoC onto
the FPGA; hence new NoC designs require new Verilog,
in turn requiring re-synthesizing the design which is time-
intensive for large FPGAs. DART avoids this overhead through
a software reconfigurable substrate. The virtualized implemen-
tation uses a single virtualized router to simulate all routers
in the network; all routers are simulated before proceeding to
the next cycle. This high degree of virtualization allows very
large router designs to be simulated in conjunction with very
large network sizes which would be infeasible in the direct-
mapped approach due to resource limitations on the FPGA.
DART virtualization maintains multiple router instances each
with multiple contexts; this allows us to simulate large systems
while paying a smaller performance penalty.

DART provides a flexible FPGA-based NoC simulator
platform by decoupling the simulator architecture from the
architecture of the simulated system. This technique is bor-
rowed from FPGA-based processor simulators [11], [15], [16],
[17]. ProtoFlex [15] is a functional simulator of a multi-
core processor. It implements a SPARC V9 processor pipeline
on the FPGA and uses multithreading to simulate multiple
processors. RAMPGold [16], [18] also uses a virtualized
functional model to simulate multiple processors. In addition,
it contains a timing model and adds the ability to configure
some system parameters, such as the number of simulated
cores, cache configuration and simulated DRAM timing char-
acteristics, after the simulator is implemented on the FPGA.
A-Ports [11] proposes a method to abstract any synchronous
system into components connected by queues. Each queue has
some latency and bandwidth, and models the timing of the
component it connects to. HAsim [17] applies time-division
multiplexing (TDM) to both the cores and the routers in
the on-chip network; they note that applying TDM to the
cores is more straightforward as each core is independent
(e.g., core 0 cannot change the register file of core 1). NoCs
represent a more challenging case as there are cross-router
dependences. HAsim proposes a novel permutation technique
to handle these dependences. While DART employs the same
high level strategy as these simulators, NoC architectures are
significantly different from processor pipelines. An NoC is a

TABLE I
DESCRIPTOR FORMATS

Flit descriptor format (36 bits)

Bit Range Width Description

35 1 Head flit boolean flag
34 1 Tail flit boolean flag
33 1 Measurement flit boolean flag

32:23 10 Timestamp to forward to next hop
22:15 8 Destination node address
14:5 10 Source node address (if this is a head flit)

or injection timestamp
4:2 3 Next hop port ID
1:0 2 Next hop virtual channel ID

Credit descriptor format (12 bits)

Bit Range Width Description

11:10 2 Virtual channel ID
9:0 10 Timestamp to forward to next hop

distributed system and has more communication. We design
the DART architecture to efficiently and accurately capture the
characteristics of an NoC. We describe the DART architecture
in the next section.

III. DART ARCHITECTURE

The basis of the DART architecture is to provide pro-
grammability by decoupling (i) the simulator architecture from
the architecture of the simulated NoC, and (ii) DART cycles
from simulated cycles. To provide a configurable functional
model for NoC simulation, we abstract common NoC function-
alities into three basic components: Traffic Generators (TGs),
Flit Queues (FQs) and Routers. Components can be mixed and
matched to model more complex NoC nodes. A given topology
is then simulated by configuring the Routers to only forward
to their simulated neighbors via the global interconnect; this
configuration does not require re-synthesis.

Traffic Model A typical NoC carries two types of traffic: flits
(flow control units) that carry data messages and credits that
are exchanged between neighboring routers to enforce flow
control [4]. DART models flits and credits using descriptors
that contain only the information necessary to forward them
from source to destination. A description of the descriptor
formats is given in Table I. A 36-bit flit descriptor encodes the
injection and next-transfer timestamps, source and destination
addresses, and boolean flags for the flit type (head, tail, and
warmup). Warmup flits are used to bring the network to steady
state and hence do not have their latencies recorded. Not
encoding the data payload saves area as fewer bits are stored
and passed between DART nodes. We choose 36 bits to match
the port width of embedded RAM blocks on the FPGA, which
are used to implement the flit buffers. Anything wider doubles
the RAM usage as two RAM blocks must be used in parallel
to support the data width. A credit descriptor encodes only a
timestamp and a virtual channel ID.

Timing Model To capture the timing of flit transfers, we
use a global time counter to synchronize all network events.
Each flit contains a timestamp that indicates when the next

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 4

N_through ++
if(T_enqueue>T_last_flit || N_through>=bandwidth)

T_dequeue = max(T_enqueue, T_last_flit+1)
N_through = 1

else
T_dequeue = T_enqueue

T_dequeue += latency

Fig. 2. Algorithm to calculate the dequeue timestamp in an FQ

Fig. 3. Flit Queue datapath. The Inf block ensures that the flits at the head
of the FIFOs are only dequeued according to their timestamps

transfer of this flit should happen. As a flit traverses the
network, its timestamp is updated by intermediate DART
nodes to reflect the delay due to pipeline latency and simulated
contention. Credit transfers are timed similarly. Upon arrival at
the destination TG, a flit’s latency is computed by subtracting
the injection timestamp from the arrival timestamp. The 10-bit
timestamps allow DART to correctly compute latency provided
a flit’s latency does not exceed 1024 simulated cycles. We
believe this is a reasonable compromise to keep the flit
descriptors within 36 bits as most on-chip communication
takes no more than a few hundred cycles. However, the
maximum simulation length DART supports is not limited
to 1024 cycles. By using signed subtractions to compare
timestamps, we can correctly determine the chronological
order of timestamps within 512 simulated cycles even when
the global time counter wraps around. Since the DART design
guarantees that timestamps of all flits traversing the global
interconnect fall within a N -cycle window, where N is the
simulated latency of the router pipeline and is smaller than
512, flits will always be delivered in correct simulation order.

Design Space Coverage The bit widths of the other descriptor
fields are also chosen to be minimum size while still providing
sufficient functionality coverage. The 8-bit node addresses, 3-
bit port ID and 2-bit virtual channel (VC) ID allow DART to
scale to 256 nodes, 8 ports per node and 4 virtual channels
per port. Configurations that fit within these flit widths can be
setup in software at run-time. These widths do not fundamen-
tally limit the size NoC that DART can simulate; larger sizes
can be accommodated through re-synthesis with only minor
HDL changes.

A. Flit Queue (FQ)

The Flit Queue component models the VC buffers at a
router’s input port and the bandwidth/latency constraints of
the wire link feeding the port. The buffers are independent
FIFO (first-in-first-out) queues. They are implemented using a
single block-RAM that is statically partitioned among the VCs.
A Verilog parameter controls the number of VCs to incorporate
(set to two in our current implementation).

