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Abstract— While chip multiprocessors with ten or more
cores will be feasible within a few years, the search for appli-
cations that fully exploit their attributes continues. In the
meantime, one sure-fire application for such machines will
be to serve as consolidation platforms for sets of workloads
that previously occupied multiple discrete systems. Such
server consolidation scenarios will simplify system administra-
tion and lead to savings in power, cost, and physical infras-
tructure. This paper studies the behavior of server consoli-
dation workloads, focusing particularly on sharing of caches
across a variety of configurations. Noteworthy interactions
emerge within a workload, and notably across workloads,
when multiple server workloads are scheduled on the same
chip. These workloads present an interesting design point
and will help designers better evaluate trade-offs as we push
forward into the many-core era.

I. Introduction

As device counts continue to increase, multi-core chips
with 10s to 100s of cores are fast approaching on the
horizon. Sun Microsystem’s Niagara offers 8 cores and
32 threads [23]. Intel’s Tera-scale computing project [18]
promises to offer 80 cores on a single die. In addition to
the research and design challenges faced by these large-scale
multi-core designs, the industry faces the challenge of find-
ing applications and workloads to benchmark and evaluate
these designs. Exploring server consolidation workloads is
one answer to this growing problem.

Traditionally, companies would pick a server platform for
a particular application, and then install one or more phys-
ical systems to serve the computational needs of that appli-
cation. As the computational needs increased, perhaps as
the company grew in size, it purchased more servers to keep
up with its growth and to support new solutions. The sheer
abundance of servers resulting from this practice has today
evolved into a nuisance, in terms of both cost and system
administration, and has contributed to the coining of the
term “server sprawl.” Across servers, server sprawl results
in servers taking up more floor space, consuming more elec-
tricity, and being less reliable than their consolidated server
counterparts. Meanwhile, a single server may actually be
underutilized and yet limit application scalability due to
system-specific bottlenecks.

Fortunately, the resurgence of virtualization technology
[13, 32] has helped to alleviate many of the problems by
consolidating several physical servers on one single physical
high-end server. In the process, each physical server’s ap-
plications and operating system are migrated to a central
server where the applications coexist on virtual machines
that are guest hosted on a virtualization platform. The

”virtual servers” potentially share the entirety of available
physical resources but are given the impression that they
are running in isolation. By centralizing the applications
and sharing the physical resources, management costs are
reduced. Amongst many other benefits, servers can experi-
ence higher utilization and may dynamically meet changing
demands by scaling their resource requirements [21]. Sec-
tion II lists the consolidated applications under evaluation
while more remarks on how the applications are run and
evaluated can be found in Section IV.

Multi-core architectures, which have emerged in a
performance-driven effort to provide more on-chip paral-
lelism, are well-suited for commercial workloads running in
a server consolidation environment. Each workload may be
given the impression of running on its own private system,
but in actuality, the hardware may be shared with other
workloads in a variety of possible arrangements. Figure
1 illustrates two different arrangements of four workloads
on a server consolidation system with groups of four cores
sharing a last level cache. This figure shows four distinct
workloads, each consisting of four threads, running on a 16
core CMP with two different scheduling policies. Round
robin and affinity configurations are shown and will be dis-
cussed in further detail in Section III-C.

These workloads, which tend to be multi-threaded and
communication-intensive applications, are a good match
with the multi-core architecture’s on-chip memory system,
which allows for fast inter-thread communication while the
multiple cores allow for concurrency. As feature sizes con-
tinue to shrink, there is an opportunity to populate the chip
with even more cores. Additional cores increase the effec-
tive processing capacity of the chip, and in turn customers
can obtain even higher degrees of consolidation within a
single chip.

By integrating a large-scale multiprocessor onto a single-
chip, where several of the resources may be shared, interfer-
ence can come from many sources; this interference occurs
at a much finer granularity than in traditional multi-chip,
multi-board servers. Many cores may compete for the same
interconnect bandwidth, memory controllers, and cache re-
sources. Sharing these resources to provide superior per-
formance as well as ensuring fairness has been the subject
of recent work (discussed in Section VI) and will continue
to grow in importance. The interconnect, which must be
able to provide fast and reliable communication from any
one core to any other, may be shared across cores. Memory
controllers, which are central arbiters between the chips and
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Fig. 1. System running server consolidation workloads

memory, may receive requests from multiple cores. Last,
but not least, caches may be shared to varying degrees
amongst cores. The last level cache is the final opportu-
nity to keep the request on-chip before incurring the high
latency effects of going off-chip. Thus every effort must be
made to satisfy the request on-chip.

