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Abstract—Approximate computing is an emerging paradigm
enabling tradeoffs between accuracy and efficiency. However,
a fundamental challenge persists: state-of-the-art techniques
lack the ability to enforce runtime guarantees on accuracy.
The convention is to 1) employ offline or online accuracy
models, or 2) present experimental results that demonstrate
empirically low error. Unfortunately, these approaches are still
unable to guarantee acceptability of all application outputs
at runtime. We offer a solution that revisits concepts from
anytime algorithms. Originally explored for real-time decision
problems, anytime algorithms have the property of producing
results with increasing accuracy over time. We propose the
Anytime Automaton, a new computation model that executes
applications as a parallel pipeline of anytime approximations.
An automaton produces approximate versions of the applica-
tion output with increasing accuracy, guaranteeing that the
final precise version is eventually reached. The automaton
can be stopped whenever the output is deemed acceptable;
otherwise, it is a simple matter of letting it run longer. We
present an in-depth analysis of the model and demonstrate
attractive runtime-accuracy profiles on various applications.
Our anytime automaton is the first step towards systems where
the acceptability of an application’s output directly governs the
amount of time and energy expended.

I. INTRODUCTION

The rise of approximate computing has garnered much
interest in the architecture community. This paradigm of
trading off accuracy for performance and energy efficiency
continues to inspire novel and creative new approximation
techniques [6], [9], [11], [17], [18], [20], [22]. However,
despite the substantial benefits offered by approximate com-
puting, it has not yet earned widespread acceptance to merit
adoption in real processors. This is due to the fundamental
challenge of providing guarantees on error. The approach
in state-of-the-art techniques is to 1) provide offline statis-
tical profiling [3], [6] or online sampling/predictive mecha-
nisms [3], [11], [18] to try to control runtime accuracy, and
2) present experimental results that show how error can lie
within some empirical range. However, these approaches are
still unable to enforce strong guarantees on acceptability of
all outputs at runtime. This is a very challenging task, since
acceptability of an approximation is inherently subjective.
Furthermore, runtime error is dependent on many factors:
application algorithm/code, input data, hardware configura-
tion, operating system and runtime environment (e.g., co-
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executing processes, I/O interaction). Neither the system de-
signers, the programmers nor the users have control over all
of these factors. For example, a programmer may implement
relaxed synchronization [17] in their application and eval-
uate the output on an architecture with limited parallelism.
However, a user may execute this application on a processor
with many cores, yielding far more synchronization conflicts
and unacceptable outputs. To earn widespread adoption, it is
imperative that system designers and architects find a way
to implement approximate computing techniques that can
address these challenges.

Our work tackles this problem by revisiting concepts from
anytime algorithms [5], [10], [12]. Originally proposed for
planning and decision processes in artificial intelligence,
anytime algorithms are defined by two key properties:
1) they can be stopped at any time while still producing a
valid result, and 2) they guarantee progressively increasing
quality over time. We believe that these properties offer
a solution to the challenges of approximate computing.
However, in prior work, anytime algorithms are built into
the derivation of a specific application and are thus difficult
to apply to other applications. Our work generalizes the
anytime concept to approximate computing such that the
acceptability of an approximation is simply defined by how
long the user chooses to run the application.

We propose the Anytime Automaton, a new computation
model that represents an approximate application as a paral-
lel pipeline of anytime computations. Our model enables
early availability of the application output: approximate
versions of the output are produced with increasing accuracy,
guaranteeing that the final precise version is reached even-
tually. It also enables interruptibility: the automaton can be
stopped whenever the current approximate output is deemed
acceptable; otherwise, it is simply a matter of letting it
run longer. Furthermore, the pipeline organization is able
to extract parallelism even out of sequential computations.
Whereas state-of-the-art approximate computing techniques
employ dynamic accuracy control on code segments of
applications [3], [9], [11], [18], our model provides early
availability of the whole application output since the accu-
racy of individual segments does not necessarily translate
to accuracy of the whole application. Our model is also
valuable in user-interactive environments where acceptabil-
ity cannot be defined a priori and in real-time environments
where absolute time/energy constraints need to be met.



Imagine typing a search engine query and instead of pressing
the enter key, you hold it based on the desired amount of
precision in the search. With the anytime automaton, we
advocate for systems where the acceptability of the output
directly governs the amount of time and energy consumed
(hold-the-power-button computing).

We make the following novel contributions:
• We propose the Anytime Automaton, a new computa-

tion model that rethinks the way we use approximate
computing, providing the guarantee of improved accu-
racy over time.

• We evaluate our model on PERFECT [4] and
AxBench [6] applications, demonstrating promising re-
sults with runtime-accuracy profiles.

II. BACKGROUND AND MOTIVATION

In this section, we provide background on approximate
computing and anytime algorithms. We discuss the challenge
of providing accuracy guarantees in approximate computing
and motivate our solution of providing a model for anytime
approximations.

A. Approximate Computing

Approximate computing introduces application output er-
ror/accuracy as an axis in architectural design, which can
be traded off for improved performance and energy effi-
ciency. State-of-the-art approximate computing techniques
have been proposed both in software and hardware. In
software, eliding code/computation can yield acceptable
approximations. Examples include loop perforation [24] and
relaxed synchronization [17] (i.e., approximation via lock
elision). In hardware, many techniques exploit the physical
characteristics of computation [16] and storage elements [7],
[13], [20]. Other techniques approximate based on data pre-
cision [28], [32] as well as previously seen values [22], [21],
[27], [31] and computations [2]. Though these techniques
achieve substantial efficiency gains, it can be difficult to
reason about accuracy of the application output.

