
18	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

COVER FEATURE EMBEDDED DEEP LEARNING

Andreas Moshovos, University of Toronto

Jorge Albericio, NVIDIA

Patrick Judd, University of Toronto and NVIDIA

Alberto Delmás Lascorz, University of Toronto

Sayeh Sharify, University of Toronto

Zissis Poulos, University of Toronto

Tayler Hetherington, University of British Columbia

Tor Aamodt, University of British Columbia

Natalie Enright Jerger, University of Toronto

To deliver the hardware computation power advances needed

to support deep learning innovations, identifying deep learning

properties that designers could potentially exploit is invaluable.

This article articulates our strategy and overviews several

value properties of deep learning models that we identified

and some of our hardware designs that exploit them to reduce

computation, and on- and off-chip storage and communication.

Deep learning (DL) enables computing devices
to “learn by example” and thus to tackle tasks
that were beyond the reach of traditional com-
puting. For example, using DL, it is reasonable

today to expect that a computing device can infer what
object an image or a doodle depicts. In the most com-
monly used form of DL, that of supervised learning, the

system learns how to distinguish objects by first training
over numerous known examples. By inspecting these
examples, DL can “learn” how to distinguish with great
accuracy whether an image that it has not seen before is
that of a plane or a teapot. That is as long as our previ-
ously inspected examples contained enough images of
planes and teapots.

Exploiting Typical Values
to Accelerate Deep
Learning

	 M AY 2 0 1 8 � 19

The core building blocks of DL have
been around for decades, but practi-
cal applications were limited to a few
niche cases. Recently, numerous prac-
tical applications have materialized
with more being demonstrated regu-
larly. What gave rise to these “sud-
den” successes? The DL community
has been able to collect or exploit suf-
ficient annotated examples and also
to harness the tremendous comput-
ing power of modern computing hard-
ware to innovate further in the core
machine learning building blocks and
in the way they are connected. Most
relevant to our discussion, shortly
after 2010, the processing power of
commodity computing devices, in the
form of graphics processors, reached
the level necessary to enable new DL
applications that were previously out
of reach.

While DL has seen great successes,
many tasks are still out of reach and
others certainly could use further
refinement (e.g., autonomous driving).
A clear path for further innovation in
DL is to harness even more comput-
ing power to process more example
data and to build more sophisticated
building blocks and arrangements.
As before, more processing power can
remain an enabler of further innova-
tion, but of course, cannot guarantee it.

Our expertise has been in develop-
ing performance and energy efficiency
enhancing techniques for general-
purpose processors. Today, such pro-
cessors are at the core of all computing
devices, be it server-class machines,
smartphones, or embedded devices.
For the past four years or so, we have
been exploring hardware-level accel-
eration of DL applications. Our goal
has been to develop hardware-level
techniques that, when incorporated
into next-generation hardware devices,

will hopefully enable the DL commu-
nity to explore even more advanced
applications.

This article reviews our general
approach to hardware-level accelera-
tion of DL and highlights some of the
techniques we developed. The defin-
ing characteristic of our techniques is
that they are value-based. That is, they
exploit properties in the data stream of
DL applications by exploiting the com-
putational structure of these applica-
tions to boost performance and energy
efficiency above and beyond what is
currently possible. In this article, we
focus on the acceleration of inference
with convolutional neural networks.

Before we attempt to highlight how
value-based acceleration enhances
structure-based approaches and why
we chose that direction to guide our
exploration, let us first review why
acceleration is now receiving so much
attention.

THE NEED FOR
ACCELERATION
For the past three decades or so, com-
puting hardware performance was
roughly doubling every two years. A
task that would take about one hour to
perform on a 1985 desktop computer
would complete in less than a min-
ute or two on computer built in 1995.
This exponential performance growth
was fueled by Moore’s law: semicon-
ductor technology advances enabled
increasingly denser and faster devices
facilitating computer architecture
innovations.

Unfortunately, using more and
faster transistors requires more power,
but operating voltage reductions have
been effective at subduing the rate at
which overall power increased with
every generation of computing hard-
ware. However, these performance

improvement methods typically
required a disproportionate increase
in transistor count to deliver perfor-
mance benefits and thus incurred a dis-
proportionate power cost. As a result,
in the early 2000s, processor power
consumption and density surpassed
practical limits. Performance scaling
dramatically slowed down. Chip mul-
tiprocessors emerged promising sus-
tained performance improvements as
long as applications could be broken
into threads, that is, parts that can
execute mostly concurrently. Graphics
processors target a certain class of such
workloads that could be broken down
into 1000s of threads, each execut-
ing the same code and mostly in lock-
step. Computer graphics is such a data-
parallel workload. As the underlying
semiconductor technology scaling
trends persist, the current architectural
techniques are reaching their limits.
Further innovation is now required to
sustain performance improvements.

Since power is now the main con-
straint, further performance improve-
ments require reducing the energy
expended per operation: if each oper-
ation requires less energy, we should
be able to use the abundant hardware
resources to perform more operations
concurrently while still staying within
our power envelope. Hardware accel-
eration is such an approach. A hard-
ware accelerator is a “processor” that
has been specialized in part or fully
for a particular task or class of tasks.
Therefore, let us now take a closer look
at DL to understand how specializa-
tion can improve energy per operation
and thus performance.

HARDWARE ACCELERATION
AND DEEP LEARNING
DL utilizes neural networks (NN).
Figure 1a shows an example of a

20	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

EMBEDDED DEEP LEARNING

feed-forward NN where several lay-
ers operate in sequence. In other
NNs there is feedback among lay-
ers. Each layer accepts several input
numbers and produces another set
of output numbers. For image classi-
fication, the input to the first layer is
an image. Presently, there are only a
few different layer types with convo-
lutional and, to a lesser extent, fully-
connected layers dominating execu-
tion time in convolutional neural net-
works (CNNs). In our discussion, we
focus on CNNs and on convolutional
layers since fully connected layers can
be thought of as a special case of con-
volutional layers.

