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To deliver the hardware computation power advances needed 

to support deep learning innovations, identifying deep learning 

properties that designers could potentially exploit is invaluable. 

This article articulates our strategy and overviews several 

value properties of deep learning models that we identified 

and some of our hardware designs that exploit them to reduce 

computation, and on- and off-chip storage and communication.

Deep learning (DL) enables computing devices 
to “learn by example” and thus to tackle tasks 
that were beyond the reach of traditional com-
puting. For example, using DL, it is reasonable 

today to expect that a computing device can infer what 
object an image or a doodle depicts. In the most com-
monly used form of DL, that of supervised learning, the 

system learns how to distinguish objects by first training 
over numerous known examples. By inspecting these 
examples, DL can “learn” how to distinguish with great 
accuracy whether an image that it has not seen before is 
that of a plane or a teapot. That is as long as our previ-
ously inspected examples contained enough images of 
planes and teapots.

Exploiting Typical Values
to Accelerate Deep
Learning
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The core building blocks of DL have 
been around for decades, but practi-
cal applications were limited to a few 
niche cases. Recently, numerous prac-
tical applications have materialized 
with more being demonstrated regu-
larly. What gave rise to these “sud-
den” successes? The DL community 
has been able to collect or exploit suf-
ficient annotated examples and also 
to harness the tremendous comput-
ing power of modern computing hard-
ware to innovate further in the core 
machine learning building blocks and 
in the way they are connected. Most 
relevant to our discussion, shortly 
after 2010, the processing power of 
commodity computing devices, in the 
form of graphics processors, reached 
the level necessary to enable new DL 
applications that were previously out 
of reach.

While DL has seen great successes, 
many tasks are still out of reach and 
others certainly could use further 
refinement (e.g., autonomous driving). 
A clear path for further innovation in 
DL is to harness even more comput-
ing power to process more example 
data and to build more sophisticated 
building blocks and arrangements. 
As before, more processing power can 
remain an enabler of further innova-
tion, but of course, cannot guarantee it.

Our expertise has been in develop-
ing performance and energy efficiency 
enhancing techniques for general- 
purpose processors. Today, such pro-
cessors are at the core of all computing 
devices, be it server-class machines, 
smartphones, or embedded devices. 
For the past four years or so, we have 
been exploring hardware-level accel-
eration of DL applications. Our goal 
has been to develop hardware-level 
techniques that, when incorporated 
into next-generation hardware devices, 

will hopefully enable the DL commu-
nity to explore even more advanced 
applications.

This article reviews our general 
approach to hardware-level accelera-
tion of DL and highlights some of the 
techniques we developed. The defin-
ing characteristic of our techniques is 
that they are value-based. That is, they 
exploit properties in the data stream of 
DL applications by exploiting the com-
putational structure of these applica-
tions to boost performance and energy 
efficiency above and beyond what is 
currently possible. In this article, we 
focus on the acceleration of inference 
with convolutional neural networks.

Before we attempt to highlight how 
value-based acceleration enhances 
structure-based approaches and why 
we chose that direction to guide our 
exploration, let us first review why 
acceleration is now receiving so much 
attention.

THE NEED FOR 
ACCELERATION
For the past three decades or so, com-
puting hardware performance was 
roughly doubling every two years. A 
task that would take about one hour to 
perform on a 1985 desktop computer 
would complete in less than a min-
ute or two on computer built in 1995. 
This exponential performance growth 
was fueled by Moore’s law: semicon-
ductor technology advances enabled 
increasingly denser and faster devices 
facilitating computer architecture 
innovations.

Unfortunately, using more and 
faster transistors requires more power, 
but operating voltage reductions have 
been effective at subduing the rate at 
which overall power increased with 
every generation of computing hard-
ware. However, these performance 

improvement methods typically 
required a disproportionate increase 
in transistor count to deliver perfor-
mance benefits and thus incurred a dis-
proportionate power cost. As a result, 
in the early 2000s, processor power 
consumption and density surpassed 
practical limits. Performance scaling 
dramatically slowed down. Chip mul-
tiprocessors emerged promising sus-
tained performance improvements as 
long as applications could be broken 
into threads, that is, parts that can 
execute mostly concurrently. Graphics 
processors target a certain class of such 
workloads that could be broken down 
into 1000s of threads, each execut-
ing the same code and mostly in lock-
step. Computer graphics is such a data- 
parallel workload. As the underlying 
semiconductor technology scaling 
trends persist, the current architectural 
techniques are reaching their limits. 
Further innovation is now required to 
sustain performance improvements.