With the pressure to add more processing cores, cache
area has become increasingly precious. In response, many
designs dictate cores share a portion, or entirety, of the
chip’s last-level cache memory. By allowing shared access
to the last level cache, the designs strive to increase cache
utilization and consequently curtail the occurrence of high-
latency performance-damaging off-chip misses. In the ideal
scenario, the shared cache adapts to the changing footprint
needs of running threads, while cutting down on on-chip
coherence traffic and instances of replicated data. In the
non-ideal scenario, the workloads stress the cache and cause
destructive interference; capacity and conflict misses grow
rampant and performance degrades significantly [17]. This
destructive interference in the caches can spill over to cause
congestion in the interconnect and put additional pressure
on the memory controllers and push more data off chip.
The trade-offs in the continuum of designs, between pri-
vate and full-shared caches, in conjunction with the behav-
ior of the programming environment, play a large role in
the timely manner in which the request is satisfied and is
the focus of our work. The complex relationship between
constructive and destructive interference and its effects are
key motivators in this study. Details regarding a variety of
cache organization are found in Section III. In Section V,
we study the interaction at the last level cache.

Simulation methodology has been a topic of significant
research for both simultaneous multi-threaded (SMT) de-
signs and for multiprocessor designs [7, 25] The simulation

time of large numbers of cores can be prohibitive, especially
when combined with a wide variety of workloads combina-
tions that can occur in the server consolidation environ-
ment [16]. We discuss our approach to these simulation
challenges in Section IV.

We show, across a variety of shared cache configurations,
that a commercial workload’s memory behavior can be af-
fected in unexpected ways by other workloads. Thus, in
Sections VII and VIII, we argue that the characterization
we present is insightful to OS/VM developers, code-tuners,
architects, and begs further research.

The main contributions of this work are as follows:
1. Explore the importance of server consolidation work-
loads to a variety of research communities.
2. Identify interactions within server consolidation work-
loads that will open new avenues of research.
3. Demonstrate the need to evaluate commercial workloads
not just in isolation but in a consolidated environment.

II. Workload Overviews

The workloads presented are all server multi-threaded
commercial workloads, representative of workloads that
might be found running on a company’s consolidated server.
They come from two consortia, the Systems Performance
Evaluation Cooperative (SPEC) [34] and the Transaction
Processing Performance Counsel (TPC) [35].

As previous studies have pointed out, commercial work-
loads exhibit large degrees of inter-thread sharing [2,12,31].
For instance, in TPC-W, when caches are private to the
core, a high percentage of misses result in a cache-to-cache
transfers and a significant portion of these misses are ser-
viced from a remote cache line that is in the dirty state
[6]. The effects of cache-to-cache transfers in the work-
loads studied make them interesting subjects, especially



from the perspective of cache coherence, protocol design,
and cache organization. The organization is in part inter-
esting because cache-to-cache transfers can be streamlined
or even avoided completely, at a cost, when appropriate
levels of sharing are built into the hierarchy. TPC-H ex-
hibits significant intra-query parallelism through the collab-
orating operators within each query’s execution, while the
join/merge activity causes plenty of sharing and synchro-
nization across threads. The descriptions of the particular
workloads, SPECjbb, SPECweb, TPC-H, and TPC-W, can
be found in Table I.

Table II gives further insight into the individual work-
loads that are consolidated in this study. The percentage
of misses to the last level of private cache that result in
an on-chip cache to cache transfer are given as well as the
number of cache line sized blocks that are touched during
the simulation. These workloads exhibit a range of misses
that are satisfied by cache-to-cache transfers and different
working set sizes; combining workloads gives insight into
the different stresses placed on an architecture.