TABLE II
PACKET DESCRIPTOR FORMAT (32 BITS)

Bit Range Width Description

31 1 Measurement packet boolean flag
30:21 10 Injection timestamp
20:19 2 Virtual channel ID
18:16 3 log2(packet size) - 1
15:8 8 Destination node address
7:0 8 Source node address

Figure 3 shows the FQ datapath. For each incoming flit, the
FQ computes the new dequeue timestamp to properly reflect
the delay it experiences traversing the link due to latency
and bandwidth constraints. The algorithm to compute the new
timestamp is shown in Figure 2. Here Nthrough counts the
number of flits through the FQ during a simulated cycle.
Tlastflit is the dequeue timestamp of the previous flit less
the link latency. Both the latency and bandwidth parameters
are configurable per FQ.

After the timestamp is updated, the flit is queued according
to its VC. It is forwarded to the next-hop Router when it gets
to the front of the FIFO and the global simulation time is
equal to its timestamp. This ensures all flits arrive at a Router
in chronological order, which is required for correct simulation
of resource contention at the routers. A separate FIFO is used
for the credit channel. Similar to the flits, a credit can leave
an FQ only during its scheduled dequeue time.

B. Traffic Generator (TG)

When enabled, a Traffic Generator injects traffic in one of
two modes: synthetic or dynamic. The former is useful for
stress testing the simulated network. The latter provides an
interface to incorporate DART into a full-system evaluation
framework. The mode is configurable per TG.

In synthetic mode, a TG injects flits in bursts of fixed
sized packets using a Bernoulli process. Packet size (minimum
2 flits), destination node address, and injection interval are
configurable per TG.

In dynamic mode, a TG receives packet descriptors (Ta-
ble II) from the host PC and injects packets according to
the descriptors. Packet size can be varied between 2 and 256
flits in powers of 2. Packet descriptors can be generated from
either a memory access trace or a processor simulator running
concurrently with DART. Due to the required high volume of
packets, the dynamic traffic is delivered onto the FPGA via a
designated high-bandwidth link.

The traffic delivery path is implemented as a carry-chain
which reaches all of the TGs in order. The packets are sent
serially while each TG snoops the traffic path, and grabs
its corresponding packet. The carry-chain implementation ap-
proach increases latency between the host-PC and the nodes.
An alternative approach is to implement a low-latency, high
fan-out mux distribution to all the TGs. Considering the large
bus width required for each packet, this approach exhibits a
significantly lower fmax and requires significantly more FPGA
resources. This approach is discarded so as not to limit the
maximum number of implementable nodes within DART.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 5

Fig. 4. Traffic Generator datapath

Each node has a small local FIFO holding its traffic data
and feeding it to the PacketPlayFSM. The local FIFOs are
necessary to prevent possible starvation of packets which can
arise due to the carry-chain implementation and a particular
order of packets in the traffic stream. We avoid this by allowing
the FIFOs to store packets ahead of the current simulated
cycle and ensure that starvation does not occur. If packets are
delivered in order of the simulation cycle, then the maximum
distance between two consecutive packets targeting the same
node is the total number of nodes in the system. For this
reason, the minimum FIFO depth is the total number of nodes,
rounded up to a multiple of 2 (due to the use of BRAMs).

Figure 4 shows the TG datapath. The Bernoulli FSM and
PacketPlay FSM handle the traffic injection of the synthetic
and dynamic injection modes respectively. In addition, each
TG also contains two FQs: the input buffer models the last-
hop delay to the TG, and the output buffer models the source
queue. We use the same technique from Dally and Towles [4]
and allow the injection state machine to lag behind the current
simulation time when the output buffer is full, to model an
infinite source queue. TGs also serve as traffic sinks and record
the number of packets received and the cumulative packet
latency. More statistics counters can be easily added.

C. Router

State-of-the-art NoCs use the classic wormhole VC router,
which is composed of per-VC flit buffers, routing logic, VC
and switch allocators and a crossbar. Since the FQs model the
flit buffers, the Router component only encapsulates the rout-
ing and allocation logic. Figure 6 shows the Router datapath.
The number of ports is set to five in our current implementa-
tion, but can be changed by setting a Verilog parameter. We use
table-based routing. Hence any deterministic routing algorithm
can be implemented. The table contents are configurable
without reprogramming the FPGA. The configuration of the
routing table also facilitates the simulation of a wide range of
topologies.

A 4-bit counter for each output VC is used to implement
credit-based flow control. Initial credit values represent the
number of entries in the input buffer at the downstream
router. The counter is decremented when a flit is routed,
and incremented when a credit is received. The values are
configurable for each VC and Router.

1) Area-Speed Trade-off: The allocators and the crossbar
in the classic router are complex structures [19]. A direct
implementation is too area-consuming. Instead, the DART

TABLE III
ALLOCATOR AND CROSSBAR IMPLEMENTATION COST IN TERMS OF THE

BASIC BUILDING BLOCKS REQUIRED IN THE CLASSIC ROUTER AND IN THE
DART ROUTER (pi IS THE NUMBER OF INPUT PORTS. po IS THE NUMBER

OF OUTPUT PORTS. v IS THE NUMBER OF VCS PER PORT.)

Structure Classic Router DART Router
VC Allocator piv v-to-1 arbiters and 1 v-to-1 arbiter and

pov piv-to-1 arbiters 1 v-bit po-to-1 MUX
Switch Allocator pi v-to-1 arbiters and 1 piv-to-1 arbiter

po pi-to-1 arbiters
Crossbar Switch pov piv-to-1 MUXes 1 piv-to-1 MUX

(a) (b)

Fig. 5. VC allocator implementation: (a) classic router, (b) DART Router

Router employs simple arbiters and a multiplexer to imple-
ment the same functionality by trading off simulation speed.
Table III outlines the implementation costs of the allocators
and crossbar in the classic router and their equivalents in the
DART Router. A two-stage VC allocator (Figure 5a), which
consists of piv v-to-1 arbiters in the first stage and pov piv-to-1
arbiters in the second stage is required because we allow flits
to allocate any free VC once the output port is determined
by the routing function. Figure 5b shows the DART Router
VC allocator for comparison. DART’s equivalent to the classic
router’s allocators and crossbar are much smaller.