Since power is now the main con-
straint, further performance improve-
ments require reducing the energy 
expended per operation: if each oper-
ation requires less energy, we should 
be able to use the abundant hardware 
resources to perform more operations 
concurrently while still staying within 
our power envelope. Hardware accel-
eration is such an approach. A hard-
ware accelerator is a “processor” that 
has been specialized in part or fully 
for a particular task or class of tasks. 
Therefore, let us now take a closer look 
at DL to understand how specializa-
tion can improve energy per operation 
and thus performance.

HARDWARE ACCELERATION 
AND DEEP LEARNING
DL utilizes neural networks (NN). 
Figure 1a shows an example of a 
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feed-forward NN where several lay-
ers operate in sequence. In other 
NNs there is feedback among lay-
ers. Each layer accepts several input 
numbers and produces another set 
of output numbers. For image classi-
fication, the input to the first layer is 
an image. Presently, there are only a 
few different layer types with convo-
lutional and, to a lesser extent, fully- 
connected layers dominating execu-
tion time in convolutional neural net-
works (CNNs). In our discussion, we 
focus on CNNs and on convolutional 
layers since fully connected layers can 
be thought of as a special case of con-
volutional layers.

Figure 1b shows that a convolu-
tional layer (CVL) accepts as input a 
3D array of runtime calculated values, 

or activations (for layer 1 these are our 
external input, an image) and produces 
an output activation 3D array. The CVL 
convolves the input activations with 
several filters, each a 3D array of pre-
determined values, or weights. These 
weight values contain the “knowledge” 
embedded in the NN, and they are cal-
culated during training. They remain 
constant during inference, which, for 
an image classification task, is the pro-
cess of using the network to determine 
what an image depicts.

A typical input or output activa-
tion array contains 1000s of values, 
and each layer typically applies 100s 
of filters each containing 100s to a few 
1000s of weights. Each output acti-
vation calculation amounts to a dot 
product of a filter with an equally sized 

sub-array of the input activation array. 
Figure 1b shows how output activation 
o(x′, y′, n) is expressed as a function  of 
input activations a(x, y, i) and weights 
w(x″, y″, i). Each dot product involves 
100s to 1000s of activation and weight 
pairs. A constant bias is usually added 
at the end, and the result passes 
through a nonlinear activation func-
tion which produces the output activa-
tion. Several activation functions exist 
with the Rectified Linear Unit (ReLU) 
often used for image classification. 
ReLU converts negative activation val-
ues to zero, while allowing positive 
activations to pass through. To fully 
process an input activation array, the 
filters scan the input using a stride S. 
The input activation subarray used in 
each computation with a filter is called 
a window. In the discussion that fol-
lows we ignore the addition of the bias 
as it is easy to implement along with 
the activation function.

The Opportunity for Deep 
Learning Acceleration
A dot-product can be implemented as a 
triple-nested loop:

outa = 0

  for xi =  0  to K

    for yi =  0  to K

      for ii =  0  to  imax

        outa + =  a(x+xi,y+yi,ii) * 	

	 w(xi,yi,ii)

A general-purpose processor 
implements these loops as several 
tens of machine code instructions, 
each typically a simple calculation 
or a data movement. Executing each 
instruction entails several actions 
such as fetching the instruction rep-
resentation from memory, decoding 
it to interpret what it represents, and 
reading and writing several storage 
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FIGURE 1. (a) A feed-forward image classification neural network. (b) A convolutional 
layer.
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elements such as registers or memory. 
Such processors are flexible and can 
execute any arbitrary code fairly well. 
However, if all that we care about is 
executing dot products, this flexibility 
incurs significant energy and thus per-
formance overheads. Specializing our 
hardware to perform dot products can 
drastically reduce these overheads.

Computation Structure-
Based Acceleration
Specialization can exploit the compu-
tation structure of dot products. Fig-
ure 2 shows such a structure-based 
accelerator. It accepts 16 activations 
and 16 weights. It multiplies these in 
pairs and then reduces the 16 prod-
ucts using an adder tree to accumu-
late the result into an output register. 
This hardware can compute an output 
activation over multiple cycles. The 
accelerator can use several units such 
as this to process more activation and 
weight pairs per cycle. Since convolu-
tional layers typically have many fil-
ters, each can be assigned a separate 
unit with all units reusing the same 16 
activations. Reusing data is desirable 
as memory accesses are much more 
energy expensive than typical com-
putations in modern semiconductor 
technologies.