TABLE II

Workload Statistics

Percent of accesses
resulting in a # of 64 Byte
cache-to-cache transfer blocks accessed

all clean dirty

TPC-W 15% 84% 16% 1,125 K
SPECjbb 52% 94% 6% 606 K

TPC-H 69% 43% 57% 172 K
SPECweb 37% 93% 7% 986 K

III. Cache Designs

The following section studies a variety of last level cache
sharing arrangements to illuminate some of the pressures
felt by the cache hierarchy.

A. Private Last-Level Caches

With several cores, there are several design points for
the last level cache configuration that we explore. On one
end of the design spectrum are private caches. Here, each
core is allowed exclusive access to an equally sized parti-
tion of the last level cache and shared data located on-chip
can be accessed without going off-chip. Access latency and
interconnect contention is low, but so is cache utilization;
unused portions of the private caches are unavailable to the
needs of other cores. Furthermore, since shared read-data
is replicated across the private caches, the effective capac-
ity is also lower [11], which has implications on the pressure
put on the memory controllers.

B. Shared Last-Level Cache

On the other end of the spectrum, all cores may share
the last level cache in what we call a fully-shared cache [3,
23]. Access latency and interconnect contention are higher
than in private caches, but since all of the cores can share
all of the cache and there is no replication of data, the
cache real-estate is efficiently utilized. However, there are

serious concerns regarding the viability of a shared cache
design. With a vanilla-LRU block replacement policy, there
are no guarantees on any core’s allocation in the cache and
the scenario may arise where one core may significantly
reduce the amount of cache memory available to another
core [22]. Furthermore, the design of a large monolithic
cache that satisfies many requests from many cores is a
daunting challenge when engineers are faced with increasing
wire delays [5].

C. Shared-N-Way Last Level Caches

In the continuum, between private and shared, are
shared-N-way last level caches. N cores are statically as-
signed to share an equally-sized partition of the last level
cache. The design strikes a balance between private and
shared caches, by reaping the benefits of a shared structure
while localizing its negative effects to a single partition.
Utilization is not as high as the full-shared cache nor as
low as the private caches and replication, though present,
is not as prevalent as found in private-caches.

D. Shared-N-Way Cache Scheduling Policies

The virtual machine hypervisor in a server consolida-
tion system must allocate the virtual processors of each
virtual image to the physical processors available in hard-
ware. Whenever cores share caches, the scheduling policy
assigning threads to cores also determines the assignment of
threads to the shared-N-way caches. Co-scheduled threads
reap the benefits of streamlined communication and effi-
cient sharing of read-only blocks in the shared-N-way cache
but may also experience thrashing if the combined working
set exceeds available capacity. In this work, we explore four
scheduling policies: round robin, affinity, a round-robin-
affinity hybrid, and random.
• In round robin scheduling, load balancing is emphasized
and each workload thread is assigned to a separate shared-
N-way cache in a round robin fashion. The policy is best
suited for spreading work across the chip and maximizing
the threads’ cache capacity when there are idle thread-
contexts available.
• In affinity scheduling, sharing is maximized by attempt-
ing to schedule all workload threads on as few shared-N-way
caches as possible. Affinity scheduling minimizes unneces-
sary data replication, as threads from the workload share
data within a single (or a few) shared-N-way caches and
provide faster access to shared data.
• In the round-robin-affinity scheduling hybrid, threads are
scheduled in a round robin fashion with at least two threads
from the workload sharing a shared-N-way cache.
• Random scheduling strives to capture the assignment of
threads to shared-N-way caches that might be seen in an
over-committed virtual machine. In this scenario, when
threads are swapped in and out, they may be assigned to
any available shared-N-way cache. After some period of
time, the assignment may appear seemingly random.

Customarily, an operating system assigns a thread to a
core. In consolidated servers running virtualization the as-
signments are more complex, the virtual machine manager



TABLE I

Workload Descriptions

Workload Description Setup Execution

SPECjbb Order processing application for wholesaler 3-tier client-server 6400 requests
Emphasizes the middle-tier business logic and w/ six warehouses w/ 15 seconds of warm-up time
performance of Java-based middleware

SPECweb World-wide web server 3 tiers w/ Zeus 300 HTTP requests
Web Server 3.3.7

TPC-H Decision support IBM DB2 v6.1 Query #12 (shipping modes & order priority)
on 512 megabyte database w/ 1 GB of memory

TPC-W Web commerce modeling online bookstore IBM DB2 v6.1 Browsing mix for 25 web transactions

or hypervisor must take the guest OS’s thread-to-core as-
signments and find appropriate reassignments on the real
hardware. Sun Microsystem’s support for virtualization in
the Solaris operating system [14] allows administrators to
explicitly schedule threads to cores by statically binding the
threads to specific cores, dynamically binding the threads
to any core in a specific set, or by using an assignment
heuristic of load-balancing, affinity, or utilization. The va-
riety of scheduling algorithms we outline in our study try
to replicate, as closely as possible, what an administrator
might specify.