Prior work has proposed offline profiling techniques to
build accuracy models [3]. This is also employed via training
in neural-based approximations [6], [9], [15], [26]. Though
these significantly improve accuracy, offline methods can
only draw statistical conclusions and cannot guarantee ac-
ceptability of all computations during runtime. Online ac-
curacy control can be implemented via sampling meth-
ods [3], [18] or predictive models [11]. However, coverage of
sampling and prediction is inherently imperfect and cannot
ensure that the accuracy of a given output during runtime
is acceptable. Accuracy control is best left to users, since
the definition of what is acceptable varies from one case
to another. BRAINIAC [9] addresses this using a multi-
stage flow of neural accelerators; we later show how such
an iterative approach can be generalized via our model. We

address these challenges by revisiting concepts from anytime
algorithms.

B. Anytime Algorithms

An anytime algorithm is an algorithm that produces an
output with progressively increasing accuracy over time.
Anytime algorithms were first explored in terms of time-
dependent planning and decision making [5], [10], [12].
They are generally studied in the context of artificial in-
telligence under real-time constraints, where suboptimal
output quality can be more acceptable than exceeding time
limits. Anytime algorithms can be characterized as either
contract or interruptible algorithms [33]. Contract algorithms
make online decisions to schedule their computations to
meet a runtime deadline. Researchers have explored optimal
scheduling policies for contract anytime algorithms [8], [29]
and the error composition of anytime algorithms [33]. On
the other hand, interruptible algorithms can deliver an output
when stopped (or paused) at any moment. Our work focuses
on interruptible anytime algorithms, which provide stronger
guarantees for real-time and user-interactive applications.
Despite the wealth of research on anytime algorithms, there
is little to no work on its implications to computer archi-
tecture. The most relevant work explores porting contract
anytime algorithms to GPUs and providing CUDA-enabled
online quality control [14].

Anytime algorithms derive strong accuracy guarantees
at an algorithmic level; the anytime concept is typically
regarded as a property built into algorithms as opposed to
a general technique that can be employed on applications.
In our work, we motivate a rethinking of how approximate
computing is implemented in systems; we introduce a com-
putation model that enables the integration of approximate
computing techniques in an anytime way.

III. THE ANYTIME AUTOMATON

The Anytime Automaton is a new computation model
that enables approximate computing in an anytime way:

1) It generalizes how to apply approximation techniques
to computations such that accuracy increases over time
and is guaranteed to eventually reach the precise result.

2) It executes these computations as a parallel pipeline
such that approximate versions of the whole application
output are available early.

3) It enables interruptibility such that execution can be
stopped when the current approximate output is deemed
acceptable; otherwise, it is a simple matter of running
longer, eventually reaching the precise output.

The anytime automaton is valuable in user-interactive envi-
ronments where acceptability cannot be defined a priori. It is
also valuable in real-time systems where applications need
to support interruptibility in order to meet hard time/energy
constraints. Our model also fits well with conventional
approximate computing where the degree of approximation



is dynamically tuned based on accuracy metrics [3], [9],
[11], [18]. These accuracy metrics are measured on either
1) the whole application output (which necessitates re-
execution of the entire application if accuracy is insufficient),
or 2) the outputs of approximate code segments (which does
not necessarily translate to the accuracy of the whole appli-
cation). The pipelined design of our automaton addresses
this by providing early availability of the whole application
output: starting from low-accuracy approximate versions to
the eventual precise version.

As a parallel to dataflow models, the anytime automaton
can be viewed as a data diffusion model. In the former, in-
formation is passed down from computation to computation;
in the latter, information is diffused (i.e., updates/versions of
the information are passed down). Imagine that the precise
version of the application output is a fluid. Instead of waiting
for the fluid to flow in its entirety, its particles are diffused
into the output, gradually increasing the concentration of
precise information.

In this section, we first provide an overview of the anytime
automaton model (Section III-A). We then describe how
approximate computing techniques are applied in an anytime
way (Section III-B) and show how they are composed
into a parallel pipeline (Section III-C). We conclude with
a summary example that brings all key concepts together
(Section III-D).

A. Model Overview

Figure 1 shows a high-level overview of an anytime
automaton. An approximate application is broken down into
computation stages with input/output buffers, connected in
a directed, acyclic graph. These stages can be arbitrarily
large or small. Approximate computing techniques are then
applied to each stage in an anytime way. This allows stages
to execute in parallel as a pipeline, since they can deliver
intermediate approximate outputs as opposed to just the
single precise output in the end. Data is streamed through
the stages, and each stage produces an approximate output
that progressively increases in accuracy over time, eventually
reaching the precise output. The anytime automaton can be
stopped (or paused) once the application output is deemed
acceptably accurate, expending just the right amount of
computation time and energy. The decision of stopping can
either be automated via dynamic accuracy metrics, user-
specified or enforced by time/energy constraints. In all cases,
the user and system designer can rely on the comfort of
knowing that error eventually diminishes.