As a result of this model simplification, the Router com-
ponent can only route one flit per DART cycle. To model
a 5-ported classic router, the input VCs are routed one at a
time while the global time counter is stalled so all input ports
appear to be routed in the same simulated cycle. A round-robin
scheme selects an input VC to route in each DART cycle. If
a flit cannot be routed due to failed VC allocation or lack
of credits for the requested output VC, it remains in the FQ.
It is considered again in the next simulated cycle. For every
simulated cycle that a flit is unable to route, its timestamp
is incremented to reflect the contention delay. When a flit is
finally routed, its timestamp is incremented by a fixed pipeline
latency. This pipeline latency is configurable per Router.

2) Send-Ahead Optimization: Once a flit is routed, it waits
in the Router output queue. It is forwarded to the next-hop
FQ at its scheduled dequeue time. The Router stalls when
the output queue is full. If the queue is not large enough to
cover the pipeline latency, deadlock may arise when global
time is stalled because there are unprocessed input ports, but
the output queue is not drained as the head flit waits for
its dequeue time. To keep the output queue size small while
avoiding deadlock, we let flits in the output queue proceed
immediately to the global interconnect so the output queue
can make forward progress even when global time stalls. The

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 6

Fig. 6. DART Router datapath

Fig. 7. DART’s global interconnect. Nodes are grouped into partitions so
the size of the crossbar needed is small. The source partitions are shown at
the top and the destination partitions are shown at the bottom.

flits still arrive at the receiving FQ in order because they
leave the Router in chronological order, despite being sent
ahead. Sending ahead also avoids bursty requests to the global
interconnect in the beginning of every simulated cycle. Overall
interconnect utilization is improved.

D. Global Interconnect

The global interconnect provides uniform-latency commu-
nication between all DART nodes. By configuring the routing
tables appropriately, DART can simulate any topology. The
maximum node radix is limited by the number of ports
configured in the Router components. Figure 7 shows the in-
terconnect organization. Each DART node consists of one TG,
one Router, and four FQs to implement a 5-ported wormhole
router. The number of FQs to incorporate is controlled by
a Verilog parameter. We choose not to use a full crossbar
for the global interconnect because crossbar area increases
quadratically with the number of input and output ports. It will
not scale as we incorporate more nodes into DART. Instead,
DART nodes are grouped into partitions and the partitions
are connected by a small crossbar. A separate, narrower but
otherwise identical interconnect is used to carry the credit
traffic.

A flit crosses the global interconnect in two stages. First, it
arbitrates for the source partition output, which is connected

to a crossbar input port. Upon winning the arbitration, the
flit arbitrates for the desired crossbar output at the destina-
tion partition. Both intra- and inter-partition arbitrations use
simple round-robin arbiters, with priority given to flits with
timestamps equal to the current simulation time (urgent flits).
These flits must be forwarded first before ticking the global
time counter to prevent late flits, which may cause out-of-order
flits at the next Router. Flits with a timestamp ahead of the
current simulation time (future flits) can be forwarded out-of-
order across the global interconnect because flits destined for
each FQ remain in order. Within each source and destination
partition, the priority is implemented by having two separate
arbiters for the urgent flits and future flits. The result of
the urgent arbiter always takes precedence. When there are
no valid requests for the urgent arbiter, it indicates that all
urgent flits have crossed the interconnect. The global time
counter is then incremented. Because it takes a cycle to detect
this condition, each simulated cycle takes at least 2 DART
cycles. The global interconnect is on the timing critical path.
Hence, it is pipelined to improve maximum achievable system
clock frequency (fmax) during implementation. The pipeline
registers are inserted after the source partitions.

The partitions are the throughput bottleneck because only
one flit can be sent and received by a partition per DART
cycle. For a fixed number of DART nodes, varying the size
of the partition trades off the global interconnect throughput
for implementation area. We discuss this in more detail in
Section V-D. For our current 9-node implementation, we use 8
partitions connected by an 8×8 crossbar. In general, the largest
crossbar that fits in the device once the nodes are implemented
should be chosen.

E. Virtualization

A given FPGA can only support a limited number of
physical NoC nodes, limiting the size of the simulated NoC.
To allow the simulation of a NoC with more simulated nodes
than physical, DART supports node virtualization such that
several simulated NoC nodes can be represented using multiple
contexts on a physical DART node. The concept of applying
virtualization to FPGA simulators has been used in previous
approaches [14], [17]; in this section, we describe how to

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 7

apply virtualization specifically to DART and novel techniques
used to improve DART’s virtualized performance. In Sec-
tion V-E we explore the impact of virtualization on DART.
Each additional context uses significantly less resources than
would additional full DART nodes; however, the operation
of virtual contexts is necessarily serialized which reduces the
performance of the system.

To minimize the performance impact of this serialization,
the different DART components are able to switch between
contexts independently. Within the router, a rotating priority
encoder is used to select between contexts with valid flits.
Likewise, an arbiter that favors urgent flits is used to select
between valid contexts at the source partition of the global
interconnect. However, the synthetic traffic generator, due to its
random nature, must touch all contexts during each simulation
cycle to test for flit injection. To accommodate the extra logic
delay associated with context selection, additional pipeline
stages were added to the router and traffic generator.

The primary incremental area cost of adding virtual contexts
to DART nodes is the memory required to store the extra
state information. Since the operation of virtual contexts is
serialized, few read and write ports are required for these
memory structures. To maintain high memory density, block-
RAMs were used for flit queue and routing table storage while
distributed RAMs were used to hold other state information.

To ensure correct ordering among packets between virtual-
ized routers, Papamichael [14] implements double-buffering.
This double buffering isolates events belonging to different
target cycles. HAsim [17] sets the simulation order of nodes
to ensure proper routing of data between them. In contrast, cor-
rect ordering of packets in virtualized DART is maintained nat-
urally using the same timestamp mechanism as non-virtualized
DART. For correctness, our virtualized DART architecture
must ensure that all pending actions for virtual contexts in the
current simulation cycle are handled as described previously.

F. Configuration and Data Collection

As described in previous sections, each DART node is
highly configurable. Table IV lists the parameters by node
type. With the exception of the routing table, the parameters
are chained in a 16-bit shift register. The configuration byte-
stream is received from the host PC and shifted into the chain.
The RAM-based routing tables are connected to the input end
of the shift register. Each table has a finite state machine that
captures a segment of the configuration bits to populate the
table. An enable signal is asserted to start the simulation when
configuration completes.

Similar to the configuration registers, performance counters
are read back by shifting them through a 16-bit-wide chain.
Currently three counters are incorporated per TG to record
the number of injected and received packets (32 bits) and
the cumulative packet latency (64 bits). More counters can
be easily added to this shift register chain.