DaDianNao is such a structure- 
based accelerator.1 It takes advantage 
of activation reuse in convolutional 
layers and judiciously uses on-chip 
resources to balance computation and 
communication needs. DaDianNao 
contains 256 processing units, similar 
to that in Figure 2, organized in 16 tiles 
of 16 units each. Each unit can process a 
separate filter and in total DaDianNao 
computes 4K products and 256 partial 
dot products per cycle. Different con-
figurations are possible and desirable 
depending on the application.

Value-Based Acceleration
We purposely targeted techniques that 
could complement structure-based 
acceleration: as an academic group 
we felt that our contribution would 
be more meaningful if we attempted 
to look further into what may be use-
ful after structured-based approaches 
are perfected by industry. Drawing on 
our experience with general-purpose 
processor optimizations we decided 
on the following three principles: 1) 
Try to exploit typical execution behav-
ior, 2) do not require NN modifications 
to achieve benefits, and 3) investigate 
in-depth specialization before trying 
to generalize. Here is why:

Exploiting typical behavior. Many 
general-processor performance tech-
niques exploit typical program behav-
ior. Take for example, hardware caches, 
a key memory access acceleration tech-
nique. In today’s technology a proces-
sor can perform calculations about 100 
times faster than main memory can 
supply the data. Unfortunately, it is not 
possible to build large and fast main 
memories. Fortunately, by exploiting 
common program behavior, it is pos-
sible to build memory hierarchies that 
behave like a large and fast memory 
most of the time. This is only possible 
because most programs exhibit mem-
ory access stream locality: they tend 
to access the same or nearby memory 
locations close in time. As a result, 
a cache, a small and fast memory, 
can expect to service many memory 
requests using the following strategy: 
keep copies of a limited number of 
recently accessed memory locations 
and those nearby. Programs do not 
have to exhibit locality, but most hap-
pen to do so.

Mirroring this experience with 
general-purpose processors, we asked 

whether there are properties in NN 
execution that hardware can exploit 
to boost performance. We wanted to 
complement approaches that exploit 
the structure of computation and thus 
targeted the value stream. Between 
weights and activations, we decided to 
first target the activations. Our think-
ing was that while there were great 
opportunities in the weight stream, 
since the weights are known in advance, 
it is likely that software approaches 
could deliver much of the potential 
benefits or should at least be part of  
the solution. Activations are runtime 
calculated values and thus less amena-
ble to static analysis. However, as our 
activation-based methods have matured 
we recently did explore options that 
exploit properties of both.2–4

Target out-of-the-box networks. For 
general purpose computing, tech-
niques that required software changes 
had mixed success. Software devel-
opment is hard enough as it is, espe-
cially for software developed over 
several years by large development 
teams. Mirroring that experience, we 
opted to target accelerators that would 
work with out-of-the-box NNs. This is 
not to say that co-designing NNs and 
hardware is not worth pursuing. To 
the contrary, co-design should lead to 
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FIGURE 2. A computation-structure- 
based accelerator.
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much greater benefits. However, such 
efforts take time to mature and yield 
results and may incur significant over-
heads to apply even if this is done prior 
to execution. We opted to design hard-
ware that will deliver immediate ben-
efits while at the same time rewarding 
related advances in NN design such as 
reducing value precision.

Risks: breadth vs. depth. Any accel-
erator design carries risks. What if the 
application evolves so much that it can 
no longer execute on the accelerator? 
For example, accelerators that were 
specialized for early video formats 
are by now obsolete as video decoding 
algorithms have changed dramatically. 
Or, what if an application uses a mix of 
other techniques that the accelerator 
fails to benefit?

An ideal accelerator would be: 1) 
specialized enough to deliver a desired 
level of performance, 2) general-enough 
to support a broader class of applica-
tions, and 3) future-proof. Not all these 
goals are attainable. While breadth 
is desirable, there is value in in-depth 

exploration of what is possible for each 
algorithm of interest in isolation. Such 
an exploration can ultimately inform 
a design that is general enough while 
at the same time benefitting special-
ized applications and devices with a 
known expected use-life. Accordingly, 
we decided to focus on neural networks 
and since the networks that were read-
ily available were those targeting image 
classification, most of our work targets 
this class of NNs. Profiling of these NNs 
confirmed that convolutional and, to 
a lesser extent, fully connected lay-
ers dominate execution time. Thus we 
targeted these two layers. Finally, we 
opted to first target inference, in part as 
it is a building block for training as well 
and also since we expect that there will 
be a lot more devices that will only need 
to perform inference.

INTERESTING RUNTIME 
VALUE PROPERTIES
Studying the value stream of image 
classification NNs revealed several 
properties which could be potentially 
exploited for acceleration.