An example pipeline is shown in Figure 2. Each of the
four stages f , g, h and i are anytime; in this case, their
computations are broken into two parts (i.e., f1 produces an
approximate version of its output and f2 produces the final
precise version). As soon as f1, g1, h1 and i1 have executed,
an approximate output O1111 is available, and thus the
application can already be stopped here. If the approximate
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Figure 1: High-level overview of anytime automaton.
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Figure 2: Parallel pipeline of anytime automaton.

output is not acceptable, the pipeline can simply continue
executing, progressively improving the output accuracy until
the final precise output O2222. In this way, the anytime
automaton is able to extract parallelism out of sequential
applications. Whereas g and h would have to wait for f to
finish in the original application, our model enables f to
produce an approximate (but still acceptable) output so that
g and h can already start executing.

B. Anytime Computation Stages

We describe how to apply an approximate computing
technique onto a computation stage f such that it produces
an output of increasing accuracy over time. We say that
the resulting stage f is an anytime computation stage.
The general approach is to apply the technique iteratively
with decreasing error (Section III-B1). In many cases, a
technique can be applied diffusively instead (Section III-B2)
to avoid any redundant work introduced by the general
iterative approach. In our discussion, a computation stage
f with input I and output O is represented as:

f (I)→ O

1) Iterative Computations: The general approach is to
convert f to an iterative anytime computation stage. To do
this, f is executed n times sequentially, yielding the set of
computations:

f1(I), ..., fn(I)→ O

∀ i, fi(I)→ Oi

where i ∈ [1...n] and n > 1. These computations are exe-
cuted one after the other starting from f1 until fn. Outputs
O1, ...,On are produced as each intermediate computation



completes, with each Oi overwriting the previous Oi−1 in
the output buffer upon completion of fi. The approximate
computing technique is applied to each fi at iteratively
increasing accuracy levels such that fi has greater accu-
racy than fi−1. The final computation fn is simply the
precise version of f (i.e., the approximation technique is
disabled). For example, if applying reduced floating-point
precision, f1 computes f with the lowest precision while fn
computes with the highest. Similarly, BRAINIAC employs
this iterative approach in its multi-stage flow of neural
accelerators [9]. In this way, f becomes an anytime stage
with increasing accuracy over time, eventually reaching the
precise output On = O. Our model imposes Property 1 to
ensure that when fn executes, it is guaranteed to produce
the precise output. Most approximate regions of code in
applications are pure functions [11]. In the simple example
in Figure 2, f , g, h and i are all anytime stages with n = 2.

Property 1. For an anytime computation stage f , each and
every intermediate computation f1, ..., fn must be a pure
function; the computation does not depend on nor modify
any external semantic state aside from the data in its input
and output buffers.

In this section, we present examples of how to derive it-
erative computations using common approximate computing
techniques: loop perforation and approximate storage.

Loop Perforation: Loop perforation is a technique that
jumps past loop iterations via some fixed stride, trading
off lower output accuracy for lower runtime and energy
consumption [24]. Loop perforation can be made anytime
by iteratively re-executing the perforation with progressively
smaller strides. Given a computation stage f , applying loop
perforation iteratively involves selecting a set of unique
strides s1, ...,sn. We construct intermediate computations
f1, ..., fn such that each fi executes f with perforated loops
of stride si. The strides are chosen such that si < si−1 and
sn = 1. This enables accuracy to increase over time and
ensures that the final computation fn computes the precise
version of f .

Note that this approach yields redundant work for loop
iterations that are common multiples of the selected strides.
For example, the instructions at iteration s1× s2 of the loop
are executed twice: once in f1 and again in f2. Furthermore,
if the precise output is needed, all loop iterations executed
in previous computations f1, ..., fn−1 must be executed again
in fn. In some cases, this redundant work can be avoided via
sampling techniques (since loop perforation is effectively a
form of sampling), as we discuss in Section III-B2.

Approximate Storage: Architects have proposed designs
for approximate storage elements. They recognize that many
applications—particularly multimedia processing—are tol-
erant to noisy input and output data. Such data can be
stored in storage devices with relaxed physical constraints,
risking bit failures for improved energy-efficiency. For ex-

ample, drowsy caches [7] reduce SRAM cell supply voltage,
increasing bit failure probability while saving significant
energy. Similarly, low-refresh DRAM [13] and approximate
phase-change memory [20] allow for efficiency gains at the
cost of potential data corruption.

Applying approximate storage techniques iteratively re-
quires a means of controlling the accuracy-efficiency trade-
off of the storage device. For example, the SRAM supply
voltages can be dynamically scaled in caches; as voltage
increases, the lower the risk of bit failure. With this, f1, ..., fn
can be defined as executing the compuation f at increasing
accuracy levels of storage (e.g., increasing SRAM supply
voltage in a drowsy cache). Correctness is ensured by using
the nominal (precise) storage operation in fn. Note that
approximate storage techniques are data-destructive; that is
to say, when a bit is corrupted in a storage device (e.g.,
drowsy cache), it remains corrupted even after raising the
device accuracy level (e.g., increasing supply voltage). Thus
at the beginning of each intermediate computation fi, the
storage device must be flushed (or reinitialized to precise
values) so that bit corruptions from fi−1 do not degrade the
accuracy of fi. Alternatively, separate storage devices can be
used for each of f1, ..., fn, though this incurs a much larger
area cost.