IV. Methodology

A. Simulation Environment

The experimental data presented in this paper was col-
lected with PHARMsim, a full-system, cycle-accurate sim-
ulator built upon SIMOS-PPC [9,25]. The workloads sim-
ulated are isolated from one another through virtual ma-
chines; each workload runs a private copy of the AIX 4.3.1
operating system. Each workload is statically assigned its
own portion of physical memory and has a completely pri-
vate address space; no data is shared across workloads.

To efficiently simulate a variety of workload combina-
tions, we use four core workload checkpoints that have been
created and tuned for four cores. Workload checkpoints
are snapshots of a workload taken after the simulator has
booted and the workload has been installed and warmed;
these checkpoints then run both user and operating sys-
tem code for a specified number of transactions. Creating
checkpoints alleviates the overhead of booting the operat-
ing system and ensures that the same set of transactions
are run in each simulation.

Each four core workload checkpoint is loaded into the
simulator at startup. Based on various scheduling algo-
rithms, each thread from each workload is bound to a phys-
ical core at this time and remains bound throughout the
simulation. The checkpoint may spawn additional threads;
however the spawned threads are only permitted to run
on the pre-allocated cores. We considered creating consol-
idated workload checkpoints for the variety of simulations
we examined, but concluded the work involved would be
prohibitive.

Our methodology is designed to mimic a dynamically
partitioned system running a hypervisor or virtual machine.
Additional hypervisor support allowing workloads to be dy-
namically remapped to different physical cores is left for

future work. Currently, threads from a single workload can
only be context switched within their domain of statically-
assigned cores and not to other cores in the CMP. This
methodology gives us greater control over thread placement
and the ability to bind threads of a given workload to a cer-
tain set of physical cores.

The machine configuration used is found in Table III.
With the exception of cache configuration, our machine
model remains unchanged for our various simulations. In-
order cores mimic Sun Microsystem’s Niagara [23] and are
indicative of future many-core architectural trends; out-of-
order cores are left to future studies. The last level cache
(L2) is set to a constant 16 megabytes in size and divided
up accordingly:
• With private L2 caches, each core is assigned a 1
megabyte share of the aggregate 16 megabytes.
• With shared-N-way L2s, 2, 4, or 8 cores respectively share
2, 4, or 8 megabytes.
• With full-shared L2s, all 16 cores share the 16 megabytes.
We simulate a SGI Origin style directory protocol [24] with
directory entries striped across the 16 cores by physical
address to maintain coherence among the private caches.
Each core is augmented with a directory cache to reduce
the number of off-chip references. The interconnection net-
work, which is also shared among workloads is a 2-D packet-
switched mesh, with virtual channel flow control, dimension
order routing and a 3-stage router pipeline. The router per-
forms speculative virtual channel and switch allocation.

TABLE III

Machine Configuration

Cores 16 in-order
Interconnect 2-D Packet-Switched Mesh
L0s (private) 8KB/1 cycle
size/latency
L1s (private) 64 KB/2 cycles
size/latency
L2s size/latency 16 MB/6 cycles
(shared by varying # of cores)
Memory latency 150 cycles
Thread to core RR, Affinity,
assignment RR-Affinity, Random

B. Workload Combinations

Initially, we dedicated four cores and a fully shared 16MB
cache to a single workloads and ran that workload in iso-
lation to give a basis for comparison. Then, we ran sev-



eral combinations of workloads and scheduling policies to
study exactly how the behavior of workloads changed in
the presence of other workloads. In all cases, the machine
was filled to capacity, but never over-committed. If a work-
load happened to end prematurely, it was restarted to keep
the system at capacity, allowing us to study the system in
a steady state. The combination of workloads and poli-
cies are tabulated in Table IV with the number of repli-
cated instances given in parenthesis. Due to issues with
the workload driver, SPECweb could not be combined in
the heterogeneous mixes.