Ineffectual activations
In all CNNs studied, many of the multi-
plications are ineffectual as they involve 
a zero valued activation. Even more mul-
tiplications could be avoided as long as 
their activation input value was close 
enough to zero. What is “close enough” 
varied per network and layer. We devel-
oped an empirical method for finding 
such thresholds per layer. These ineffec-
tual multiplications represent an oppor-
tunity for improving performance. 
However, exploiting them is a challenge 
for a massively data-parallel engine. 
To get any performance, a method was 
required to promote other useful com-
putations to replace such ineffectual 
ones. Unfortunately, just checking if 
an activation is ineffectual takes prac-
tically as much time as performing the 
multiplication, worse, getting another 
activation requires another data access. 
Fortunately, the input to every CNN 
layer but the first is the output of a pre-
vious layer. Accordingly, at the output 
of each layer we can pack the effectual 
activations tightly in memory so that 
processing for the next layer proceeds 
smoothly without having to check 
for ineffectual computations nor per-
form additional memory accesses. Our 
Cnvlutin5 is such a design, and Figure 3 
reports its performance improvements 
over DaDianNao.

Why do so many zero or near zero 
activations exist? In the context of 
image classification and at the first 
layer, an activation can be thought of 
as being the probability that a certain 
visual feature, for example a circle rep-
resenting an iris, appears at some posi-
tion. Unless our image is full of such 
circles all over the place, most such 
activations would be zero or near zero. 
While this is an oversimplification, it 
suggests that ineffectual activations 
are an intrinsic property of NNs.
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FIGURE 3. Performance improvement when skipping ineffectual activations. Dark blue: 
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accuracy.
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Similarly, the Efficient Inference 
Engine skips zero activations while 
also taking advantage of weight spar-
sity6 using units that perform a single 
multiply-accumulate. SCNN also tar-
gets sparsified NNs, that is NNs where 
extra steps were taken to convert many 
weights to zero, skipping both ineffec-
tual weights and activations.7

Precision variability
We observed early on that the pre-
cision NNs need varies per layer, a 
property that others have observed as 
well. In the process, we developed a 
profiling-based method for determin-
ing what precisions each layer could 
use while still maintaining accuracy.8 
As Table 1 shows, the precision needed 
varies from as little as 5 bits for some 
layers of AlexNet to up to 13 bits for 
some layers of VGG-19. These results 
imply that conventional hardware that 
uses a one-size-fits-all precision per-
forms many unnecessary and energy 
wasting computations. But could we 
build an accelerator that avoids these 
computations boosting energy effi-
ciency and execution performance? 
Specifically, we asked whether we 
could build an accelerator whose exe-
cution time scales proportionally with 
the precision needed. Compared to 
designs that always use a fixed preci-
sion, e.g., 16 bits, for all activations, 
our desired accelerator would be 16/PL 
faster when executing layer L, where 
PL is the activation precision chosen for 
the layer. Our goal was to squeeze per-
formance even from single bit reduc-
tions in precision. For example, for lay-
ers using 8 and 7 bits of precision, the 
accelerator would be 2× and 2.3× faster 
respectively compared to always using 
16-bits of precision. Existing process-
ing engines exploit precision variabil-
ity at very coarse granularities such 

as 8- or 16- or 32-bits, and the perfor-
mance benefits all fall far short of what 
is possible. Our Stripes accelerator uses 
bit-serial processing while exploiting 
data-parallelism to deliver the desired 
performance scaling.8 Stripes only 
boosts performance for convolutional 
layers. Tartan extends these benefits 
to fully connected layers albeit at an 
increased area cost.3 Stripes and Tar-
tan can be configured accordingly to 
target any device from high-end server 
class down to embedded devices. For 
smaller scale devices, Loom is a vari-
ant that exploits precision variability 
for both weights and activations thus 
boosting performance even further.4 
By supporting the full spectrum of pre-
cisions, the aforementioned accelera-
tor designs reward any advances in the 
design of reduced precision NNs which 
may ultimately lead to binary models 
as proposed by Courbariaux et al.9

All aforementioned designs also 
reduce memory storage and commu-
nication requirements as they store 
only as many bits as necessary to rep-
resent the activations in memory. This 
enables storing and processing larger 

networks. The Proteus extension brings 
these benefits to existing bit-parallel 
engines reducing memory footprint 
and bandwidth by about 40 percent on 
average.10 It uses a lightweight mech-
anism for converting data from a rep-
resentation that is convenient for data 
storage and communication to one that 
is convenient for data processing.