2) Diffusive Computations: As discussed in Sec-
tion III-B1, iterative computations are effectively re-
executions of the baseline computation under varying de-
grees of approximation. By construction, they introduce
redundant work, the amount of which increases as more re-
executions are performed. This is because in an iterative
stage, each intermediate computation fi overwrites Oi−1
(i.e., the result of fi−1 that is currently in the output
buffer). This negates any useful work done by any preceding
computations. It is more desirable for each subsequent fi to
use Oi−1 and build upon it. In this way, the accuracy of the
output improves via useful updates from each fi, as opposed
to improving accuracy via rewrites from each fi as in an
iterative stage. Accuracy/precision is effectively diffused into
the output buffer.

We say that such a computation stage f is diffusive and
represent it as:

f1(I,O0), ..., fn(I,On−1)→ O

∀ i, fi(I,Oi−1)→ Oi

where i ∈ [1...n], n > 1, and O0 is the initial value in the
output buffer. Unlike an iterative stage, each intermediate
computation fi is dependent on the state of the output buffer
Oi−1 resulting from the computations before it. Note that
Property 1 is still satisfied; the only difference is that the
output buffer is treated as an input as well. Correctness is
ensured by deriving f1, ..., fn such that their final aggregate
output On equals the precise output. In this way, each fi
contributes usefully to the final result (i.e., its intermediate
output Oi is necessary for reaching the precise output).



In this section, we go into detail on how to derive diffusive
approximations using data sampling techniques and reduced
fixed-point precision.

Data Sampling: We describe how to sample the input
and output data sets of a computation stage to generate
anytime approximations. Specifically, instead of waiting to
process all elements in a data set before delivering the final
output, sampling recognizes that the intermediate output (of
the elements processed so far) can serve as an acceptable
approximation.
Input Sampling. Input sampling enables anytime approx-
imations for reduction computations. Reductions process
elements in the input set and accumulate values in the output
buffer. Intuitively, performing the reduction on only a sample
of the input set can yield acceptable approximations of the
final accumulated output. Reductions are most commonly
performed using commutative operators. Examples include
computing a sum, searching for an element or building a
histogram. A diffusive computation stage f is commutative
if it can be represented as:

∀ i, fi(I,Oi−1) = Oi−1 4 xi(I)

where 4 is some commutative operation.
It may be undesirable to sample inputs in their default

memory order since it gives bias to elements at lower
addresses. For a commutative stage f , the final precise
output can be computed from any sequential ordering of
x1, ...,xn. A better approach to input sampling is to simply
permute the order of the x1, ...,xn computations such that:

∀ i, fi(I,Oi−1) = Oi−1 4 xp(i)(I)

where p(i) is a bijective function (i.e., a one-to-one and
onto mapping of i). Each intermediate computation fi rep-
resents a sample of size i of the input set. We say that
p is the permutation function. As long as p is bijective,
the precise output is guaranteed since all xi computations
are still performed exactly once. Later in this section, we
discuss various permutation functions and their suitability
for different applications. Figure 3 shows an example of
anytime histogram construction using input sampling with
a pseudo-random permutation. As more input elements are
processed over time, the approximate histogram approaches
the precise output.

Note that if 4 is not an idempotent operator (i.e., 4
is idempotent if α4α = α), the output may need to be
normalized/weighted using the current sample size and the
total population size. For example, consider input sampling
on an anytime sum. Addition is not an idempotent operation.
If I is a set of random positive integers, then the output value
is monotonically increasing. Because of this, the value of
On/2, for example, will likely be approximately half of the
precise output On. To address this, any dependent stages that
use Oi should use a weighted O′i instead:

O′i = Oi×n/i
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Figure 3: Example of input sampling with a pseudo-random
permutation for anytime histogram construction.

Idempotent operations (e.g., bitwise-and, bitwise-or, set-
union, set-intersection, min, max) do not require such nor-
malization.
Output Sampling. Whereas input sampling is applicable
to reductions, output sampling is well-suited for map oper-
ations. We generalize map operations to computations that
generate a set of distinct output elements, each of which are
computed from some element(s) in the input set:

∀ i, fi(I,Oi−1) = Oi−1, Oi[i] = xm(i)(I)

where m(i) is some mapping of input elements to the output
element at index i. This is a special case of a commu-
tative anytime computation; the commutative operation is
effectively a union of disjoint sets: Oi−1 ∪Xm(i). Thus it is
amenable to sampling.

Unlike input sampling, output sampling permutes the
order of the output elements O[i] such that:

∀ i, fi(I,Oi−1) = Oi−1, Oi[p(i)] = xm(p(i))(I)

where p(i) is a bijective permutation function. Output sam-
pling is applicable to common map computations. Examples
include generating pixels of an image, processing lists of
independent items or simulating the movement of particles.
Sampling Permutations. We now discuss permutation
functions that can be used for both input and output sam-
pling. Depending on the computation, some permutations
may be more suitable than others. For example, in the
histogram construction example (Figure 3), accessing the
elements in their sequential memory order may result in
biased approximate outputs (i.e., biased towards the first
elements in memory order). To avoid such bias, a uniform
random permutation is more suitable as shown in the figure.
In general, we find that the three most common permutations
are sequential (for priority-ordered data sets), tree (for
ordered data sets without priority) and pseudo-random (for
unordered data sets).

The default permutation is sequential, where elements are
accessed in memory order (e.g., ascending index i). This
can be expressed simply as p(i) = i or p(i) = n+1− i, for
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Figure 4: One-dimensional tree sampling permutation ex-
ample. This shows which indices have been accessed after
20, ...,24 elements are processed.

i ∈ [1...n]. Sequential sampling is well-suited for data sets
that are ordered based on ascending/descending priority or
significance to the final output. Examples include priority
queues or bitwise operations (e.g., reduced fixed-point pre-
cision in Section III-B2).