Figure 1b shows that a convolu-
tional layer (CVL) accepts as input a
3D array of runtime calculated values,

or activations (for layer 1 these are our
external input, an image) and produces
an output activation 3D array. The CVL
convolves the input activations with
several filters, each a 3D array of pre-
determined values, or weights. These
weight values contain the “knowledge”
embedded in the NN, and they are cal-
culated during training. They remain
constant during inference, which, for
an image classification task, is the pro-
cess of using the network to determine
what an image depicts.

A typical input or output activa-
tion array contains 1000s of values,
and each layer typically applies 100s
of filters each containing 100s to a few
1000s of weights. Each output acti-
vation calculation amounts to a dot
product of a filter with an equally sized

sub-array of the input activation array.
Figure 1b shows how output activation
o(x′, y′, n) is expressed as a function of
input activations a(x, y, i) and weights
w(x″, y″, i). Each dot product involves
100s to 1000s of activation and weight
pairs. A constant bias is usually added
at the end, and the result passes
through a nonlinear activation func-
tion which produces the output activa-
tion. Several activation functions exist
with the Rectified Linear Unit (ReLU)
often used for image classification.
ReLU converts negative activation val-
ues to zero, while allowing positive
activations to pass through. To fully
process an input activation array, the
filters scan the input using a stride S.
The input activation subarray used in
each computation with a filter is called
a window. In the discussion that fol-
lows we ignore the addition of the bias
as it is easy to implement along with
the activation function.

The Opportunity for Deep
Learning Acceleration
A dot-product can be implemented as a
triple-nested loop:

outa = 0

 for xi = 0 to K

 for yi = 0 to K

 for ii = 0 to imax

 outa + = a(x+xi,y+yi,ii) * 	

	 w(xi,yi,ii)

A general-purpose processor
implements these loops as several
tens of machine code instructions,
each typically a simple calculation
or a data movement. Executing each
instruction entails several actions
such as fetching the instruction rep-
resentation from memory, decoding
it to interpret what it represents, and
reading and writing several storage

Image

Pixelmonster

Layers 10s-100s

N

K

K

i

i

N

o (y ′, x ′, n) = f (Σ Σ Σ w n(x, y , i) × a (x + x ′ × S, y + y ′ × S, i))
kx –1 ky –1

x=0 y=0

Ni –1

i =0

Output
activation

Activations

Output activations

Weights

Filters

Weight

Window

Input activation

(a)

(b)

FIGURE 1. (a) A feed-forward image classification neural network. (b) A convolutional
layer.

	 M AY 2 0 1 8 � 21

elements such as registers or memory.
Such processors are flexible and can
execute any arbitrary code fairly well.
However, if all that we care about is
executing dot products, this flexibility
incurs significant energy and thus per-
formance overheads. Specializing our
hardware to perform dot products can
drastically reduce these overheads.

Computation Structure-
Based Acceleration
Specialization can exploit the compu-
tation structure of dot products. Fig-
ure 2 shows such a structure-based
accelerator. It accepts 16 activations
and 16 weights. It multiplies these in
pairs and then reduces the 16 prod-
ucts using an adder tree to accumu-
late the result into an output register.
This hardware can compute an output
activation over multiple cycles. The
accelerator can use several units such
as this to process more activation and
weight pairs per cycle. Since convolu-
tional layers typically have many fil-
ters, each can be assigned a separate
unit with all units reusing the same 16
activations. Reusing data is desirable
as memory accesses are much more
energy expensive than typical com-
putations in modern semiconductor
technologies.

DaDianNao is such a structure-
based accelerator.1 It takes advantage
of activation reuse in convolutional
layers and judiciously uses on-chip
resources to balance computation and
communication needs. DaDianNao
contains 256 processing units, similar
to that in Figure 2, organized in 16 tiles
of 16 units each. Each unit can process a
separate filter and in total DaDianNao
computes 4K products and 256 partial
dot products per cycle. Different con-
figurations are possible and desirable
depending on the application.

Value-Based Acceleration
We purposely targeted techniques that
could complement structure-based
acceleration: as an academic group
we felt that our contribution would
be more meaningful if we attempted
to look further into what may be use-
ful after structured-based approaches
are perfected by industry. Drawing on
our experience with general-purpose
processor optimizations we decided
on the following three principles: 1)
Try to exploit typical execution behav-
ior, 2) do not require NN modifications
to achieve benefits, and 3) investigate
in-depth specialization before trying
to generalize. Here is why:

Exploiting typical behavior. Many
general-processor performance tech-
niques exploit typical program behav-
ior. Take for example, hardware caches,
a key memory access acceleration tech-
nique. In today’s technology a proces-
sor can perform calculations about 100
times faster than main memory can
supply the data. Unfortunately, it is not
possible to build large and fast main
memories. Fortunately, by exploiting
common program behavior, it is pos-
sible to build memory hierarchies that
behave like a large and fast memory
most of the time. This is only possible
because most programs exhibit mem-
ory access stream locality: they tend
to access the same or nearby memory
locations close in time. As a result,
a cache, a small and fast memory,
can expect to service many memory
requests using the following strategy:
keep copies of a limited number of
recently accessed memory locations
and those nearby. Programs do not
have to exhibit locality, but most hap-
pen to do so.