G. Software Tools

The DART software tools run on a host PC connected to
the FPGA where the hardware simulator resides. They allow

TABLE IV
CONFIGURABLE PARAMETERS IN DART NODES

Node FF-based RAM-based

Traffic Gen Destination node address
Bernoulli threshold
Taus RNG seeds
Packet size (in flits)

Flit Queue Latency
Bandwidth

Router Initial credit counts Routing table
Pipeline latency

Fig. 8. DART software flow. DARTgen creates the configuration byte-stream
from user specifications. DARTportal provides an interactive interface for the
user to control the hardware simulator.

SourcePartitions 8
DestPartitions 8

SwitchPorts 5
NumVCs 2

SP 0 DP 0 NumNodes 2
SP 1 DP 1 NumNodes 1
SP 2 DP 2 NumNodes 1
SP 3 DP 3 NumNodes 1
SP 4 DP 4 NumNodes 1
SP 5 DP 5 NumNodes 1
SP 6 DP 6 NumNodes 1
SP 7 DP 7 NumNodes 1

Fig. 9. Architecture description file for a 9-node DART simulator

the dynamic reprogramming of the hardware simulator after it
is implemented on the FPGA. Fig. 8 shows the software flow.
The components are described in this section.

1) Configuration Generation: DARTgen creates the con-
figuration byte-stream from an Architecture Description File
(ADF) and a Network Description File (NDF)—an excerpt
of the ADF is shown in Fig. 9. The ADF specifies the on-
chip architecture by listing the number of partitions on the
interconnect and the number of nodes within each partition.
Each partition is identified by its source partition ID (SP) and
destination partition ID (DP). The NDF describes the user
network to simulate, including the topology, routing tables,
traffic pattern, and properties of individual links and routers.

The DARTgen flow consists of three stages: network ex-
traction, placement, and byte-stream generation. In network
extraction, DARTgen constructs a graph of the user network
from the NDF. Each vertex represent a router and its host node.
The edges represent the links between routers. The vertices
and edges are annotated with properties specified in the NDF.
A model of the on-chip partition hierarchy is also constructed
from the ADF.

In placement, vertices and edges are mapped to Routers

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 8

and Flit Queues, with the host node in each vertex mapped to
the Traffic Generator connected to the corresponding Router.
We use a round-robin scheme to balance the number of used
nodes across different partitions. This provides sufficient load
balancing because the on-chip communication bottleneck is
within each partition, where the nodes contend for the shared
access to the inter-partition crossbar. Intra-partition contention
can be further reduced by grouping neighbors of a common
node in the user network into one partition. Because the
common node can only send to one member of the group in
a simulated cycle, there is less competition within the group
to use the crossbar output.

Finally in byte-stream generation, the configuration bytes
for the architecture nodes are printed to a file in the order that
they are connected in the configuration chain on-chip. This
file is used by the front-end tool DARTportal to program the
on-chip simulator.

2) Front-end Interface: DARTportal provides a command-
based interactive interface to configure, run and collect data
from the simulator. It is implemented in two layers for porta-
bility. The top layer implements all functionalities exposed by
the command protocol of the DART off-chip interface. The
bottom layer contains driver code to directly communicate
with the physical interface used to connect to the FPGA.
Only the bottom layer needs to be modified when a different
physical interface is used for DART’s off-chip interface.

IV. IMPLEMENTATION

To demonstrate the functionality of DART and to obtain
real measurement of simulation speed, we implement a 9-
node DART on a Xilinx University Program Virtex-II Pro
Development System [20]; note that the Virtex-II FPGA uses
4-input Look-Up Tables (LUTs) as programmable logic. In
addition, we implement a scaled 49-node DART on a Virtex-6
FPGA using a ML605 Development System (ML605) [21].
The newer and larger Virtex-6 FPGA uses 6-input LUTs
as programmable logic—consequently, the scaled 49-node
results are measured in terms of 6-LUTs, and the correctness
results are shown using a 4-LUT-based device. We design the
DART components in Verilog HDL, and use the Xilinx ISE
12.3 software suite for synthesis and implementation. Device-
specific constructs are avoided whenever possible so that the
simulator core can be implemented on different FPGA systems
with minimal changes.

A. 49-node DART on a Virtex-6

The ML605 platform contains a Virtex-6 XC6VLX240T
FPGA that has 37,680 slices and 416 embedded RAM blocks.
Each block-RAM has a capacity of 36Kb and has two read-
/write ports each with maximum width of 36 bits. Table
V shows the resource breakdown of the DART components
as implemented on the ML605 platform. Because every two
Routers share a dual-ported routing table implemented using a
dual-port block-RAM, each Router uses 0.5 block-RAMs on
average. The maximum number of DART nodes that fit on
this FPGA is 49. Each node consists of one Traffic Generator
(TG), one Router with 5 ports, and four Flit Queues (FQs)

TABLE V
RESOURCE UTILIZATION BREAKDOWN OF A 49-NODE DART ON A

VIRTEX-6 FPGA

Module 6-LUTs Registers % of Total
(Slices)

Traffic Generator 22,981 10,535 25%
Flit Queue 6,272 2,156 15%

Router 9,114 3,087 15%
Global Interconnect 2,096 3,776 7%

Control Unit 88 56 0.1%
PCIexpress Core 1,236 132 1%

TABLE VI
DART SCALABILITY AND RESOURCE UTILIZATION ON A VIRTEX-6

FPGA

DART Size Partition 6-LUTs Registers Block % of
Size RAMs Total

(SPxDP) (Slices)

9 node 4x4 10,630 6,850 12 9%
9 node 8x8 23,061 14,104 22 22%
16 node 4x4 37,265 22,400 36 34%
16 node 8x8 38,209 22,973 36 35%
16 node 16x16 42,912 24,213 36 38%
25 node 4x4 56,124 33,854 54 49%
25 node 8x8 56,838 34,459 54 51%
25 node 16x16 62,204 35,723 54 55%
36 node 4x4 79,123 47,856 76 69%
36 node 8x8 80,366 48,436 76 70%
36 node 16x16 84,915 49,552 76 72%
49 node 8x8 108,166 64,957 102 87%
49 node 16x16 112,434 66,184 102 89%

Total Available 150,720 301,440 416 100%

with two VCs each. We use 16 partitions in the global
interconnect, which is the largest that fits on the FPGA. The
final implementation runs at 50MHz.

1) RAM Optimization: DART uses FIFO buffers exten-
sively. FIFOs can be implemented either in block-RAMs or
LUT-based shift registers on an FPGA. When implemented
in a RAM, a FIFO consumes both ports of the RAM block
to allow simultaneous read and write operations. In general,
implementations which approach the upper limit of an FPGA’s
resource availability, such as logic cells and block RAMs,
become increasingly harder to implement due to placement
and routing restrictions imposed on the compiling tools. As a
result, large designs typically require manual customization to
successfully fit onto the FPGA.