Dynamic precision detection. While 
profiling allowed us to determine per 
layer precisions that maintain TOP-1 
(exact match) accuracy at runtime 
these precisions prove pessimistic. 
Profiling finds the worst case preci-
sion needed for all possible images and 
across all activations for the layer. In 
practice, however, the accelerator will 
be processing: 1) one specific input at 
any given point of time, and 2) a lim-
ited number of input activations per 
cycle, e.g., 256, and not all activations 
of the layer. Further reduction in pre-
cision is possible when limiting atten-
tion to each set of activations that are 
being processed concurrently. Dynamic 
Stripes is a surgical, low-cost extension 
to both Stripes and Loom that detects 

TABLE 1. Activation precision profiles.

Network
Activation precision in bits 
per layer / effective with dynamic precision detection

AlexNet 9-8-5-5-7 / 5.4-7.4-4.2-4.4-5.8

NiN 8-8-8-9-7-8-8-9-9-8-8-8 / 6.4-7.1-7.8-7.0-5.8-5.2-8.4-7.5-7.6-7.6 4.7-6.8

GoogLeNet 10-8-10-9-8-10-9-8-9-10-7 / 6.2-5.8-6.8-6.3-5.3-6.7-6.3-5.0-5.5-7.9-4.8

VGG-M 7-7-7-8-7 / 5.3-5.1-5.8-3.4-4.8 

VGG-S 7-8-9-7-9 / 5.3-5.1-5.0-5.4-4.0

VGG-19 12-12-12-11-12-10-11-11-13-12-13-13-13-13-13-13  / 
9.1-7.7-10.0-9.0-11.1-8.8-9.7-8.3-11.6-10.4-12.2-11.7-11.5-11.5-10.4-5.9
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and exploits precision variability at 
run-time.11,12 Table 1 shows that the 
effective activation precisions when 
these are detected dynamically at 
a granularity of 256 activations are 
much shorter than those detected via 
profiling. Dynamic precision detec-
tion coupled with precision detection 
for weights also drastically reduces 
off-chip traffic and on-chip storage 
and communication.12

Repeated Calculations
Early on we found out that many of the 
multiplications happen to process the 
exact same value pair. Of particular 
interest were the cases where differ-
ent filters happen to have exactly the 
same weight at the same coordinates. 
At runtime, each of these would be 
multiplied with the same activation 
and thus would all be identical. Why 
would different filters have identical 
values at the same coordinates? We 
speculate on at least two reasons: 1) the 

filter container is a 3D array, whereas 
the feature that the filter is looking for 
is not necessary a shape that fits tightly 
in this container. This will give rise in 
several weights being zero or near zero, 
or equivalently not all features will be 
relevant to all potential object classes. 
2) Some features are partially simi-
lar which will give rise to some of the 
weights being similar or the same. The 
weight redundancy increases to inter-
esting levels once precision is trimmed.

Beyond whole values there is a lot 
more redundancy when restricting 
attention to portions of the weights 
such as their prefixes. Figure 4 demon-
strates some of this redundancy in 
AlexNet. This set of measurements 
looks at groups of 16 weights each from 
a different filter. All weights appear at 
the same coordinates, and the graph 
shows the distribution of unique 4-bit 
prefix values. While there are 16 possi-
ble combinations for a prefix of 4 bits, 
in layers 2 to 5 at least 70 percent of the 

weight groups contain just a single pre-
fix value. Virtually all groups for lay-
ers 3 through 5 contain up to 3 distinct 
prefixes for these layers. Redundancy 
is lower for layer 1 where just 7 percent 
of the groups contain a single prefix 
value. However, about 88 percent of the 
weight groups contain just 3 distinct 
prefix values. This redundancy may be 
useful for compressing the representa-
tion of the weights in memory and for 
reducing the number of computations 
needed.