Mirroring this experience with
general-purpose processors, we asked

whether there are properties in NN
execution that hardware can exploit
to boost performance. We wanted to
complement approaches that exploit
the structure of computation and thus
targeted the value stream. Between
weights and activations, we decided to
first target the activations. Our think-
ing was that while there were great
opportunities in the weight stream,
since the weights are known in advance,
it is likely that software approaches
could deliver much of the potential
benefits or should at least be part of
the solution. Activations are runtime
calculated values and thus less amena-
ble to static analysis. However, as our
activation-based methods have matured
we recently did explore options that
exploit properties of both.2–4

Target out-of-the-box networks. For
general purpose computing, tech-
niques that required software changes
had mixed success. Software devel-
opment is hard enough as it is, espe-
cially for software developed over
several years by large development
teams. Mirroring that experience, we
opted to target accelerators that would
work with out-of-the-box NNs. This is
not to say that co-designing NNs and
hardware is not worth pursuing. To
the contrary, co-design should lead to

0

15

0
Weights

Activations

15

+

FIGURE 2. A computation-structure-
based accelerator.

22	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

EMBEDDED DEEP LEARNING

much greater benefits. However, such
efforts take time to mature and yield
results and may incur significant over-
heads to apply even if this is done prior
to execution. We opted to design hard-
ware that will deliver immediate ben-
efits while at the same time rewarding
related advances in NN design such as
reducing value precision.

Risks: breadth vs. depth. Any accel-
erator design carries risks. What if the
application evolves so much that it can
no longer execute on the accelerator?
For example, accelerators that were
specialized for early video formats
are by now obsolete as video decoding
algorithms have changed dramatically.
Or, what if an application uses a mix of
other techniques that the accelerator
fails to benefit?

An ideal accelerator would be: 1)
specialized enough to deliver a desired
level of performance, 2) general-enough
to support a broader class of applica-
tions, and 3) future-proof. Not all these
goals are attainable. While breadth
is desirable, there is value in in-depth

exploration of what is possible for each
algorithm of interest in isolation. Such
an exploration can ultimately inform
a design that is general enough while
at the same time benefitting special-
ized applications and devices with a
known expected use-life. Accordingly,
we decided to focus on neural networks
and since the networks that were read-
ily available were those targeting image
classification, most of our work targets
this class of NNs. Profiling of these NNs
confirmed that convolutional and, to
a lesser extent, fully connected lay-
ers dominate execution time. Thus we
targeted these two layers. Finally, we
opted to first target inference, in part as
it is a building block for training as well
and also since we expect that there will
be a lot more devices that will only need
to perform inference.

INTERESTING RUNTIME
VALUE PROPERTIES
Studying the value stream of image
classification NNs revealed several
properties which could be potentially
exploited for acceleration.

Ineffectual activations
In all CNNs studied, many of the multi-
plications are ineffectual as they involve
a zero valued activation. Even more mul-
tiplications could be avoided as long as
their activation input value was close
enough to zero. What is “close enough”
varied per network and layer. We devel-
oped an empirical method for finding
such thresholds per layer. These ineffec-
tual multiplications represent an oppor-
tunity for improving performance.
However, exploiting them is a challenge
for a massively data-parallel engine.
To get any performance, a method was
required to promote other useful com-
putations to replace such ineffectual
ones. Unfortunately, just checking if
an activation is ineffectual takes prac-
tically as much time as performing the
multiplication, worse, getting another
activation requires another data access.
Fortunately, the input to every CNN
layer but the first is the output of a pre-
vious layer. Accordingly, at the output
of each layer we can pack the effectual
activations tightly in memory so that
processing for the next layer proceeds
smoothly without having to check
for ineffectual computations nor per-
form additional memory accesses. Our
Cnvlutin5 is such a design, and Figure 3
reports its performance improvements
over DaDianNao.

Why do so many zero or near zero
activations exist? In the context of
image classification and at the first
layer, an activation can be thought of
as being the probability that a certain
visual feature, for example a circle rep-
resenting an iris, appears at some posi-
tion. Unless our image is full of such
circles all over the place, most such
activations would be zero or near zero.
While this is an oversimplification, it
suggests that ineffectual activations
are an intrinsic property of NNs.

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

AlexNet Googlenet NiN VGG19 VGGm VGGs

Zero
Ineffectual

FIGURE 3. Performance improvement when skipping ineffectual activations. Dark blue:
skipping activations that are exactly zero; light blue: thresholding while maintaining
accuracy.

	 M AY 2 0 1 8 � 23

Similarly, the Efficient Inference
Engine skips zero activations while
also taking advantage of weight spar-
sity6 using units that perform a single
multiply-accumulate. SCNN also tar-
gets sparsified NNs, that is NNs where
extra steps were taken to convert many
weights to zero, skipping both ineffec-
tual weights and activations.7

Precision variability
We observed early on that the pre-
cision NNs need varies per layer, a
property that others have observed as
well. In the process, we developed a
profiling-based method for determin-
ing what precisions each layer could
use while still maintaining accuracy.8
As Table 1 shows, the precision needed
varies from as little as 5 bits for some
layers of AlexNet to up to 13 bits for
some layers of VGG-19. These results
imply that conventional hardware that
uses a one-size-fits-all precision per-
forms many unnecessary and energy
wasting computations. But could we
build an accelerator that avoids these
computations boosting energy effi-
ciency and execution performance?
Specifically, we asked whether we
could build an accelerator whose exe-
cution time scales proportionally with
the precision needed. Compared to
designs that always use a fixed preci-
sion, e.g., 16 bits, for all activations,
our desired accelerator would be 16/PL
faster when executing layer L, where
PL is the activation precision chosen for
the layer. Our goal was to squeeze per-
formance even from single bit reduc-
tions in precision. For example, for lay-
ers using 8 and 7 bits of precision, the
accelerator would be 2× and 2.3× faster
respectively compared to always using
16-bits of precision. Existing process-
ing engines exploit precision variabil-
ity at very coarse granularities such

as 8- or 16- or 32-bits, and the perfor-
mance benefits all fall far short of what
is possible. Our Stripes accelerator uses
bit-serial processing while exploiting
data-parallelism to deliver the desired
performance scaling.8 Stripes only
boosts performance for convolutional
layers. Tartan extends these benefits
to fully connected layers albeit at an
increased area cost.3 Stripes and Tar-
tan can be configured accordingly to
target any device from high-end server
class down to embedded devices. For
smaller scale devices, Loom is a vari-
ant that exploits precision variability
for both weights and activations thus
boosting performance even further.4
By supporting the full spectrum of pre-
cisions, the aforementioned accelera-
tor designs reward any advances in the
design of reduced precision NNs which
may ultimately lead to binary models
as proposed by Courbariaux et al.9