In DART’s case, the customization was three-fold. First,
because a FQ can receive at most one flit and send one flit
per DART cycle, the VC buffers in the FQ can share a single
statically partitioned RAM block for storage. The FIFO output
registers and control logic must be replicated. Second, some
FIFOs were mapped onto block RAMs, while others onto
distributed logic with the attempt to reduce the burden of
the place and route step in the Xilinx ISE tools. Third, we
implement the shallow output buffers in the Routers using
LUT-based SRL16 shift registers [22]. Further, because routing
tables are read-only during simulation, we can pack two into
each dual-port block-RAM to utilize both ports. One of the
ports is configured to be read/write and is used to configure
the table contents.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 9

TABLE VII
3×3 MESH BENCHMARK CONFIGURATION PARAMETERS

Topology 3 × 3 mesh
Link latency 1 flit cycle

Router architecture Input queue
Routing algorithm Dimension-order (XY)
of VCs per port 2

VC Allocation Round-robin
Input VC buffer size 5

Router pipeline latency 5 flit cycle
Traffic pattern Permutation traffic

Packet size 2 flits

B. Scalability

DART’s design allows for a convenient scalability de-
pending on the amount of available resources on the FPGA
accessible to the user. For example, the Virtex-II FPGA on
the XUPV2P development board can fit a 9-node simulator,
while a Virtex-6 FPGA on the ML605 development board can
accommodate a 49-node simulator. The paths connecting the
nodes are pipelined in a way as to minimize their impact on
degrading scalability. For example, the global interconnect,
the configuration carry-chain, and the dynamic traffic carry-
chain are all pipelined. As a result, the critical path lies within
the node itself, thus accommodating larger simulator sizes.
Consequently, as DART scales the fmax remains at 50 MHz.
Table VI shows the resource breakdown of the scalable DART
simulator on the ML605 platform.

V. ANALYSIS

In this section we validate DART’s simulation results using
Booksim as a reference. Because Booksim is widely used
among NoC researchers, we hope this choice of baseline
provides more confidence in DART’s correctness and perfor-
mance potential. We measure DART’s speedup over Booksim
using our Virtex-II Pro implementation. We also investigate
the performance cost of a programmable simulator architecture
and DART’s scalability.

A. Correctness

We developed a cycle-accurate DART architecture simulator
in C++ prior to building the FPGA architecture to explore
different design options and to verify the correctness against
Booksim. The architecture simulator also serves as the design
specification during hardware implementation. Results shown
in this section are obtained from this architecture simulator.

We simulate a 9-node mesh network and compare the
measured average latency reported by Booksim and DART
(Fig. 10). Table VII shows the parameters of the simulated
network. To investigate the accuracy loss DART incurs by not
modeling the delay through each stage separately, we simulate
two router configurations in Booksim: booksim has a 5-cycle
routing delay and zero switch and VC allocation delay, while
booksim2 has a 4-cycle routing delay, 1-cycle switch allocation
delay and zero VC allocation delay. We simulate 15,000 warm-
up cycles, 30,000 measurement cycles and a draining phase.
The flit injection rate is varied from 0.01 until saturation.
DART tracks Booksim closely at low injection rates. At higher

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

fli
t c

yc
le

s)

Flit Injection Rate (flits / node / cycle)

booksim
booksim2

DART

Fig. 10. Average packet latency for Booksim and DART for a 3×3 mesh

injection rates, the one-stage pipeline in the Router results in
a less accurate latency measurement. This is evident in that
DART latency is enveloped by the two Booksim configurations
that have the same overall router latency but different latencies
at each stage. To further investigate the mismatch, Fig. 11
shows the distribution of packet latencies at 0.4 flits per cycle.
The peaks at 8, 14, 20, 26, and 32 correspond to the zero-load
latencies for 0, 1, 2, 3, and 4-hop paths. The lower peaks reflect
the queuing delay and resource contention packets experience
at the routers. Booksim has a much longer tail than DART.
Because all contentions (buffer, VC, and switch) are modeled
in one stage in the DART Router, DART may under predict
the latency for a flit to acquire all resources. However, the
similar overall shapes of the two distributions increases our
confidence that DART produces useful predictions of network
performance trends.

B. Speedup vs. Software Simulation

In Fig. 12 we evaluate the 3×3 mesh benchmark described
in Table VII on the XUPV2P DART implementation and
compare the simulation speed to Booksim. For the Booksim
baseline, we measure the execution time of the main loop,
excluding network setup, on a 2.66 GHz Core 2 Quad Linux
workstation. Each data point is an average over 20 runs.
We measure DART’s execution time in DARTportal from the
sending of the “Run” command and until the end-of-simulation
signal is received back from the simulator. Configuration
time is excluded. The speedup is the ratio of the number of
cycles simulated per second in DART to that in Booksim.
We observe that Booksim’s simulation speed decreases with
increasing injection rate. DART’s speed is roughly constant,
with all measured run-times falling within 3% (0.528 ms)
of the average (20.5 ms for 50,000 cycles)—this is because
DART’s execution time increases slowly with traffic, and is
largely masked by the high IO overhead to send and read-
back commands to/from the simulator, which accounts for
over 50% of the measured time (about 11.7 ms). As a result,
DART achieves greater speedup at higher packet injection
rates. The IO overhead can also be amortized in longer-running
simulations of networks larger than the 3×3 mesh used here.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

<7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49>=50

F
re

qu
en

cy
 (

of

 p
ac

ke
ts

)

Average Packet Latency (flit cycles)

booksim1
DART

Fig. 11. 3 × 3 Mesh. Packet latency distribution measured by Booksim (booksim1) and DART at flit injection rate = 0.4

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 0.1 0.2 0.3 0.4 0.5 0.6

B
oo

ks
im

 S
pe

ed
 (

cy
cl

es
 /

s)

Flit Injection Rate (flits / node / cycle)

(a)

 0

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6

D
A

R
T

 S
pe

ed
 /

B
oo

ks
im

 S
pe

ed

Flit Injection Rate (flits / node / cycle)

(b)

Fig. 12. 3 × 3 mesh DART performance: (a) Booksim simulation speed, (b) Speedup achieved by DART vs. Booksim