TABLE IV

Experimental Runs

Heterogeneous Mixes

Mix 1 TPC-W (3) & TPC-H (1)
Mix 2 TPC-W (2) & TPC-H (2)
Mix 3 TPC-W (1) & TPC-H (3)
Mix 4 SPECjbb (3) & TPC-H (1)
Mix 5 SPECjbb (2) & TPC-H (2)
Mix 6 SPECjbb (1) & TPC-H (3)
Mix 7 SPECjbb (3) & TPC-W (1)
Mix 8 SPECjbb (2) & TPC-W (2)
Mix 9 SPECjbb (1) & TPC-W (3)

Homogeneous Mixes

Mix A TPC-W (4)
Mix B TPC-H (4)
Mix C SPECjbb (4)
Mix D SPECweb (4)

We focus our simulations on a 16-core system to make
simulation time tractable given the large number of work-
load combinations. However, scaling to larger systems and
observing the effect on the trends we present is an avenue
for future work.

V. Results

To provide insight into the behavior of server consolida-
tion workloads we present three metrics: single-workload
performance, miss rate, and miss latency. Workload in-
stances in the consolidated mixes are normalized to a sin-
gle workload instance run in isolation with four cores and
16 MB of fully shared last level cache. Since cycle-per-
instruction is not a meaningful performance measurement
in non-deterministic multi-threaded execution, we choose
to use runtime values (normalized cycle count) to give the
reader a sense of a single workload’s performance. Ana-
lyzing the performance of the entire system running mul-
tiple server consolidation workloads is problematic as each
workload executes a different number of transactions and
transactions across each benchmark are of different sizes.
Therefore we limit our performance evaluation to looking
at the relative change in performance of each virtual ma-
chine in the different workload mixes; this metric is similar
to the cycles-per-transaction used by [28]. For our per-
formance evaluation we use statistical simulation methods
as described by Alameldeen and Wood [1]. Miss rates pre-
sented are for the last level cache misses seen by each virtual
machine (as opposed to the miss rate seen by the individ-
ual last level caches). Presenting the miss rate observed

by each cache would obscure the impact consolidation has
on each individual workload. Miss latency is defined as
the time to satisfy a miss to the last level of private cache
(L1). This measurement includes the latency incurred by
L1 cache-to-cache transfers, L2 accesses, and the latency of
a memory access. The commercial workloads studied are
sensitive to miss latency; showing the relative latency adds
to the overall performance picture.

Isolated Workload Performance
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Fig. 2. Performance of workloads run in isolation

A. Single Isolated Workloads

Observing each workload in isolation helps with under-
standing the effect of consolidation on the workload. We
simulate a single instance of each workload with varying de-
grees of cache sharing and a variety of scheduling policies
running. In each simulation, the entire system is dedicated
to the workload; four cores (of the 16) are active while the
remaining 12 remain idle. Affinity usually helps with shar-
ing, though effective capacity is reduced; Round Robin al-
lows the whole chip’s cache to be utilized by threads, while
affinity limits the shared-8-way and shared-4-way case to
1/2 and 1/4 of the cache respectively. In most cases, as ex-
pected, Figure 2 shows that single workloads performance
degrades as the on-chip cache storage is decreased (i.e. as
N decreases in the shared-N-way expression). In Figure
2 2-LL$ refers to a setup with 2 last level caches or a
shared-8-way system. Round robin scheduling distributes
the threads around the chip; this placement achieves a more
even distribution of traffic on the interconnection network.
Affinity scheduling yields significant contention for TPC-W
as it has a large data footprint; alleviating pressure on the
interconnect improves performance. Interconnect latency
is 20% lower for round robin scheduling than for affinity
scheduling.

Figure 3 shows a corresponding increase in misses as the
last level cache capacity seen by each thread decreases.
In the case of the shared-4-way caches, the round robin
scheduling policy (which maximizes on-chip cache capac-
ity) has the worst miss rate as it is forced to replicate read-
shared data. Affinity scheduling maximizes the positive
effects of sharing; however, the miss rate is slightly higher



Isolated Workload Miss Rates
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Fig. 3. Miss rates for workloads run in isolation

than affinity in the shared-2-way configuration for TPC-W
and SPECjbb. The cache capacity in this setup is very con-
strained causing an increase in conflict and capacity misses
among the threads.