All aforementioned designs also
reduce memory storage and commu-
nication requirements as they store
only as many bits as necessary to rep-
resent the activations in memory. This
enables storing and processing larger

networks. The Proteus extension brings
these benefits to existing bit-parallel
engines reducing memory footprint
and bandwidth by about 40 percent on
average.10 It uses a lightweight mech-
anism for converting data from a rep-
resentation that is convenient for data
storage and communication to one that
is convenient for data processing.

Dynamic precision detection. While
profiling allowed us to determine per
layer precisions that maintain TOP-1
(exact match) accuracy at runtime
these precisions prove pessimistic.
Profiling finds the worst case preci-
sion needed for all possible images and
across all activations for the layer. In
practice, however, the accelerator will
be processing: 1) one specific input at
any given point of time, and 2) a lim-
ited number of input activations per
cycle, e.g., 256, and not all activations
of the layer. Further reduction in pre-
cision is possible when limiting atten-
tion to each set of activations that are
being processed concurrently. Dynamic
Stripes is a surgical, low-cost extension
to both Stripes and Loom that detects

TABLE 1. Activation precision profiles.

Network
Activation precision in bits
per layer / effective with dynamic precision detection

AlexNet 9-8-5-5-7 / 5.4-7.4-4.2-4.4-5.8

NiN 8-8-8-9-7-8-8-9-9-8-8-8 / 6.4-7.1-7.8-7.0-5.8-5.2-8.4-7.5-7.6-7.6 4.7-6.8

GoogLeNet 10-8-10-9-8-10-9-8-9-10-7 / 6.2-5.8-6.8-6.3-5.3-6.7-6.3-5.0-5.5-7.9-4.8

VGG-M 7-7-7-8-7 / 5.3-5.1-5.8-3.4-4.8

VGG-S 7-8-9-7-9 / 5.3-5.1-5.0-5.4-4.0

VGG-19 12-12-12-11-12-10-11-11-13-12-13-13-13-13-13-13 /
9.1-7.7-10.0-9.0-11.1-8.8-9.7-8.3-11.6-10.4-12.2-11.7-11.5-11.5-10.4-5.9

24	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

EMBEDDED DEEP LEARNING

and exploits precision variability at
run-time.11,12 Table 1 shows that the
effective activation precisions when
these are detected dynamically at
a granularity of 256 activations are
much shorter than those detected via
profiling. Dynamic precision detec-
tion coupled with precision detection
for weights also drastically reduces
off-chip traffic and on-chip storage
and communication.12

Repeated Calculations
Early on we found out that many of the
multiplications happen to process the
exact same value pair. Of particular
interest were the cases where differ-
ent filters happen to have exactly the
same weight at the same coordinates.
At runtime, each of these would be
multiplied with the same activation
and thus would all be identical. Why
would different filters have identical
values at the same coordinates? We
speculate on at least two reasons: 1) the

filter container is a 3D array, whereas
the feature that the filter is looking for
is not necessary a shape that fits tightly
in this container. This will give rise in
several weights being zero or near zero,
or equivalently not all features will be
relevant to all potential object classes.
2) Some features are partially simi-
lar which will give rise to some of the
weights being similar or the same. The
weight redundancy increases to inter-
esting levels once precision is trimmed.

Beyond whole values there is a lot
more redundancy when restricting
attention to portions of the weights
such as their prefixes. Figure 4 demon-
strates some of this redundancy in
AlexNet. This set of measurements
looks at groups of 16 weights each from
a different filter. All weights appear at
the same coordinates, and the graph
shows the distribution of unique 4-bit
prefix values. While there are 16 possi-
ble combinations for a prefix of 4 bits,
in layers 2 to 5 at least 70 percent of the

weight groups contain just a single pre-
fix value. Virtually all groups for lay-
ers 3 through 5 contain up to 3 distinct
prefixes for these layers. Redundancy
is lower for layer 1 where just 7 percent
of the groups contain a single prefix
value. However, about 88 percent of the
weight groups contain just 3 distinct
prefix values. This redundancy may be
useful for compressing the representa-
tion of the weights in memory and for
reducing the number of computations
needed.

Effectual Bit “Density”
Finally, at the individual bit level, acti-
vations exhibit a strong bias toward
zero. Specifically, as Figure 5 shows, on
average, only 8 percent of the activa-
tion bits are 1. The figure measures the
activation bit values as they are being
used in multiplications after we trim
activations to the precision needed per
layer. In primary school we learned
how to do multiplication with a pen-
cil and paper: take one digit from the
multiplier and multiply that with the
multiplicand. Repeat for the next mul-
tiplier digit. Since our numbers are
binary, the multiplier bit will be either
0 or 1, and when it is 0 it adds nothing to
the final result. Using this method, 92
percent of the time we would be mul-
tiplying with a 0 bit when processing
CNNs. As Figure 5 shows, If somehow
we could develop an accelerator that
only processed the effectual bits, that
is those that are 1, the potential for per-
formance improvement is 12.5×. Figure
5 further shows that even if somehow
we could eliminate all zero-valued
activations, nearly 75 percent of acti-
vation bits would still be zero resulting
in a performance improvement poten-
tial of 4×. The behavior persists albeit
to a lesser extent even when using 8-bit
quantization.13

10

0

20

30

40

50

60

Fi
lte

r b
at

ch
 c

ou
nt

 (%
) 70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

No. of distinct pre�xes

Filter batch size = 16, pre�x length = 4

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

FIGURE 4. Unique 4-bit prefixes for weights appearing at same coordinates across 16
different filters in AlexNet’s convolutional layers.