For some computation stages, elements in data sets are
not prioritized but are still ordered; the positions of elements
are significant to the computation. Examples include image
pixels or functions of time (e.g., audio wave signal, video
frames). We find that an N-dimensional bit-reverse (or tree)
permutation is well-suited for sampling these data sets. With
a tree permutation, the data set is effectively accessed at
progressively increasing resolutions. For example, sampling
pixels in a tree permutation implies that after 4 pixels have
been processed, a 2×2 image is sampled. After 16 pixels,
a 4×4 image is sampled, and so on. This is visualized and
discussed later in Figure 5.

The tree permutation accesses elements in bit-reverse
order along each of N dimensions, interleaving between
dimensions. Thus p(i) is simply a permutation of the bits
of index i. For example, the tree permutation for a one-
dimensional set of 16 elements can be expressed as:

p : b3b2b1b0 → b0b1b2b3

where b j is the jth bit of the set index i. This is shown in Fig-
ure 4. Elements are accessed in the form of a perfect 2N-ary
tree, where N = 1. This produces samples with progressively
increasing resolution along one dimension. Note that since
the tree permutation is a one-to-one correspondence of bits
in the set index, p is a bijective function.

Figure 5 shows an example of the tree permutation on
a two-dimensional data set (e.g., image pixels). For 8×8
elements, the permutation function p can be expressed as:

p : b5b4b3 b2b1b0 → b5b3b1 b4b2b0 → b1b3b5 b0b2b4

where b5b4b3 is the original row index and b2b1b0 is the
original column index. First, the set index is deinterleaved
to produce new row and column indices. Then the new row
and column indices are each reversed. As before, elements
are accessed in the form of a perfect 2N-ary tree, where
N = 2. This produces samples with progressively increasing
two-dimensional resolution.

21 x 21 elements 

22 x 22 elements 

23 x 23 elements 

20 x 20 elements 

Figure 5: Two-dimensional tree sampling permutation ex-
ample. This shows which indices have been accessed after
20, ...,26 elements are processed.

When the data set is unordered, to avoid bias in the
memory ordering of elements, we find that a pseudo-
random permutation is most suitable. Examples include
simulated annealing, k-means clustering or histogram con-
struction (Figure 3). A true random permutation would be
ideal; however, the permutation function p would not be
bijective (i.e., we would not be able to guarantee that all
elements are processed exactly once). For a pseudo-random
permutation, p can be computed using any deterministic
pseudo-random number generator. In our experiments, we
use a linear-feedback shift register (LFSR), which is very
simple to implement in hardware.

Reduced Fixed-Point Precision: Reduced fixed-point (or
integer) precision techniques perform computations with
only a subset of data bits. This can be viewed as a form of
sampling since the bit representation bn−1...b0 of an integer
is merely a sum of powers of two:

bn−1...b0 = bn−1 ·2n−1 + ... + b0 ·20

Since addition is a commutative operation, the representation
of integer and fixed-point data is amenable to sampling.
Computing with reduced precision improves both latency
and energy.

This observation extends to other operations that are
distributive to addition (e.g., multiplication). For example, a
stage f computing an anytime reduced-precision dot product
of two vectors I and W can be represented as:

∀ i, fi(I,Oi−1) = Oi−1 + (I · (W & 232−i))

where O0 = 0, and elements in the vectors are 32-bit
integers or fixed-point values such that i ∈ [1...32]. This
computation is effectively applying input sampling on the
bits of elements in W . This draws from classic techniques
of bit-serial computations [25], [30]. Sampling is performed
with a sequential permutation, since the most-significant bits
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Figure 6: Reduced-precision fixed-point dot product.

should be prioritized. This is illustrated in Figure 6 with
6-bit fixed-point data, where I is a vector consisting of
values X, Y and Z. The output of f increases in accuracy
over time and approaches the precise output as more bits
are computed. Note that this computation does not perform
any additional work compared to the baseline non-anytime
dot product, since integer (or fixed-point) multiplication is
computed similarly as a sum of partial products.

C. Anytime Pipeline

In this section, we describe how to compose anytime
computation stages into a parallel pipeline. The pipeline
enables interruptibility and early availability of the whole
application output. Interruptibility is essential in real-time
and user-interactive environments, while early availability
is essential in systems with dynamic error control (such as
Rumba [11]) where error metrics should be applied to the
whole output as opposed to the outputs of individual com-
putations in the application. Furthermore, the pipeline can
extract more parallelism out of applications. Consider the
example in Figure 1. In the original application, computation
i is dependent on g and h, which are both dependent on
f . These dependences enforce the computations to execute
sequentially, as written in the example code. However,
by building the pipeline, the automaton model allows all
computations to run in parallel. Figure 2 takes a closer look.
By recognizing that f can be broken down into f1 and f2, our
model is able to provide an intermediate (but still acceptable)
output of f . This allows g and h to begin executing without
having to wait for all of f to finish.

Without loss of generality, we limit much of the discussion
to two computation stages:

f (I)→ F g(F)→ G

where g (the child stage) is dependent on f (the parent
stage). The automaton is constructed such that Property 2
holds. This enforces a strict producer-consumer relation
between parent and child stages and ensures that the parent
executes independently of the child.