C. Cost of Programmability

The main alternative to DART’s programmable architecture
is one that is directly laid-out in the FPGA fabric. In this sec-
tion we measure the performance cost of DART’s programma-
bility by measuring the overhead (extra cycles required) of
DART’s global interconnect and the simplified Router model,
relative to a model with a dedicated interconnect and full
routers. As shown in Fig. 13, we measure for a 9-node
and a 64-node DART all combinations of the two types of
interconnect and two types of router:

• dedicated: Baseline interconnect with dedicated links
between connected ports on neighboring nodes

• global: DART interconnect with 8 partitions
• 5port: True 5-ported router
• 1port: DART Router that routes 1 flit per DART cycle

Fig. 13a shows the number of DART cycles required per
simulated cycle for the 3×3 mesh benchmark from Table VII.
The baseline (dedicated+5port) has a constant cycles per
second (CPS) of 1 as it corresponds to a direct mapping of the
9-node mesh NoC. Global+5port shows the performance loss
due to the DART interconnect. The timer increment bubble,
described in Section III-D, limits the minimum CPS to 2.
Increased traffic causes more contention over the interconnect
and lower CPS. Dedicated+1port shows the performance loss
due to the serial processing of input VCs in the Router. CPS
increase with network traffic, as each Router has more input

VCs in use. Global+1port shows that for 9 nodes, because of
the small number of nodes and low throughput of the Router,
the global interconnect is not the performance bottleneck.
However, Fig. 13b shows that with more nodes, contention
increases for the global interconnect and it can become the bot-
tleneck. An appropriate interconnect size should be chosen for
each DART implementation. DART’s interconnect uses more
area than dedicated links, but the overhead is compensated
for by the simplified Router. Thus, the overall area cost is
comparable to published results from existing direct mapped
emulators [3], [8]. We believe the performance penalty is a
worthwhile trade-off for the ability to reconfigure the simulator
at run-time without any hardware modification.

D. Scalability

We explore the scalability of DART beyond 9 nodes on a
larger FPGA using the architecture simulator. The predicted
runtime does not include communication overhead to and from
the host PC.

1) Performance Scaling: Fig. 14 highlights the different
scaling trends of Booksim and DART for four mesh networks
of different sizes. The aggregated flit transfers per simulated
cycle is the product of the flit rate, average number of
hops between source and destination pairs and number of
nodes. It measures the overall amount of in-flight traffic that
traverses the network every cycle. Booksim’s simulation speed
depends on both the size of the simulated network and the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 11

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.1 0.2 0.3 0.4 0.5 0.6

D
A

R
T

 C
yc

le
s

/ S
im

ul
at

ed
 C

yc
le

Flit Injection Rate (flits / node / cycle)

dedicated+5port
global+5port

dedicated+1port
global+1port

(a)

 0

 5

 10

 15

 20

 25

 30

 0 0.05 0.1 0.15 0.2 0.25

D
A

R
T

 C
yc

le
s

/ S
im

ul
at

ed
 C

yc
le

Flit Injection Rate (flits / node / cycle)

dedicated+5port
global+5port

dedicated+1port
global+1port

(b)

Fig. 13. Overhead of the DART interconnect and simplified Router model for a (a) 9-node and (b) 64-node DART. 3×3 and 8×8 mesh with random
permutation traffic simulated.

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45

B
oo

ks
im

 S
pe

ed
 (

10
00

 c
yc

le
s

/ s
)

Aggregated Transfers (flit hops / cycle)

3x3 mesh
4x4 mesh
6x6 mesh
8x8 mesh

(a)

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35 40 45

D
A

R
T

 S
pe

ed
 (

10
00

 c
yc

le
s

/ s
)

Aggregated Transfers (flit hops / cycle)

3x3 mesh
4x4 mesh
6x6 mesh
8x8 mesh

(b)

Fig. 14. Booksim (a) and DART (b) simulation speed for different network sizes

amount of network activity because it must simulate every
cycle including those when the simulated network is idle.
This overhead dominates simulation time for large networks
and the network activity becomes an insignificant factor for
performance. DART’s simulated time advances faster when the
simulated network is idle. Its simulation speed thus depends
only on the amount of network activity. As a result, DART’s
speedup over Booksim varies from 300× for the 3×3 mesh to
2000× for the 8×8 mesh. These estimates are higher than the
measured speedup from Section V-B due to the overhead of
sending commands to the FPGA. In long-running simulations,
this overhead can be amortized. The design focus for DART
is on improving area efficiency so more simulator nodes can
be implemented on a given FPGA.

2) Performance vs. Resource Utilization: The global in-
terconnect is the main performance bottleneck in the DART
architecture because nodes within the same partition com-
pete for access to the input and output ports on the inter-
partition crossbar. Fig. 16 shows the performance impact
of various crossbar configurations for different DART sizes,
where SPx DPy denotes a global interconnect with an x × y

crossbar. Each data point is evaluated by simulating a torus
network using the DART global interconnect. We use per-
mutation traffic for each simulated network. The results for

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

4x4 4x8 8x4 8x8 8x16 16x816x16

Lo
gi

c
U

til
iz

at
io

n
(4

-L
U

T
s)

Interconnect Crossbar Size (SPxDP)

SourcePartitions
DestPartitions

Fig. 15. Resource utilization of different interconnect sizes

the SP4 DP8 and SP8 DP16 configurations are not shown
here because their performance is similar to that of the
SP8 DP4 and SP16 DP8 configurations respectively. Relative
to a square crossbar, doubling the number of either the input
ports or output ports only improves performance slightly as the
asymmetric configurations do not fully remove the contention
within partitions.

Fig. 15 shows the total resource utilization of the global
interconnect for a 64-node DART. The source partitions en-
capsulate the arbitration logic to allow sharing of the inter-
partition crossbar inputs; the area of each source partition
grows roughly linearly with the number of nodes in the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 12

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 9 16 25 36 64

D
A

R
T

 S
pe

ed
 (

10
00

 c
yc

le
s

/ s
)

Torus Size (number of nodes)

SP4_DP4
SP8_DP4
SP8_DP8

SP16_DP8
SP16_DP16

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 9 16 25 36 64

D
A

R
T

 S
pe

ed
 (

10
00

 c
yc

le
s

/ s
)

Torus Size (number of nodes)

SP4_DP4
SP8_DP4
SP8_DP8

SP16_DP8
SP16_DP16

(b)

Fig. 16. Performance impact of global interconnect sizes, evaluated using torus networks (a) flit injection rate = 0.1 (b) flit injection rate = 0.5

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5

D
A

R
T

 C
yc

le
s

/ S
im

ul
at

ed
 C

yc
le

Flit Injection Rate (flits / node / cycle)

1n9c
2n5c
3n3c
5n2c

Fig. 17. Performance impact of virtualizing nodes in a single partition, 9-
node system. The different configurations are written as xnyc where x is the
number of DART nodes instantiated and y is the number of contexts available
to each node.

partition. As a result, for a fixed number of DART nodes, the
aggregated resources used by the source partitions are roughly
constant, irrespective of the number of source partitions. The
destination partition contains the multiplexers that implement
the crossbar and the broadcast logic that enable the sharing
of the inter-partition crossbar outputs, and it grows linearly to
the number of source partitions. For the range of interconnect
sizes considered here, because the source partitions start off as
a significant portion of the total area, the overall LUT usage
of the interconnect grows roughly linearly with the number of
ports. For best performance, the largest square crossbar that
meets the area constraint should always be used.