	 M AY 2 0 1 8 � 25

By exploiting precision variability,
Stripes and Dynamic Stripes do remove
some of these ineffectual calculations.
However, at the end there will be some
zeroes that will remain. For example,
when processing a pair of activations
of 8-bits “0100 0000” and “0000 0010,”
even with dynamic precision detection
Stripes will process 6 bits. However, if
we were to process only the effectual
bits per activation, one step is enough
to process both. The Bit-Pragmatic, or
simply Pragmatic, accelerator exploits
this CNN property.13

THE BIT-PRAGMATIC
ACCELERATOR
Figure 6 shows a simplified exam-
ple that illustrates the key concept
underlying the Pragmatic accelera-
tor. Part (a) shows a structure-based
accelerator processing two activa-
tions A0 and A1 and two weights W0
and W1 all in using a 16-bit fixed-
point representation. Two 16b×16b
multipliers produce the 32b prod-
ucts A0×W0 and A1×W1 and an adder
reduces those to a single 33b value.
An output register accumulates the
result. This accelerator will always
process two pairs of activations and
weights per cycle. To process 16 acti-
vation and weight pairs it will need
16 cycles. In our example, each of the
activation values contain just a sin-
gle power of two, 23 for A0 and 213
for A1. As a result, the bit-parallel
accelerator will process 15 + 15 zero
activation bits all contributing noth-
ing to the final output.

Part (b) shows a simplified Prag-
matic accelerator that processes only
the effectual activation bits. The acti-
vations now are no longer represented
in a positional representation, but
instead as lists of powers of two, since
each has just one constituent power of

two, and the lists are (0011) and (1011)
for A0 and A1 respectively. If A0 were
“0000 1100,” it would be represented
as (0100, 0011). Each cycle, this unit
“multiplies” one power of two per
activation with the corresponding
weight. The multipliers have been
replaced with shifters, since multi-
plying by a power of two amounts to
simple shifting. The rest of the unit
remains unchanged as every cycle of
two products of 32b each are reduced
and accumulated. The unit processes
the two activation and weight prod-
ucts in a single cycle and thus is as fast
as the bit-parallel unit of part (a). How-
ever, if A0 or A1 contained more than
one ineffectual bits, then this unit
would require a proportional number
of cycles to calculate the products.
So, its execution time scales propor-
tionally with the number of effectual
bits which is in part what we wanted.
Unfortunately, this design is at best as
fast as the bit-parallel design and only
when all activations contain just one
effectual bit. In the worst case, when

at least one of the activations has 16
effectual bits, it will be 16× slower.

Fortunately, convolutional layers
exhibit parallelism and weight reuse
across windows, two properties that
Pragmatic exploits to ensure that it is
always at least as fast as a bit-parallel
engine without requiring to read more
weight or activation bits from memory.
The latter would require wider mem-
ories, an expensive addition. Part (c)
shows Pragmatic’s approach. The unit
of part (b) has been replicated 16 times.
Each of the 16 units processes a differ-
ent activation pair. However, all units
share the same weights. This is possible
by processing 16 windows in parallel,
one per unit. Whereas the bit-parallel
unit processed 2×16b activations, for
a total of 32b of activation inputs per
cycle, the Pragmatic unit processes 32
activations, one power of two per acti-
vation. This is equivalent to 32 bits of
activations per cycle. While Pragmatic
uses 4 bits per activation to powers of
two, this conversion is done after the
activations are read from storage.

alexnet

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
NiN googlenet VGG_M VGG_S VGG_19 AVG

Non-zero activations
All activations

FIGURE 5. Fraction of activation bits that are 1. average over all convolutional layers
weighted according to use frequency.

26	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

EMBEDDED DEEP LEARNING

In the worst case, when all 16 bits
of at least one activation are 1, this
unit would require 16 cycles to pro-
cess all 32 activations producing 32
activation and weight products. This
matches the processing capability of
the bit-parallel engine of part (a). The
two engines proceed through the com-
putation in different order; however, at

the end, they produce the same results.
When all activations have at most one
effectual bit, the Pragmatic unit will
take just 1 cycle to do the work that
the conventional unit would do in 16
cycles, and thus be 16× faster. In gen-
eral, if the maximum number of effec-
tual bits per activation is N, then Prag-
matic will be 16/N× faster.

Making It Practical
Unfortunately, the straightfor-

ward implementation of Pragmatic
as described proved impractical. The
units were about 4× larger than their
bit-parallel equivalent, and the perfor-
mance improvements were not com-
pelling enough. We had to develop sev-
eral techniques that combined allowed

A0

16

16

0000 0000 0000 1000

0010 0000 0000 0000A1

W0

W1

36
+

(a)

(c)

(b)

0011

1101

+

<
<

<
<

16

16

32

32

16

4

4

16

32

32

36

0011

1101

+

<
<

<
<

16

16x

4

4

16

32

32

36

1000

1100

0001

+

<
<

<
<

4

4

32

32

36

FIGURE 6. Pragmatic’s approach: an example. (a) Structure-based accelerator. (b) Processing the powers of two serially. (c) Exceeding
performance of the structure-based accelerator.