Miss Latencies for Workloads in Isolation
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Fig. 4. Miss latencies of workloads run in isolation

Figure 4 shows the average miss latencies for each work-
load run in isolation for each scheduling and 3 different
cache configurations: shared, shared-4-way and private.

B. Effects of Scheduling on Homogeneous Workload Mixes

In Figures 5, 6, and 7 we compare the effects of differ-
ent scheduling algorithms in terms of performance, miss
latency and miss rates of the homogeneous mixes. Affin-
ity scheduling is the best policy since it can avoid addi-
tional long latency misses by sharing data in the same last
level cache. TPC-W performs best from a random place-
ment of threads; this placement reduces interconnect con-
gestion. SPECjbb and SPECweb show significant perfor-
mance degradation (Figure 5) for round robin scheduling.
However, in a long-running, real system, scheduling pat-
terns similar to affinity-round-robin (aff-rr) or random are
likely to emerge. The miss latencies are normalized to miss
latency of each workload running in isolation with affinity

Performance for Homogeneous Mixes
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Miss Latency for Homogeneous
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Miss Rates for Homogeneous Mixes
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Fig. 7. Miss rates of Homogeneous Mixes relative to workloads run
in isolation
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Fig. 8. Single-Workload Performance of Heterogeneous Mixes relative
to workloads run in isolation
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Fig. 9. Single-Workload Miss Rates of Heterogeneous Mixes relative
to workloads run in isolation

scheduling. From these simulations, we observe that if the
workload has the whole chip (isolation), affinity scheduling
does slightly better than round-robin. In the round-robin
case, dirty misses need to travel further to be satisfied, while
in the affinity case, the communicating cores are grouped
closely together allowing a faster response for a request to
a dirty block. Going from isolated runs to homogeneously
mixed runs, TPC-W shows the greatest increase in miss
latency as it has a large memory footprint and causes sig-
nificant thrashing in the cache when it is forced to compete
for cache space. Figure 7 shows an increase in miss rate for
the workloads when they compete for resources which is
expected and accounts for increases in miss latency. Com-
petion for cache resources due to conflicts spills over into
the interconnect and the memory controllers which can ad-
versely affect performance through greater interference.

C. Heterogeneous Workload Mixes

In Figure 8, we show the cycle counts for a single work-
load instance in each consolidated mix normalized to the
run time in isolation with a fully shared 16MB cache. The
labels on the x-axis correspond to the workload mixes given
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Fig. 10. Miss latencies of Heterogeneous Mixes relative to workloads
run in isolation

in Table IV. The performance for affinity shared-4-way and
round robin shared-4-way in isolation is shown to illustrate
to what extent performance of one workload is isolated from
another. The performance of TPC-H is largely unaffected
by the presence of other workloads on the chip; the rel-
atively smaller footprint coupled with the larger percent-
age of accesses that are satisfied by private cache-to-cache
transfers make TPC-H less susceptible to interference by
other workloads. SPECjbb, on the other hand, sees large
performance degradation in the presence of other workloads
and shows high variability depending on how workloads are
combined. SPECjbb’s performance degradation can be at-
tributed to the large increase in miss rate shown in Figure
9; conversely, TPC-H with affinity scheduling sees almost
no increase in miss rate with respect to a 16 MB cache.

Figure 10 shows the average miss latencies for the dif-
ferent workload mixes. The latencies are separated by
workloads in the mix and normalized to the workload’s la-
tency in isolation with affinity scheduling and a shared-4-
way cache. We expect to see higher relative miss latencies
when we run in a consolidated environment, but not all
workloads are affected the same. SPECjbb’s miss latency
is the least sensitive to the other workloads running con-
currently, while TPC-W is the most sensitive. Miss latency
in SPECjbb may be less affected than other workloads, but
combining the small increase in miss latency with the large
increase in miss rate results in performance degradation.
The wide range of miss latencies demonstrated by the data
indicate that the workloads are incredibly sensitive to the
co-scheduled workloads.

