

An Evaluation of Server Consolidation Workloads for Multi-Core Designs

Natalie Enright Jerger, Dana Vantrease, Mikko H. Lipasti

University of Wisconsin - Madison

IEEE International Symposium on Workload Characterization September 27, 2007

- n Multi-core chips are here
- Many-core chips (10-100s of cores) are on the horizon
 - We need applications to evaluate future systems now
 - Programming parallel applications is not getting any easier
- Many-core systems can serve as consolidation platforms for multiple discrete applications

- ⁿ Consequences of growing server farms
 - n Higher management costs/overheads
 - Higher floor space and electricity consumption
 - ⁿ Less reliable
 - Individual servers may be underutilized
- n Virtualization facilitates consolidation of several physical servers onto a single highend system
 - Reduces management costs/overheads
 - ⁿ Increases overall utilization

Server Consolidation Overview

- Server workload characteristics well suited to multi-core architectures
 - n Multithreaded
 - ⁿ Take advantage of abundance of on-chip cores
 - ⁿ Communication intensive
 - Low latency cache-to-cache transfers
 - ⁿ On-chip sharing
- ⁿ Potential interference between applications
 - n Interconnect bandwidth
 - Memory controllers
 - ⁿ Cache resources

Opportunities with Server Consolidation Workloads

- Explore the relevance of server
 consolidation workloads to a variety of
 research communities
- Identify the interactions within server consolidation workloads
 - ⁿ Open up new avenues of research
 - ⁿ We focus on cache sharing within and between applications

n Motivation

- $_{n}$ Workloads
- n Cache Configurations
- n Evaluation Methodology
- n Results
- n Conclusions

Workloads

Workloads	Description	Setup	Execution
SPECjbb	Order processing application for wholesaler. Emphasizes the middle-tier business logic and performance of Java-based middleware.	3-tier client- server with 6 warehouses	6400 requests with 15 seconds of warm-up time
SPECweb	World-wide web server	3-tier, Zeus Web Server 3.3.7	300 HTTP requests
TPC-H	Decision Support System	IBM DB2 v6.1	Query #12 (shipping modes and order priority) on 512 MB database with 1GB of memory
TPC-W	Web commerce modeling online bookstore	IBM DB2 v6.1	Browsing mix for 25 web transactions

Workload Characteristics

	Percent of accesses resulting in \$-to-\$ transfer			Memory Footprint
	Clean	Dirty	Clean+Dirty	
SPECjbb	13%	2%	15%	Large
SPECweb	49%	3%	52%	Medium
TPC-H	30%	39%	69%	Small
TPC-W	34%	3%	37%	Large

n Many different combinations possible

Target CMP

n Affinity

- ⁿ Maximizes sharing
- Round n
 - **Robin/Interleaved**
 - Maximizes available cache
- Round Robin n Affinity Hybrid
- Random n
 - Result of load balanced scheduling

September 27, 2007

Natalie Enright Jerger IISWC

- ⁿ Vary degree of sharing
 - n Private
 - ⁿ Partially shared
 - ⁿ Shared
- Norrow Norrow
 - n Affinity
 - n Round Robin
 - ⁿ RR-Affinity Hybrid
 - n Random

Simulation Methodology (1)

- n PHARMsim
 - ⁿ Full-system simulator
 - n Runs AIX OS
- n Methodology
 - Each application isolated in its own Virtual Machine
 - ⁿ Runs its own copy of OS
 - Statically assign a portion of global memory private address space

Simulation Methodology (2)

- n Each VM:
 - n Loads 4-processor checkpoint
 - ⁿ Snapshot of the workload
 - ⁿ System already booted and warmed
 - ⁿ Alleviates overhead of booting the OS
 - ⁿ Runs both user and operating system code
 - ⁿ Fixed number of transactions
 - Ensures that the same set of transactions are run

Simulation Methodology (3)

ⁿ At startup the system:

- ⁿ Loads four VMs
 - Each VM runs a pre-made 4-processor checkpoint
 - Allows a mix and match of VMs for a variety of workload combinations
- ⁿ Assigns a VM to a subset of cores
 - All of a VM's threads run within their assigned domain
 - Assignment is maintained throughout simulation

Workload Mixes

Heterogeneous Mixes

Mix 1	TPC-W (3) + TPC-H (1)
Mix 2	TPC-W (2) + TPC-H (2)
Mix 3	TPC-W (1) + TPC-H (3)
Mix 4	SPECjbb (3) + TPC-H (1)
Mix 5	SPECjbb (2) + TPC-H (2)
Mix 6	SPECjbb (1) + TPC-H (3)
Mix 7	SPECjbb (3) + TPC-W (1)
Mix 8	SPECjbb (2) + TPC-W (2)
Mix 9	SPECjbb (1) + TPC-W (3)

SHomogeneous Mixes of TPC-W, TPC-H, SPECjbb, and SPECweb

September 27, 2007

Machine Configuration				
Core	16 single-threaded, in-order			
Interconnect	2-D Packet Switched Mesh			
L0 Cache	Split I/D, 8 KB each			
L1 Cache	Private 64 KB			
L2 Cache	Shared, 16MB			
Memory Latency	150 cycles			
Cache Coherence	SGI Origin Directory Protocol			
Thread to Core Assignment	Round Robin, Affinity, Round Robin-Affinity Hybrid, Random			

Isolated Workload Performance

SAffinity mapping almost always the best choice

September 27, 2007

Natalie Enright Jerger IISWC

Homogeneous Mix Performance

Serformance differences between placement policies become more pronounced in consolidated environment

September 27, 2007

Natalie Enright Jerger IISWC

Heterogeneous Mix Performance

- n Quality of Service
 - ⁿ [Iyer, Sigmetrics 07], [Nesbit, MICRO-39]
- n Coherence Protocols
 - ⁿ Virtual Hierarchies [Marty, ISCA 07]
- n Methodology
 - ⁿ SMT Methodology

- Server consolidation workloads provide
 a framework on which to evaluate
 many-core architectures now
 - Illustrate this by looking at degrees of cache sharing
- n Open up new and interesting avenues of research
 - Architecture, Operating Systems, Virtual Machines