E. Virtualization

Virtualization presents another option for trading off per-
formance and resource utilization. Since context information
is densely packed on to the FPGA memory structures, each
additional context requires much fewer LUTs relative to a fully
replicated DART node. Furthermore, block-RAMs are only
replicated once context storage exceeds the maximum RAM
depth instead of for every DART node. Thus while the ML605
platform described in Section IV-A supports up to a 49-node

0 1

4

2

5

3

6 7

(a)

0

1 2

3 4 5 6 7 8

(b)

Fig. 18. Two microbenchmarks: (a) 4×2 mesh with express links, and (b)
2-level tree

DART configuration, much larger networks may be simulated
by using one DART node per partition with multiple virtual
contexts. In particular, 64-node and 81-node simulators may
be configured running at 50 MHz and 46 Mhz respectively
on the ML605; these configurations are not possible without
virtualization.

The penalty for these area benefits comes in the form of
serialized operation of the contexts. Fig. 17 demonstrates the
performance of a single partition DART system, simulating
a 3×3 mesh, as physical nodes are replaced with virtual
contexts. At low injection rates, the minimum number of
DART cycles is limited by the synthetic traffic generator since
it must examine each context in turn during every simulation
cycle. Performance is further reduced from a non-virtualized
system due to the extra pipeline stages in the router and source
partition required to support context selection. As the injection
rate increases, the serialization penalty becomes apparent with
performance decreasing roughly proportional to the number
of contexts used. Despite the loss in simulator performance,
virtualization provides the flexibility for DART to simulate
large networks when working with limited hardware resources.

F. Case Studies

We choose two examples (Fig. 18) to demonstrate DART’s
ability to simulate different network configurations without re-
synthesis. The results presented in this section are simulated
using a randomly generated permutation traffic pattern. All
configurations are implemented on the same 9-node DART
described in Section IV.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 13

 10

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

fli
t c

yc
le

s)

Flit Injection Rate (flits / node / cycle)

NOEX_BUF5
EX1_BUF5
EX1_BUF4
EX2_BUF4

(a)

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

fli
t c

yc
le

s)

Flit Injection Rate (flits / node / cycle)

NOEX_BUF5
EX1_BUF5
EX1_BUF4
EX2_BUF4

(b)

Fig. 19. Express links performance: (a) 2-flit packets and (b) 16-flit packets

1) Mesh with Express Links: Fig. 18a illustrates a sim-
plified version of an express cube [23]. The solid lines
represent local links and the dashed lines represent express
links that allow non-local traffic to bypass intermediate nodes.
Fig. 19 shows the average packet latency for the following
configurations:

• NOEX BUF5: No express link, 5 flits/VC input buffer
• EX1 BUF5: With express links, 5 flits/VC input buffer
• EX1 BUF4: With express links, 4 flits/VC input buffer
• EX2 BUF4: EX1 BUF4 with 2-cycle express links
For all packet sizes, the express links reduce packet latency

because flits traverse fewer hops. The increased bisection
bandwidth afforded by the added links also allows the network
to accept higher load before saturating. To compensate for
the additional area the added express link port incurs in each
router, we reduce the input buffer size from 5 flits to 4
flits (EX1 BUF4 vs. EX1 BUF5). The resulting performance
degradation is progressively more pronounced for traffic with
larger packet sizes because they are more bursty, hence more
sensitive to buffer space in the router. Because the express
links span two hops, we increase their latency to 2 cycles while
keeping the latency of other links at 1 cycle (EX2 BUF4).
This configuration causes higher latency for large packets
because credits take longer to replenish on the slower express
links. However, the network still saturates later than the
NOEX BUF5 baseline.

2) Tree: Fig. 18b illustrates a tree where two sub-trees are
linked by a root router, where the bold lines represent global
links. This organization captures the essence of building blocks
in a hierarchical on-chip network. Only the leaf nodes generate
and receive traffic, and 50% of the generated traffic crosses
the root router. Fig. 20 shows the average packet latency for
the following configurations:

• BUF5 BW1: Unit latency and bandwidth for all links, 5
flits/VC input buffer

• BUF5 BW2: BUF5 BW1, bandwidth = 2 flits/cycle on
global links

• BUF10 BW1: BUF5 BW1 with 10 flits/VC input buffer
• BUF10 BW2: BUF5 BW2, with 10 flits/VC input buffer
For all packet sizes, increasing the global link band-

width (BUF5 BW2 vs. BUF5 BW1, BUF10 BW2 vs.

BUF10 BW1) does not significantly improve packet latency
because all flits crossing the global links must be first stored
in the buffers of the gateway routers (nodes 1 and 2), which
form the performance bottleneck. Increasing the buffer space
to 10 flits significantly reduces latency. Again the reduction is
greater for large packets because bursty traffic is more sensitive
to buffer sizes. Moreover, Fig. 20a and 20b show that once
the buffer space bottleneck is removed, increasing global link
bandwidth can provide additional performance improvement.

VI. CONCLUSIONS

We have presented a software-programmable overlay ar-
chitecture for NoC simulation on FPGAs. By decoupling
the simulator architecture from the architecture of the sim-
ulated NoC and virtualizing simulation time, DART improves
upon existing FPGA-based emulators by eliminating the high
cost of modifying and resynthesizing the hardware emulator
when simulating different NoCs. At the same time, DART
is significantly faster than software NoC simulators. Using an
implementation of a 9-node DART simulator on a Virtex II Pro
FPGA, we demonstrate over 100-fold speedup over Booksim
while maintaining a similar level of accuracy. Virtualization
allows DART to support more simulated NoC nodes than
physical. Through two examples, we also show that irregular
NoCs can be easily set up and simulated on DART. Finally,
we demonstrate that a 49-node DART can be supported on a
Xilinx Virtex-6 FPGA.