Property 2. For an anytime computation stage f , all of
its intermediate outputs F1, ...,Fn are stored in a single
output buffer, and no other computation stages are allowed
to modify this buffer.

f g h O1 
h(g(F1)) g(F2) F3 

I 

f g h O2 
h(g(F2)) g(F3) F4 

I 

f g h O3 
h(g(F3)) g(F4) F5 

I 
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f g h On 
h(g(Fn)) g(Fn) Fn 

I 

Figure 7: Asynchronous pipeline example.

We present two pipeline organizations: asynchronous and
synchronous. An asynchronous pipeline (Section III-C1) is
the general approach for composing stages, allowing them
to run independently in parallel while still guaranteeing
the eventual precise output. A synchronous pipeline (Sec-
tion III-C2) leverages the distributivity of diffusive stages to
avoid redundant computations.

1) Asynchronous Pipeline: An asynchronous pipeline is
the general approach to composing multiple computation
stages. Stages simply execute concurrently and indepen-
dently of each other. If f is an anytime computation, then g
can be computed on any or all intermediate Fi outputs such
that:

g(F1), ...,g(Fn)→ G

where g(Fi) → GFi. At any point in time, g processes
whichever output Fi happens to be in the buffer. We say that
this is an asynchronous pipeline since no synchronization is
necessary between f and g to ensure correctness; the only
requirement is that g is eventually computed on Fn = F to
produce the precise output GFn =G. Thus the precise output
is always reachable. These stages form a parallel pipeline
since any fi can execute in parallel to any g(Fj) where
j < i. The pipeline is constructed such that Property 3 holds,
ensuring that g processes no other possible outputs aside
from F1, ...,Fn. Note that correctness is still ensured even
if f is not anytime (i.e., n = 1); thus the pipeline supports
non-anytime stages.

Property 3. For an anytime computation stage f , all of
its intermediate outputs F1, ...,Fn are written into its output
buffer atomically.

An example is shown in Figure 7. The outputs of f flow
through the pipeline, producing final outputs O1, ...,On with
progressively increasing accuracy. At any point in time, g
simply processes the most recent available output of f . The
precise output is eventually reached since both g and h
eventually compute on Fn.

If g is also an anytime computation, then each g(Fi) can
be represented as:

g1(Fi,GFi,0), ...,gm(Fi,GFi,n−1)→ GFi

where g j(Fi,GFi, j−1)→GFi, j and GF1,0 = ...= GFn,0 = G0.
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“H” = g(“h”) 

“HE” = g(“he”) 

“HEL” = g(“hel”) 

“HELL” = g(“hell”) 

“HELLO” = g(“hello”) 

non-distributive g(F) 
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“H” += g(“h”) 

“HE” += g(“e”) 

“HEL” += g(“l”) 

“HELL” += g(“l”) 

“HELLO” += g(“o”) 

distributive g(X) 

Figure 8: Example of distributive computation stage g.

As defined by the sequential ordering of f1, ..., fn, the output
Fi is always produced after Fi−1. Thus we can guarantee
that Fn is the eventual output of f . Following from this,
g(Fi) (and its output GFi) must always come after g(Fi−1)
(and its output GFi−1). And similar to f , the sequential
ordering of g1, ...,gm within each g(Fi) enforces that g j(Fi)
(and its output GFi, j) always comes after g j−1(Fi) (and its
output GFi, j−1). This guarantees that GFn,m (which equals
the precise output G) is the eventual output of g(F).

2) Synchronous Pipeline: A synchronous pipeline pre-
vents redundant computations when the parent stage f is
diffusive and the child stage g is distributive over the
computations in f . Assume f is a diffusive anytime stage
that can be represented as:

∀ i, fi(I,Fi−1) = Fi−1 ♦ xi(I)

where ♦ is some left-associative operator, and xi(I)→ Xi.
With a diffusive f , X1, ...,Xn are effectively the updates to
the output F . We say that g is distributive over f if:

g(F) = g(F0 ♦ X1 ♦ ... ♦ Xn) = g(F0) ♦ g(X1) ♦ ... ♦ g(Xn)

As in the asynchronous pipeline, g can be computed on any
or all intermediate Fi outputs such that:

g(F1), ...,g(Fn)→ G

where g(Fi)→ GFi. However, since g is distributive, taking
a closer look at each g(Fi) and g(Fi−1), we can see that g
performs redundant work:

g(Fi−1) = g(F0) ♦ g(X1) ♦ ... ♦ g(Xi−1)

g(Fi) = g(F0) ♦ g(X1) ♦ ... ♦ g(Xi−1) ♦ g(Xi)

Figure 8 shows an example where f is generating a string
letter-by-letter (i.e., ♦ is the concatenation operator), and
g capitalizes each letter in this string. If the current string
value is Fi (e.g., ”hel”), then computing g(Fi) would involve
capitalizing all letters, even the ones that were already pro-
cessed previously in Fi−1 (e.g., ”he”). Since g is distributive,
it only needs to capitalize each newly added letter Xi (e.g.,
”l”). Other examples of distributive computations include
sorting/searching over a growing set of elements or matrix
multiplication over addition. Thus composing distributive
and diffusive stages via an asynchronous pipeline can yield
redundant computations.

f g h O1 
h(g(X1)) g(X2) X3 

I 

f g h O1+O2 
h(g(X2)) g(X3) X4 

I 

f g h O1+O2+O3 
h(g(X3)) g(X4) X5 

I 

ti
m
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f g h O1+…+On 
h(g(Xn)) g(Xn) Xn 

I 

Figure 9: Synchronous pipeline example.