D. Effects of Cache Configuration on Average Miss Latency

We vary the number of cores that share a last level cache;
the changes in miss latency for different degrees of sharing
are shown in Figure 11 for the heterogeneous mixes. The re-
sults shown here are limited to affinity-based scheduling and
normalized to the shared-4-way isolation latencies. TPC-H
has the lowest average miss latency when it is configured
as shared-4-way last level caches, each cache with its own



workload. This configuration has no replication and pro-
vides low latency for the read-shared data and also pre-
vents interference from other workloads with larger data
footprints. The shared-8-way cache configuration (2 8MB
caches) allows more flexible use of cache space which pro-
vides better performance for SPECjbb in different workload
mixes especially when combined with TPC-H which puts
less pressure on the caches. With only 2 caches, TPC-H
has to share space with other workloads and suffers as a
result. For TPC-W and SPECjbb, fewer caches minimize
replication and provides a more effective use of cache space.
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E. Replication and Cache Utilization

Figure 12 shows the percentage of total cache lines that
are replicated across the last level caches. The rightmost
bar shows the maximum replication which occurs when each
thread has its only private last level cache. Affinity schedul-
ing is left off this graph as it will have no replication in
the shared-4-way configuration. Round robin has the most
replication as each thread of the workload is in a differ-
ent last level cache. Affinity-round robin and random have
less replication and therefore make more effective use of the
overall last level cache capacity. SPECjbb and SPECweb
have the most replication in the round-robin scheduling
simulation. 73% and 64% of the last level cache lines, re-
spectively, are not replicated in any other cache. Replicat-
ing these read-shared lines, particularly in SPECjbb and
SPECweb, can significantly reduce the effective cache ca-
pacity and consequently hurt performance. SPECweb sees
more replication in the isolated case since there is less com-
petition for cache capacity among threads.

Figure 13 shows the percentage of total last level cache
capacity that each workload occupies in each of the het-
erogenous mixes. In order to exacerbate the effects of collo-
cation, we used the round-robin scheduling policy to collect
the data; this data is sampled after 500 million instructions
have run on the CMP. The configuration shown here is four
caches that are shared by four threads each (shared-4-way).
TPC-H workloads occupy less than their fair share of capac-
ity (25%) in almost all caches which can account for higher
miss latencies as seen in Figure 10. However, TPC-H places
smaller demands on the cache. Given an overall increase in
miss latency, TPC-H’s overall cache demands are not being
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met to deliver the same performance it achieves with round
robin scheduling in isolation. Similarly, SPECjbb always
shares capacity equally with other copies of the same work-
load. Mix 7, which runs three copies of SPECjbb and one
copy of TPC-W, allocates only a small portion of the last
level caches to the first copy of SPECjbb. SPECjbb sees
a large increase in its miss rate (Figure 9) when combined
with TPC-W in Mixes 7 through 9 due to the significant
pressure both workloads place on the cache resulting in a
large number of conflicts. 
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VI. Related Work

Since its unveiling, Simultaneous Multi-threaded (SMT)
processor research has concerned itself with how to best-
manage shared resources and control interactions between
threads. In the beginning, the focus was on assigning
threads to pipeline resources within the core [36,37]. Later,
the work extended into SMT’s shared memory hierarchy
when Lo showed that database applications, which have
inter-thread sharing, can benefit from SMT [27].

Since threads on multi-core chips only interact when
memory requests leave the core and enter the memory hi-



erarchy, the interactions between threads are not as pro-
nounced as in SMT. Nonetheless, research has begun to
emerge. Cooperative Caching, Victim Replication, and
Adaptive Selective Replication [4,10,38] are caching tech-
niques that recognize threads interactions and ultimately
strive to achieve high throughput while hiding wire de-
lay. Similarly, papers written by Liu, Suh, and Blelloch
[8, 11, 26, 33], all try to optimally manage a multi-core’s
cache for performance gains.

Taking a stance of quality of service over throughput,
Nesbit et. al [29] described the extent to which a single-
threaded application can monopolize the memory controller
and cause harm to a co-scheduled single-threaded appli-
cations. Other proposals by Iyer, Nesbit, Guo, and Kim
[15, 19, 20, 22, 30] are in the same vein and describe mech-
anisms guaranteeing an architectural quality of service in
multi-core chips.