	 M AY 2 0 1 8 � 27

a practical implementation of Prag-
matic. Our discussion highlights three
of them. The first is two-stage shift-
ing. In the straightforward design, for
every output activation we are process-
ing 16 weight and activation offsets
pairs simultaneously. Since we shift
each weight by a 4 bit power of two, in
the worst case, one of the powers will
be 0 and another 15. Each of those shift-
ers needs thus to accept a 16b weight
and to produce a 32b output “product”.
Consequently, the adder tree needs to
accept 32b products as inputs. While
this design offers us maximum flexi-
bility to eliminate ineffectual activa-
tions bits it does so at a high cost. Two-
stage shifting gives up some of this
flexibility and thus some of the per-
formance improvement potential to
drastically reduce costs. The idea is to
process the input activations into sub-
groups. For example, instead of allow-
ing any power of two to be processed
concurrently with any other power of
two, we can process each activation in
groups of four bits at a time. In this case
processing two activations with values
“0100 0000 0000 0000” and “0000
0000 0000 0010” will be done in two
cycles even though each contain just
a single effectual bit. In the first cycle
we will process the group of the four
least significant bits, 0000 and 0010,
and in the second the group of the four
most significant bits, 0100 and 0000.
In practice we found that processing
bits in groups of four was sufficient to
achieve most of the performance possi-
ble with unrestricted processing. Prag-
matic chooses the beginning of each
group dynamically at run time. For
example, it would process “0000 0000
0001 0000” and “0000 0000 0000
1000” in a single cycle.

The second technique was to allow
partial decoupling of the activation

lanes. In the straightforward design
Pragmatic processes all activations in
the group before proceeding to the next
group. By adding buffers at the weight
inputs and by statically placing acti-
vations into subgroups, it is possible
to allow some subgroups to run ahead
of others. In practice using just one
weight buffer and thus allowing sub-
groups to run just one activation set
ahead boosted performance consider-
ably. These buffers are anyhow neces-
sary to support full utilization when
executing fully connected layers.

Finally, so far we assumed that
activations are represented as a sum
of powers of two. However, the under-
lying design can easily handle both
adding and subtracting powers. This
is a form of Booth encoding, a tech-
nique usually reserved for reducing
the latency of high performance mul-
tipliers. For example, activation “0011
1100 0000 0000” can be represented
as “(0010 0000 0000 0000 - 0000 0010
0000 0000),” or as “(213 – 29).” Prag-
matic uses a modified form of Booth
encoding to avoid increasing the
number of cycles in conjunction with
2-stage shifting.

Execution Time Reduction
Figure 7 shows how performance (the
inverse of execution time) improves
compared to an equivalent configured
DaDianNao-like accelerator for var-
ious configurations. Three parame-
ters define a configuration: the terms
per filter, the filters per tile, and the
number of tiles. The terms per filter is
the number of activation and weight
products calculated per filter. The fil-
ters per tile is the number of filters
processed per processing engine tile.
The x-axis shows the configurations
in a tiles-filters/tile-terms/filter for-
mat. A 16-8-4 configuration has 16
tiles, each processing 8 filters and
each processing 4 products, in total
it processes 512 terms per cycle. For
a design configured to match DaDi-
anNao’s original 16-16-16 server-class
configuration, Pragmatic boosts per-
formance by 4.3× on average. When
processing fewer terms per filter,
Pragmatic experiences less imbal-
ance across activations, and perfor-
mance increases and reaches nearly
8× for a configuration with one term
per filter, which may be more appro-
priate for an embedded design.

10X

8X

6X

4X

2X

4-16-16 8-16-16 16-16-16 16-16-8 16-16-4 16-16-2 16-16-1

0X

FIGURE 7. Performance improvement with various pragmatic configurations.

28	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

EMBEDDED DEEP LEARNING

SUMMARY
Table 2 summarizes some of our
designs and reports their relative per-
formance, energy efficiency, and area
normalized to an equivalent DaDi-
anNao configuration. The table also
reports on a more recent accelerator,
Tactical2 that combines the benefits
of Pragmatic or Dynamic Stripes with
a lightweight zero weight skipping
front-end resulting in multiplicative
benefits. The Laconic configuration
shown uses half of the weight memory
wires. With an equal number of weight
memory wires, the speedup increases
to 30×. The results reported for Tacti-
cal are for pruned versions of AlexNet,
Googlenet, and ResNet-50. Further, the
results for Loom are with dynamic pre-
cision detection.

Early successes in hardware
acceleration for Deep Learn-
ing relied on exploiting its

computation structure and data reuse,
e.g. Y. Chen and Chen.1,14 As our work
and that of others exemplify, many
recent DL hardware accelerators
exploit the various forms of informa-
tional inefficiency that deep learning
neural networks (DNNs) exhibit. It has
been found that informational ineffi-
ciency manifests in DNNs as ineffec-
tual neurons,6,15 activations,6,5,15 or
weights,16,15 as an excess of precision,
e.g. Warden and Judd,17,8 as ineffec-
tual activation bits,13 or in general
as over-provisioning. Whether these
inefficiencies are best exploited stati-
cally, dynamically, or both is an open
question. Furthermore, which forms
of inefficiency will persist as DNNs
evolve remains to be seen. These past
successes demonstrate that at this
stage of our exploration on how to best
deliver the hardware performance
advances needed to support DL inno-
vation, identifying DNN properties
that hardware and/or software could

potentially exploit is invaluable. More-
over, the progression of advances,
starting from simply looking at preci-
sion for reducing storage and arriving
to effectual bit density to improve per-
formance, demonstrate that it is not
easy to foresee upfront what innova-
tions lie ahead. Accordingly, we ought
to encourage further exploration even
for directions that may seem unlikely
to deliver benefits or that today seem
too farfetched.

Along these lines, our accelerators
capitalize on some of the value prop-
erties of CNNs while working with
out-of-the-box networks thus mak-
ing deployment possible today. More
importantly, they open up new oppor-
tunities and create new incentives
for CNN designers providing a safe
path towards innovation while offer-
ing rewards for even small advances.
Specifically, if deployed, they have the
potential to accelerate innovation in: 1)
extremely low precision NN design with

TABLE 2. Value-based accelerator characteristics relative to dadiannao.1

Accelerator Configuration Performance Power Area Frecuency Tech. node

DaDianNao 16-16-16 3.9 Tmul/sec 17.6 Watt 78mm2 980 Mhz 65nm

Accelerator Compared to
DaDian- Nao Conf.