To address this, we can form a synchronous pipeline
between f and g. We simply expose the intermediate updates
Xi and redefine g(F)→ G to gS(X)→ G such that:

∀ i, gS(X ,GS
Fi−1) = GS

Fi−1 ♦ g(Xi)

where GS
F0 = g(F0). Unlike g, which takes in the output of

f (i.e., F), gS instead takes in the updates to F (i.e., X) as
input. In the asynchronous pipeline, only g(Fn) is needed
to compute the precise output. However, in the synchronous
pipeline, all gS(X1), ...,gS(Xn) are necessary. For this reason,
f and gS must synchronize such that f does not overwrite Xi
with Xi+1 before gS(Xi) begins executing. This forms a syn-
chronous pipeline where each fi(I) can execute in parallel to
gS(Xi−1). Note that with such a pipeline, gS(X1), ...,gS(Xn)
all contribute usefully towards the final precise output. An
example is shown in Figure 9. The intermediate updates X
flow through the pipeline instead of the outputs F as in the
asynchronous pipeline (Figure 7).

D. Summary

We conclude this section with an example that sum-
marizes key concepts of our model. Figure 10 shows an
example application with two computation stages: f (I)→ F
and g(F)→G. Stage f processes input sensor information to
generate a matrix of fixed-point data (shown as [AA.BB]).
Stage g is dependent on f ; it computes the dot product of
F with some matrix [C].

As Figure 10 shows, in the baseline application, f and
g simply execute one after the other. To construct an
anytime automaton, we apply some approximate computing
technique—say, reduced fixed-point precision—on f . The
general approach is to apply the technique iteratively ( f
iterative); first with half-precision generating [AA] ( f1) then
with full-precision generating [AA.BB] ( f2) if accuracy is
not acceptable. Half-precision yields lower latency for both
f and g. However, if it yields unacceptable error, both f
and g need to be recomputed at full-precision, resulting in
longer runtime overall. We recognize that f2 is independent
of the half-precision invocation of g. Thus we construct
an asynchronous pipeline to allow the computation stages
to execute in parallel ( f iterative, asynchronous pipeline),
reducing overall runtime. In this way, data is effectively
passed down through a parallel pipeline.



F := [ AA.BB ] G := F ● [ C ] 

F := [ AA ] G := F ● [ C ] F := [ AA.BB ] G := F ● [ C ] 

F := [ AA ] G := F ● [ C ] 

F += [ .BB ] G := F ● [ C ] 

X1 := [ AA ] G := X1 ● [ C ] 

X2 := [ .BB ] G += X2 ● [ C ] 
time 

baseline 

f iterative 

f diffusive, asynchronous pipeline 

f diffusive, g distributive, synchronous pipeline 

F := [ AA ] G := F ● [ C ] 

F := [ AA.BB ] G := F ● [ C ] 

f iterative, asynchronous pipeline 

Figure 10: Example comparing varying anytime automaton
organizations. Stage f applies anytime reduced-precision
approximations to produce output matrix F . Dependent stage
g computes dot product on F to produce output G.

By recognizing properties of common approximate com-
puting techniques and application computations, we can
minimize redundant work when constructing anytime au-
tomata. Since f is merely generating fixed-point values
at varying precision, it can be constructed as a diffusive
anytime stage. This implies that f2 can use the current state
of its output buffer (which is the output of f1) to update the
current output value without having to recompute at full-
precision. Specifically, f2 simply needs to add the rest of the
bits [.BB] to the output of f1 [AA]. Thus constructing f as
a diffusive stage improves performance further ( f diffusive,
asynchronous pipeline). Note that this does not affect the
latency of the full-precision invocation of g. This is because
g is oblivious to f ’s diffusivity, so it needs to perform the
full-precision computation on [AA.BB]. To improve on
this, we can construct a synchronous pipeline ( f diffusive, g
distributive, synchronous pipeline), since the dot product in
g is distributive over the addition operations of the updates
to f . Stage g is modified to take as input the output buffer
updates (X1 and X2 for f1 and f2, respectively) instead of
the output values themselves (F1 and F2), yielding lower
overall runtime. In this way, data is effectively diffused (as
opposed to passed down) through the entire pipeline. From
this example, we see how our model is able to transform
approximate applications into automata where accuracy is
guaranteed to increase over time.

IV. EVALUATION

In this section, we construct anytime automata for vari-
ous applications and evaluate the runtime-accuracy tradeoff
under different approximate computing techniques. We then
discuss other design considerations for anytime automata.

A. Methodology

This section describes the methodology and approximate
applications that we use in our experiments.

1) Experiments: We perform our evaluation of any-
time automata on real machines, demonstrating attractive
runtime-accuracy tradeoffs even without specialized hard-
ware. We also simulate the impact of approximate com-
puting techniques, such as reduced-precision operations and
approximate storage, to show their impact on error. We run
experiments on IBM Power 780 (9179-MHD) machines.
We use two nodes with four 4.42 GHz POWER7+ cores
each, with four-way hyper-threading per core, yielding 32
hardware threads in total. The system consists of 256 KB
of L2 cache and 10 MB of L3 (eDRAM) cache per core.
All applications are parallelized (both in the baseline precise
execution and in the anytime automaton) to fully utilize the
available hardware threads.