Effectual Bit “Density”
Finally, at the individual bit level, acti-
vations exhibit a strong bias toward 
zero. Specifically, as Figure 5 shows, on 
average, only 8 percent of the activa-
tion bits are 1. The figure measures the 
activation bit values as they are being 
used in multiplications after we trim 
activations to the precision needed per 
layer. In primary school we learned 
how to do multiplication with a pen-
cil and paper: take one digit from the 
multiplier and multiply that with the 
multiplicand. Repeat for the next mul-
tiplier digit. Since our numbers are 
binary, the multiplier bit will be either 
0 or 1, and when it is 0 it adds nothing to 
the final result. Using this method, 92 
percent of the time we would be mul-
tiplying with a 0 bit when processing 
CNNs. As Figure 5 shows, If somehow 
we could develop an accelerator that 
only processed the effectual bits, that 
is those that are 1, the potential for per-
formance improvement is 12.5×. Figure 
5 further shows that even if somehow 
we could eliminate all zero-valued 
activations, nearly 75 percent of acti-
vation bits would still be zero resulting 
in a performance improvement poten-
tial of 4×. The behavior persists albeit 
to a lesser extent even when using 8-bit 
quantization.13
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By exploiting precision variability, 
Stripes and Dynamic Stripes do remove 
some of these ineffectual calculations. 
However, at the end there will be some 
zeroes that will remain. For example, 
when processing a pair of activations 
of 8-bits “0100 0000” and “0000 0010,” 
even with dynamic precision detection 
Stripes will process 6 bits. However, if 
we were to process only the effectual 
bits per activation, one step is enough 
to process both. The Bit-Pragmatic, or 
simply Pragmatic, accelerator exploits 
this CNN property.13

THE BIT-PRAGMATIC 
ACCELERATOR
Figure 6 shows a simplified exam-
ple that illustrates the key concept 
underlying the Pragmatic accelera-
tor. Part (a) shows a structure-based 
accelerator processing two activa-
tions A0 and A1 and two weights W0 
and W1 all in using a 16-bit fixed-
point representation. Two 16b×16b 
multipliers produce the 32b prod-
ucts A0×W0 and A1×W1 and an adder 
reduces those to a single 33b value. 
An output register accumulates the 
result. This accelerator will always 
process two pairs of activations and 
weights per cycle. To process 16 acti-
vation and weight pairs it will need 
16 cycles. In our example, each of the 
activation values contain just a sin-
gle power of two, 23 for A0 and 213 
for A1. As a result, the bit-parallel 
accelerator will process 15 + 15 zero 
activation bits all contributing noth-
ing to the final output.

Part (b) shows a simplified Prag-
matic accelerator that processes only 
the effectual activation bits. The acti-
vations now are no longer represented 
in a positional representation, but 
instead as lists of powers of two, since 
each has just one constituent power of 

two, and the lists are (0011) and (1011) 
for A0 and A1 respectively. If A0 were 
“0000 1100,” it would be represented 
as (0100, 0011). Each cycle, this unit 
“multiplies” one power of two per 
activation with the corresponding 
weight. The multipliers have been 
replaced with shifters, since multi-
plying by a power of two amounts to 
simple shifting. The rest of the unit 
remains unchanged as every cycle of 
two products of 32b each are reduced 
and accumulated. The unit processes 
the two activation and weight prod-
ucts in a single cycle and thus is as fast 
as the bit-parallel unit of part (a). How-
ever, if A0 or A1 contained more than 
one ineffectual bits, then this unit 
would require a proportional number 
of cycles to calculate the products. 
So, its execution time scales propor-
tionally with the number of effectual 
bits which is in part what we wanted. 
Unfortunately, this design is at best as 
fast as the bit-parallel design and only 
when all activations contain just one 
effectual bit. In the worst case, when 

at least one of the activations has 16 
effectual bits, it will be 16× slower.

Fortunately, convolutional layers 
exhibit parallelism and weight reuse 
across windows, two properties that 
Pragmatic exploits to ensure that it is 
always at least as fast as a bit-parallel 
engine without requiring to read more 
weight or activation bits from memory. 
The latter would require wider mem-
ories, an expensive addition. Part (c) 
shows Pragmatic’s approach. The unit 
of part (b) has been replicated 16 times. 
Each of the 16 units processes a differ-
ent activation pair. However, all units 
share the same weights. This is possible 
by processing 16 windows in parallel, 
one per unit. Whereas the bit-parallel 
unit processed 2×16b activations, for 
a total of 32b of activation inputs per 
cycle, the Pragmatic unit processes 32 
activations, one power of two per acti-
vation. This is equivalent to 32 bits of 
activations per cycle. While Pragmatic 
uses 4 bits per activation to powers of 
two, this conversion is done after the 
activations are read from storage.
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FIGURE 5. Fraction of activation bits that are 1. average over all convolutional layers 
weighted according to use frequency.
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In the worst case, when all 16 bits 
of at least one activation are 1, this 
unit would require 16 cycles to pro-
cess all 32 activations producing 32 
activation and weight products. This 
matches the processing capability of 
the bit-parallel engine of part (a). The 
two engines proceed through the com-
putation in different order; however, at 

the end, they produce the same results. 
When all activations have at most one 
effectual bit, the Pragmatic unit will 
take just 1 cycle to do the work that 
the conventional unit would do in 16 
cycles, and thus be 16× faster. In gen-
eral, if the maximum number of effec-
tual bits per activation is N, then Prag-
matic will be 16/N× faster.