Relative
performance

Relative energy
efficiency

Relative
area

Value property

Cnvlutin5 16-16-16 1.6× 1.47× 1.05× Ineffectual activation values

Dynamic stripes11 16-16-16 2.6× 1.54× 1.35× Dynamic activation precision

Loom4 1-8-16 3.6× 2.9× 0.94× Dynamic activation + weight precisions

Pragmatic13 16-16-16 4.3× 1.71× 1.68× Ineffectual activation bits

Tactical2 4-16-16 10.2× 2.4× 1.14× Zero weights + ineffectual activation bits

Laconic 1-8-16 16× 1.63× 2.39× Ineffectual activation bits of weights + activations

Reported is the performance, energy efficiency and area compared to an equivalent DaDianNao configuration shown under column “DaDianNao Conf.” DaDianNao configura-
tions are labeled as “tiles - filters/tile - products/filter.”

	 M AY 2 0 1 8 � 29

an eye towards ternary or ternary net-
works (Stripes, Loom, Pragmatic, and
Tactical), and 2) weight pruning (Tacti-
cal). They enable experimentation with
the whole spectrum of precision choices
while also delivering excellent per-
formance for full-precision networks.
They have the potential to “incentiv-
ise” the machine learning community
to further invest in these directions
delivering immediate, proportional
rewards. Eventually, if extremely low
precision and heavily pruned networks
take over, more efficient hardware plat-
forms can safely take over. New oppor-
tunities could also arise such as further
reducing the number of bits that are 1,
adopting other quantization schemes
such as using only a single power of two
on a case-by-case basis, or even rear-
ranging filters to reduce effectual bit
imbalance. All without requiring that
any newly developed scheme work for
all networks.

We encourage the interest readers to
visit the first author’s web page for our
most recent findings.

REFERENCES
1.	 Y. Chen, T. Luo, S. Liu, S. Zhang, L.

He, J. Wang, L. Li, T. Chen, Z. Xu, N.
Sun, and O. Temam, “DaDianNao: A
Machine-Learning Supercomputer,”
in Microarchitecture (MICRO), 2014
47th Annual IEEE/ACM International
Symposium on, Dec 2014, pp. 609–622.

2.	 A. D. Lascorz, P. Judd, D. M. Stuart, Z.
Poulos, M. Mahmoud, S. Sharify, M.
Nikolic, and A. Moshovos, “Bit-Tactical:
Exploiting Ineffectual Computations
in Convolutional Neural Networks:
Which, Why, and How,” CoRR, vol.
abs/1803.03688, 2018. [Online].
Available: https://arxiv.org/abs
/1803.03688

3.	 A. Delmás, S. Sharify, P. Judd, and
A. Moshovos, “Tartan: Accelerating

fully-connected and convolutional
layers in deep learning networks by
exploiting numerical precision vari-
ability,” CoRR, vol. abs/1707.09068,
2017. [Online]. Available: https://
arxiv.org/abs/1707.09068

4.	 S. Sharify, A. D. Lascorz, P. Judd, and
A. Moshovos, “Loom: Exploiting
weight and activation precisions to
accelerate convolutional neural net-
works,” CoRR, vol. abs/1706.07853,
2017. [Online]. Available: https://
arxiv.org/abs/1706.07853

5.	 J. Albericio, P. Judd, T. Hether-
ington, T. Aamodt, N. Enright
Jerger, and A. Moshovos, “Cnvlutin:
Ineffectual-neuron-free deep neural
network computing,” in 2016 IEEE/
ACM International Conference on Com-
puter Architecture (ISCA), 2016.

6.	 S. Han, X. Liu, H. Mao, J. Pu, A.
Pedram, M. A. Horowitz, and W.
J. Dally, “EIE: Efficient Inference
Engine on Compressed Deep Neural
Network,” arXiv:1602.01528 [cs], Feb.
2016, arXiv: 1602.01528. [Online].
Available: https://arxiv.org/abs
/1602.01528

7.	 A. Parashar, M. Rhu, A. Mukkara, A.
Puglielli, R. Venkatesan, B. Khai-
lany, J. Emer, S. W. Keckler, and W.
J. Dally, “Scnn: An accelerator for
compressed-sparse convolutional
neural networks,” in Proceedings of
the 44th Annual International Sym-
posium on Computer Architecture, ser.
ISCA ’17. New York, NY, USA: ACM,
2017, pp. 27–40. [Online]. Available:
https://doi.acm.org/10.1145
/3079856.3080254

8.	 P. Judd, J. Albericio, T. Hether-
ington, T. Aamodt, and A. Mosho-
vos, “Stripes: Bit-serial Deep Neural
Network Computing,” in Proceedings
of the 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitec-
ture, ser. MICRO-49, 2016.

9.	 M. Courbariaux, Y. Bengio, and J.-P.
David, “BinaryConnect: Training
Deep Neural Networks with binary
weights during propagations,”
CoRR, vol. abs/1511.00363, Nov. 2015.
[Online]. Available: https://arxiv.org
/ abs/1511.00363

10.	 P. Judd, J. Albericio, T. Hetherington,
T. M. Aamodt, N. Enright Jerger, and
A. Moshovos, “Proteus: Exploiting
numerical precision variability in
deep neural networks,” in Proceed-
ings of the 2016 International Con-
ference on Supercomputing, ser. ICS
’16. New York, NY, USA: ACM, 2016,
pp. 23:1–23:12. [Online]. Available:
http://doi.acm.org/10.1145
/2925426.2926294

11.	 A. Delmás, P. Judd, S. Sharify, and A.
Moshovos, “Dynamic stripes: Exploit-
ing the dynamic precision require-
ments of activation values in neural
networks,” CoRR, vol. abs/1706.00504,
2017. [Online]. Available: http://arxiv
.org/abs/1706.00504