REFERENCES

[1] W. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” in Proc. Design Automation Conference, 2001.

[2] Y. Krasteva, F. Criado, E. de la Torre, and T. Riesgo, “A Fast Emulation-
Based NoC Prototyping Framework,” in Proc. Int’l Conf. on Reconfig-
urable Computing and FPGAs, Dec. 2008.

[3] N. Genko, D. Atienza, G. De Micheli, J. Mendias, R. Hermida, and
F. Catthoor, “A complete network-on-chip emulation framework,” in
Proc. Design, Automation and Test in Europe, March 2005.

[4] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2003.

[5] V. Puente, J. Gregorio, and R. Beivide, “SICOSYS: an integrated
framework for studying interconnection network performance in mul-
tiprocessor systems,” in Euromicro Workshop on Parallel, Distributed
and Network-based Processing, 2002.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS 14

 27

 28

 29

 30

 31

 32

 33

 34

 0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

fli
t c

yc
le

s)

Flit Injection Rate (flits / node / cycle)

BUF5_BW1
BUF5_BW2

BUF10_BW1
BUF10_BW2

(a)

 40

 50

 60

 70

 80

 90

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

fli
t c

yc
le

s)

Flit Injection Rate (flits / node / cycle)

BUF5_BW1
BUF5_BW2

BUF10_BW1
BUF10_BW2

(b)

Fig. 20. Tree performance: (a) 2-flit packets and (b) 16-flit packets

[6] N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wunderlich, S. Chen,
J. Kim, B. Falsafi, J. C. Hoe, and A. G. Nowatzyk, “SimFlex: a fast,
accurate, flexible full-system simulation framework for performance
evaluation of server architecture,” SIGMETRICS Perform. Eval. Rev.,
vol. 31, no. 4, pp. 31–34, 2004.

[7] N. Agarwal, T. Krishna, L.-S. Peh, and N. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in Proc. Int’l
Symp. on Performance Analysis of Systems and Software, April 2009.

[8] G. Schelle and D. Grunwald, “Onchip Interconnect Exploration for Mul-
ticore Processors Utilizing FPGAs,” in 2nd Workshop on Architecture
Research using FPGA Platforms, 2006.

[9] P. Wolkotte, P. Holzenspies, and G. Smit, “Fast, Accurate and Detailed
NoC Simulations,” in Proc. Int’l Symp. on Networks-on-Chip, May 2007.

[10] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood, “Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset,” SIGARCH Comput. Archit. News, vol. 33, no. 4, pp.
92–99, 2005.

[11] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer, “A-
Ports: An Efficient Abstraction for Cycle-Accurate Performance Models
on FPGAs,” in Proc. Int’l Symp. on Field Programmable Gate Arrays,
Feb. 2008.

[12] M. Lis, K. Shim, M. Cho, P. Ren, O. Khan, and S. Devadas, “DARSIM:
a Parallel Cycle-Level NoC Simulator,” in 6th Annual Workshop on
Modeling, Benchmarking and Simulation, June 2010.

[13] M. Lis, P. Ren, M. Cho, K. Shim, C. Fletcher, O. Khan, and S. Devadas,
“Scalable, accurate multi-core simulation in the 1000-core era,” in Int’l
Symp. on Performance Analysis of Software and Systems, April 2011.

[14] M. K. Papamichael, “Fast scalable FPGA-based network-on-chip simu-
lation models,” in Proc. of Int’l Conf. on Formal Methods and Models
for Codesign, 2011.

[15] E. Chung, E. Nurvitadhi, J. Hoe, B. Falsafi, and K. Mai, “PROToFLEX:
FPGA-accelerated Hybrid Functional Simulator,” in Proc. Int’l Parallel
and Distributed Processing Symposium, March 2007.

[16] Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanović, and D. Patterson,
“A Case for FAME: FPGA Architecture Model Execution,” in 37th Proc.
Int’l Symp. on Computer Architecture, May 2010.

[17] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer, “HAsim:
FPGA-based high-detail multicore simulation using time-division mul-
tiplexing,” in Proc. Int’l Symp. on High Performance Computer Archi-
tecture, 2011.

[18] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson, and
K. Asanović, “RAMP Gold: An FPGA-based architecture simulator for
multiprocessors,” in Proc. Design Automation Conference. ACM, 2010,
pp. 463–468.

[19] L. Peh and W. Dally, “A delay model and speculative architecture for
pipelined routers,” in Seventh Proc. Int’l Symp. on High-Performance
Computer Architecture, 2001.

[20] Xilinx, Inc., “Xilinx university program Virtex-II pro development
system hardware reference manual,” 2008. [Online]. Available:
http://www.xilinx.com/univ/XUPV2P/Documentation/ug069.pdf

[21] ——, “Xilinx ML605 development system hardware
reference manual,” 2011. [Online]. Available:
http://www.xilinx.com/support/documentation/boards and kits/ug535.pdf

[22] ——, “Using look-up tables as shift registers (srl16) in Spartan-3
generation FPGAs,” Appl. Note XAPP465, May 2005.

[23] W. Dally, “Express cubes: Improving the performance of k-ary n-cube
interconnection networks,” IEEE Transactions on Computers, pp. 1016–
1023, 1991.

Danyao Wang received the B.A.Sc. degree from the Engineering Science
program at the University of Toronto, and the M.A.Sc. degree from the
Electrical and Computer Engineering Department at the same university. She
is currently employed at Google Waterloo.

Charles Lo received the B.A.Sc. degree from the Engineering Science
program at the University of Toronto, and is currently a M.A.Sc. candidate in
the Electrical and Computer Engineering Department at the same university.

Jasmina Vasiljevic received the B.A.Sc. and M.A.Sc. degrees from the
Electrical and Computer Engineering Department at Ryerson University. She
is currently a Ph.D. candidate in the Electrical and Computer Engineering
Department at the University of Toronto.

Natalie Enright Jerger received the B.A.Sc. degree from the Department of
Electrical and Computer Engineering at Purdue University, and the M.S.E.E.
and Ph.D. degrees from the Department of Electrical and Computer Engi-
neering, University of Wisconsin - Madison. She is currently an Assistant
Professor in the Electrical and Computer Engineering Department at the
University of Toronto.

J. Gregory Steffan received the B.A.Sc. and M.A.Sc. degrees from the
Electrical and Computer Engineering Department at the University of Toronto,
and the Ph.D. degree from the Department of Computer Science, Carnegie
Mellon University. He is currently an Associate Professor in the Electrical
and Computer Engineering Department at the University of Toronto.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