Making It Practical
Unfortunately, the straightfor-

ward implementation of Pragmatic 
as described proved impractical. The 
units were about 4× larger than their 
bit-parallel equivalent, and the perfor-
mance improvements were not com-
pelling enough. We had to develop sev-
eral techniques that combined allowed 
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FIGURE 6. Pragmatic’s approach: an example. (a) Structure-based accelerator. (b) Processing the powers of two serially. (c) Exceeding 
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a practical implementation of Prag-
matic. Our discussion highlights three 
of them. The first is two-stage shift-
ing. In the straightforward design, for 
every output activation we are process-
ing 16 weight and activation offsets 
pairs simultaneously. Since we shift 
each weight by a 4 bit power of two, in 
the worst case, one of the powers will 
be 0 and another 15. Each of those shift-
ers needs thus to accept a 16b weight 
and to produce a 32b output “product”. 
Consequently, the adder tree needs to 
accept 32b products as inputs. While 
this design offers us maximum flexi-
bility to eliminate ineffectual activa-
tions bits it does so at a high cost. Two-
stage shifting gives up some of this 
flexibility and thus some of the per-
formance improvement potential to 
drastically reduce costs. The idea is to 
process the input activations into sub-
groups. For example, instead of allow-
ing any power of two to be processed 
concurrently with any other power of 
two, we can process each activation in 
groups of four bits at a time. In this case 
processing two activations with values 
“0100 0000 0000 0000” and “0000 
0000 0000 0010” will be done in two 
cycles even though each contain just 
a single effectual bit. In the first cycle 
we will process the group of the four 
least significant bits, 0000 and 0010, 
and in the second the group of the four 
most significant bits, 0100 and 0000. 
In practice we found that processing 
bits in groups of four was sufficient to 
achieve most of the performance possi-
ble with unrestricted processing. Prag-
matic chooses the beginning of each 
group dynamically at run time. For 
example, it would process “0000 0000 
0001 0000” and “0000 0000 0000 
1000” in a single cycle.

The second technique was to allow 
partial decoupling of the activation 

lanes. In the straightforward design 
Pragmatic processes all activations in 
the group before proceeding to the next 
group. By adding buffers at the weight 
inputs and by statically placing acti-
vations into subgroups, it is possible 
to allow some subgroups to run ahead 
of others. In practice using just one 
weight buffer and thus allowing sub-
groups to run just one activation set 
ahead boosted performance consider-
ably. These buffers are anyhow neces-
sary to support full utilization when 
executing fully connected layers.

Finally, so far we assumed that 
activations are represented as a sum 
of powers of two. However, the under-
lying design can easily handle both 
adding and subtracting powers. This 
is a form of Booth encoding, a tech-
nique usually reserved for reducing 
the latency of high performance mul-
tipliers. For example, activation “0011 
1100 0000 0000” can be represented 
as “(0010 0000 0000 0000 - 0000 0010 
0000 0000),” or as “(213 – 29).” Prag-
matic uses a modified form of Booth 
encoding to avoid increasing the 
number of cycles in conjunction with 
2-stage shifting.

Execution Time Reduction
Figure 7 shows how performance (the 
inverse of execution time) improves 
compared to an equivalent configured 
DaDianNao-like accelerator for var-
ious configurations. Three parame-
ters define a configuration: the terms 
per filter, the filters per tile, and the 
number of tiles. The terms per filter is 
the number of activation and weight 
products calculated per filter. The fil-
ters per tile is the number of filters 
processed per processing engine tile. 
The x-axis shows the configurations 
in a tiles-filters/tile-terms/filter for-
mat. A 16-8-4 configuration has 16 
tiles, each processing 8 filters and 
each processing 4 products, in total 
it processes 512 terms per cycle. For 
a design configured to match DaDi-
anNao’s original 16-16-16 server-class 
configuration, Pragmatic boosts per-
formance by 4.3× on average. When 
processing fewer terms per filter, 
Pragmatic experiences less imbal-
ance across activations, and perfor-
mance increases and reaches nearly 
8× for a configuration with one term 
per filter, which may be more appro-
priate for an embedded design.
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FIGURE 7. Performance improvement with various pragmatic configurations.
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SUMMARY
Table 2 summarizes some of our 
designs and reports their relative per-
formance, energy efficiency, and area 
normalized to an equivalent DaDi-
anNao configuration. The table also 
reports on a more recent accelerator, 
Tactical2 that combines the benefits 
of Pragmatic or Dynamic Stripes with 
a lightweight zero weight skipping 
front-end resulting in multiplicative 
benefits. The Laconic configuration 
shown uses half of the weight memory 
wires. With an equal number of weight 
memory wires, the speedup increases 
to 30×. The results reported for Tacti-
cal are for pruned versions of AlexNet, 
Googlenet, and ResNet-50. Further, the 
results for Loom are with dynamic pre-
cision detection.