12.	 A. Delmás, S. Sharify, P. Judd, M.
Nikolic, A. Moshovos, “DPRed: Mak-
ing Typical Activation Values Matter
In Deep Learning Computing”, CoRR,
vol. abs/1804.06732, 2018. [Online].
Available: https://arxiv.org/abs
/1804.06732

13.	 J. Albericio, A. Delma ś, P. Judd, S.
Sharify, G. O’Leary, R. Genov, and
A. Moshovos, “Bit-pragmatic deep
neural network computing,” in Pro-
ceedings of the 50th Annual IEEE/ACM
International Symposium on Microar-
chitecture, ser. MICRO-50 ’17. New
York, NY, USA: ACM, 2017,
pp. 382–394. [Online]. Available:
http://doi.acm.org/10.1145
/3123939.3123982

14.	 Chen, Yu-Hsin and Krishna, Tushar
and Emer, Joel and Sze, Vivienne,
“Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep

30	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

EMBEDDED DEEP LEARNING

Convolutional Neural Networks,” in
IEEE International Solid-State Circuits
Conference, ISSCC 2016, Digest of
Technical Papers, 2016, pp. 262–263.

15.	 A. Parashar, M. Rhu, A. Mukkara,
A. Puglielli, R. Venkatesan, B.
Khailany, J. Emer, S. W. Keckler,
and W. J. Dally, “Scnn: An accel-
erator for compressed-sparse
convolutional neural networks,”

in Proceedings of the 44th Annual
International Symposium on Com-
puter Architecture, ser. ISCA ’17.
New York, NY, USA: ACM, 2017, pp.
27–40. [Online]. Available: http://
doi
.acm.org/10.1145/3079856.3080254

16.	 S. Zhang, Z. Du, L. Zhang, H. Lan,
S. Liu, L. Li, Q. Guo, T. Chen, and Y.
Chen, “Cambricon-x: An accelerator

for sparse neural networks,” in 49th
Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO
2016, Taipei, Taiwan, October 15-19,
2016, 2016, pp. 1–12. [Online]. Avail-
able: https://doi.org/10.1109
/MICRO.2016.7783723

17.	 P. Warden, “Low-precision matrix
multiplication,” https://petewarden
.com, 2016.

ABOUT THE AUTHORS
ANDREAS MOSHOVOS is a professor in the Electrical and

Computer Engineering Department at the University of

Toronto. His research interests are in architecting highly effi-

cient and high-performance computing hardware. Moshovos

has a PhD in computer science from the University of Wiscon-

sin-Madison. He is a Senior Member of IEEE and a Fellow of

ACM. Contact him at moshovos@eecg.toronto.edu.

JORGE ALBERICIO is a senior deep learning architect at

NVIDIA. He has a PhD in systems engineering and computing

from the University of Zaragoza. He was a postdoctoral fel-

low at the University of Toronto from 2013 to 2016, where he

worked on branch prediction, approximate computing, and

hardware accelerators for machine learning. He is a member

of IEEE. Contact him at jorge.albericio@gmail.com.

PATRICK JUDD is a fourth-year PhD candidate at the Univer-

sity of Toronto and has joined NVIDIA as a senior deep learn-

ing architect. His research interests include computer archi-

tecture, machine learning, and approximate computing. His

research focuses on the design of hardware accelerators for

deep neural networks that exploit approximation for improved

performance and energy efficiency. Judd is a student member

of IEEE. Contact him at patrick.judd@mail.utoronto.ca.

ALBERTO DELMÁS LASCORZ is a third-year PhD candi-

date at the University of Toronto, where he focuses on hard-

ware design for machine-learning accelerators. His research

interests include computer architecture, deep learning, and

embedded and reconfigurable systems. Delmás Lascorz pre-

viously studied computer engineering at the University of

Zaragoza. He is a student member of IEEE. Contact him at

a.delmaslascorz@mail.utoronto.ca.

SAYEH SHARIFY is a third year PhD candidate at the Univer-

sity of Toronto. Her research interests include computer archi-

tecture, machine learning, embedded systems, and recon-

figurable computing. She designs hardware accelerators

for machine-learning algorithms. Sharify previously studied

computer engineering at Sharif University of Technology.

She is a student member of IEEE and ACM. Contact her at

sayeh@ece.utoronto.ca.

ZISSIS POULOS is a PhD candidate in the Electrical and Com-

puter Engineering Department at the University of Toronto.

His research interests are in the design of high-performance

hardware for machine learning applications, as well as in

developing approximation methods for network diffusion

and social graph reasoning. He holds a MASc in electrical

engineering from the University of Toronto and is a student

member of IEEE. Contact him at zpoulos@eecg.toronto.edu.

TAYLER HETHERINGTON is a final-year PhD candidate in

computer engineering at the University of British Columbia

and is currently working at Oracle Labs. His research inter-

ests include computer architecture, specifically general-

purpose GPUs, machine-learning accelerators, and system

software. He is a student member of the IEEE. Contact him at

taylerh@ece.ubc.ca.

TOR AAMODT is a professor in the Department of Electri-

cal and Computer Engineering at the University of British

Columbia. His research interests include architecture of

general-purpose GPUs and machine-learning accelerators.

Aamodt has a PhD in electrical and computer engineering

from the University of Toronto. He is a member of IEEE and

ACM. Contact him at aamodt@ece.ubc.ca.

NATALIE ENRIGHT JERGER is the Percy Edward Hart Profes-

sor of Electrical and Computer Engineering at the University

of Toronto. Her research interests include computer architec-

ture, approximate computing, interconnection networks, and

hardware acceleration of machine learning. Enright Jerger

has a PhD in electrical engineering from the University of

Wisconsin-Madison. She is a senior member of IEEE and

ACM. Contact her at enright@ece.utoronto.ca.