The work in this paper is similar to the previous work
in that it highlights the importance of thread interaction.
Unlike previous work, which characterized interactions in
single commercial workloads or multiprogrammed scientific
workloads, this work characterizes interactions in server
consolidation workloads.

Recent work by Marty and Hill [28], highlights one unique
research avenue that has emerged from studying server con-
solidation workloads. This work explores coherence pro-
tocol optimizations and is one of the first to look at the
architectural opportunities brought to light by server con-
solidation workloads. Server consolidation workloads will
continue to facilitate new research directions.

Like the work presented here, Hsu’s large scale CMP work
[16] also looks at multi-core chips running server consolida-
tion workloads. Hsu’s focus is finding the best cache config-
uration for large scale CMPs, given a commercial workload.
Conversely, our work is a characterization of how individ-
ual workloads behave in isolation and in the company of
other workloads, given a variety of cache configurations.
Furthermore, the numbers presented in this study come
from a sophisticated full-system execution driven simula-
tor, while Hsu’s numbers are a worst-case bound obtained
from a trace-driven simulation.

VII. Future Work

Looking forward, consolidated servers are likely to have
many-cores on a chip. While our work gives an indication as
to how workloads perform in a consolidated environment,
it is only on the scale of 16-core chips. Studying higher de-
grees of consolidation, either by increasing the number of
threads in a workload or increasing the number of workloads
running, would allow researchers to accurately forecast be-
havior even further into the future. Additionally, we study
workloads with the same number of threads (but different
working set sizes); consolidating workloads with different
numbers of threads is also worth evaluating.

The behavior expressed by the workloads combinations
presented in this paper may be dependent upon how the
specific phases of workloads interacted with each other. It
is possible that by doing some phase analysis and aligning
different combinations of phases from different workloads

that one can study the interactions in more depth. Such an
analysis would give, for example, an indication of the range
of interference.

Finally, the work presented here performs scheduling by
statically binding threads to cores at startup. Since our re-
sults indicate the scheduling of threads to shared resources
is important, we would like to study the effects of schedulers
dynamically adjusting assignments, in response to context-
switches and changing demands of the system. A more
sophisticated hypervisor implementation will also give us
the opportunity to study how an over-committed system
behaves.

VIII. Conclusions

Studying the behaviors of a multi-commercial workload
environment is interesting and relevant to the industrial
and research communities. As core-rich chips become
more prevalent, our work indicates that the status quo ap-
proaches to managing shared resources, especially caches,
has profound effects on the individual and overall behavior
of the workloads. Our results provide indicators that sug-
gest both performance and fairness are affected, and that
the impact of the approach to scheduling threads on shared-
resources is especially important.

A large body of work exists studying the interactions
that go on across single-threaded workloads and within a
single multi-threaded workload. This work distinguishes
itself from prior work by observing the interaction of multi-
ple multi-threaded workloads (server consolidation) in an
execution-driven simulator. The results presented here
reinforce intuition about constructive/destructive interac-
tion, but most notably, the interaction is quite dramatic.
We quantify this behavior and believe our work forms
a motivating basis for emerging and up-and-coming re-
search. Other methodological considerations, such as work-
load start times deserve further exploration.

This work stresses the importance of studying server con-
solidation workloads in the designing of multi-core archi-
tectures. We put forth a methodology of running multiple
workloads in a virtual machine setup to isolate the work-
loads. Our current methodology does not fully explore the
workload space; temporal effects of combining workloads
is an area for future research. Our results indicate that
most workloads benefit from the reuse of shared data in
the last level cache, as evidenced by the affinity scheduling
policy. One of the main objectives of this study is to fur-
ther the communities understanding of cache interactions
among different commercial workloads; to this end, we have
presented cycle counts, miss rates, and miss latencies for a
variety of different workload combinations and the impact
on single-workload performance that the various combina-
tions can have. When workloads with different cache and
memory requirements are combined fairness issues need to
be considered.

In a consolidated server, virtual machines are guaranteed
functional isolation from one another. Our results, show-
ing that the behavior of one virtual machine may affect the
other, suggests that perhaps a guarantee of apparent work-
load isolation in a consolidated should feasibly extend from



functional isolation into performance isolation.
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