Early successes in hardware 
acceleration for Deep Learn-
ing relied on exploiting its 

computation structure and data reuse, 
e.g. Y. Chen and Chen.1,14 As our work 
and that of others exemplify, many 
recent DL hardware accelerators 
exploit the various forms of informa-
tional inefficiency that deep learning 
neural networks (DNNs) exhibit. It has 
been found that informational ineffi-
ciency manifests in DNNs as ineffec-
tual neurons,6,15 activations,6,5,15 or 
weights,16,15 as an excess of precision, 
e.g. Warden and Judd,17,8 as ineffec-
tual activation bits,13 or in general 
as over-provisioning. Whether these 
inefficiencies are best exploited stati-
cally, dynamically, or both is an open 
question. Furthermore, which forms 
of inefficiency will persist as DNNs 
evolve remains to be seen. These past 
successes demonstrate that at this 
stage of our exploration on how to best 
deliver the hardware performance 
advances needed to support DL inno-
vation, identifying DNN properties 
that hardware and/or software could 

potentially exploit is invaluable. More-
over, the progression of advances, 
starting from simply looking at preci-
sion for reducing storage and arriving 
to effectual bit density to improve per-
formance, demonstrate that it is not 
easy to foresee upfront what innova-
tions lie ahead. Accordingly, we ought 
to encourage further exploration even 
for directions that may seem unlikely 
to deliver benefits or that today seem 
too farfetched.

Along these lines, our accelerators 
capitalize on some of the value prop-
erties of CNNs while working with 
out-of-the-box networks thus mak-
ing deployment possible today. More 
importantly, they open up new oppor-
tunities and create new incentives 
for CNN designers providing a safe 
path towards innovation while offer-
ing rewards for even small advances. 
Specifically, if deployed, they have the 
potential to accelerate innovation in: 1) 
extremely low precision NN design with 

TABLE 2. Value-based accelerator characteristics relative to dadiannao.1

Accelerator Configuration Performance Power Area Frecuency Tech. node

DaDianNao 16-16-16 3.9 Tmul/sec 17.6 Watt 78mm2 980 Mhz 65nm

Accelerator Compared to  
DaDian- Nao Conf.

Relative 
performance

Relative energy 
efficiency

Relative 
area

Value property

Cnvlutin5 16-16-16 1.6× 1.47× 1.05× Ineffectual activation values

Dynamic stripes11 16-16-16 2.6× 1.54× 1.35× Dynamic activation precision

Loom4 1-8-16 3.6× 2.9× 0.94× Dynamic activation + weight precisions

Pragmatic13 16-16-16 4.3× 1.71× 1.68× Ineffectual activation bits

Tactical2 4-16-16 10.2× 2.4× 1.14× Zero weights + ineffectual activation bits

Laconic 1-8-16 16× 1.63× 2.39× Ineffectual activation bits of weights + activations

Reported is the performance, energy efficiency and area compared to an equivalent DaDianNao configuration shown under column “DaDianNao Conf.” DaDianNao configura-
tions are labeled as “tiles - filters/tile - products/filter.”
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an eye towards ternary or ternary net-
works (Stripes, Loom, Pragmatic, and 
Tactical), and 2) weight pruning (Tacti-
cal). They enable experimentation with 
the whole spectrum of precision choices 
while also delivering excellent per-
formance for full-precision networks. 
They have the potential to “incentiv-
ise” the machine learning community 
to further invest in these directions 
delivering immediate, proportional 
rewards. Eventually, if extremely low 
precision and heavily pruned networks 
take over, more efficient hardware plat-
forms can safely take over. New oppor-
tunities could also arise such as further 
reducing the number of bits that are 1, 
adopting other quantization schemes 
such as using only a single power of two 
on a case-by-case basis, or even rear-
ranging filters to reduce effectual bit 
imbalance. All without requiring that 
any newly developed scheme work for 
all networks.

We encourage the interest readers to 
visit the first author’s web page for our 
most recent findings.  
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