2) Applications: We evaluate our anytime automaton
model on applications from PERFECT [4], a benchmark
suite containing a variety of kernels for embedded comput-
ing, and AxBench [6], an approximate computing bench-
mark suite. We focus on five approximate applications that
are widely used, are applicable to real-time computing and
have visualizable outputs for our evaluation. We use large
image input sets for all applications. We measure accuracy
in terms of signal-to-noise ratio (SNR)—a standard metric in
image processing—of the approximate output relative to the
baseline precise. SNR is measured in decibels (dB) where
∞ dB is perfect accuracy. Since acceptability is naturally
subjective, we present sample outputs in our evaluation.

2d convolution (2dconv) from PERFECT applies a con-
volutional kernel to spatially filter an image; in our case,
a blur filter is applied. It consists of many dot products,
computed for each pixel. This is a common computation in
computer vision and machine learning. The application is
simple in structure, yielding an anytime automaton with a
single diffusive stage. We employ output sampling with a
tree permutation in generating the filtered image. We also
evaluate reduced fixed-point precision (Section IV-B1) and
approximate storage (Section IV-B2) on 2dconv.

Histogram equalization (histeq) from PERFECT enhances
the contrast of an image using a histogram of image inten-
sities. This is common in satellite and x-ray imaging. We
construct an automaton with four computation stages in an
asynchronous pipeline. The first stage is diffusive; it builds
a histogram of pixel values using anytime pseudo-random
input sampling, similar to the example in Figure 3. The
second and third stages are not anytime; they construct a nor-
malized cumulative distribution function from the histogram.
The fourth diffusive stage generates the high-contrast image
using tree-based output sampling.

Discrete wavelet transform (dwt53) from PERFECT per-
forms a discretely-sampled wavelet transform on an image.
This computation is a common form of data compression.
We approximate the transform and then execute the inverse
transform precisely; accuracy is measured on the inversed
output relative to the original image. Our automaton consists
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Figure 11: Runtime-accuracy of 2dconv anytime automaton.
The vertical line indicates an SNR of ∞ dB.
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Figure 12: Runtime-accuracy of histeq anytime automaton.

of a single iterative stage that employs loop perforation when
processing and transposing pixels.

Debayering (debayer) from PERFECT converts a Bayer
filter image from a single sensor to a full RGB image. It is
commonly used in image sensors for security cameras and
x-ray imaging. The structure of the application is similar
to 2dconv; the interpolations in debayer are similar to the
convolutional filter. As a result, we use a similar single-
diffusive-stage automaton with tree-based output sampling.

K-means clustering (kmeans) from AxBench performs
the k-means algorithm for clustering over the pixels of an
image. This is a very common computation in data mining
and machine learning. We construct an automaton with two
stages in an asynchronous pipeline. The first stage computes
the cluster centroids and assigns pixels to clusters based on
their Euclidean distances. This is diffusive; we employ any-
time output sampling with a tree permutation. The second
(non-anytime) stage reduces the centroid computations of
the multiple threads from the previous stage.

B. Performance-Accuracy Tradeoff

In this section, we evaluate the performance-accuracy
tradeoffs of our anytime automata. The runtime-accuracy
results are presented in Figures 11 (2dconv), 12 (histeq),
13 (dwt53), 14 (debayer), and 15 (kmeans). These plots are
generated from multiple runs, executing each automaton and
halting it after some time to evaluate its output accuracy.
The x-axis is the runtime of the automaton normalized to the
baseline precise execution. The y-axis is our accuracy metric
SNR in decibels. We later show example image outputs to
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Figure 13: Runtime-accuracy of dwt53 anytime automaton.
The vertical line indicates an SNR of ∞ dB.
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Figure 14: Runtime-accuracy of debayer anytime automaton.
The vertical line indicates an SNR of ∞ dB.
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Figure 15: Runtime-accuracy of kmeans anytime automaton.
The vertical line indicates an SNR of ∞ dB.

relate SNR to image quality. The vertical line indicates the
point where SNR reaches ∞ dB (precise output). This is
shown for all applications except for histeq, where precise
output is reached at 6× the runtime of the baseline; this
is high due to non-anytime computations as discussed later.
From our runtime-accuracy results, our model maintains the
universal and most important trend in that accuracy increases
over time and eventually reaches precise output.

As shown in Figures 11 and 14, 2dconv and debayer
reap the most benefit from the anytime automaton model.
At only 21% of the baseline runtime, 2dconv is able to
produce an output with an SNR of 15.8 dB, which may
be acceptable in certain use cases. This output is visualized
in Figure 16, comparing against the baseline precise output.
The benchmarks 2dconv and debayer are able to achieve
high accuracy at low runtimes because 1) their computations
are diffusive, and 2) their pipelines are simple. For both
2dconv and debayer, we employ output sampling, a diffu-



(a) 21% runtime, SNR 15.8dB

(b) baseline precise

Figure 16: Output of 2dconv anytime automaton.

sive anytime approximation that minimizes redundant work.
In Sections IV-B1 and IV-B2, we also evaluate reduced-
precision operations and approximate storage on 2dconv.
The pipelines for 2dconv and debayer are simple since they
only consist of one stage. They are not hindered by the
presence of non-anytime stages, unlike in histeq and kmeans.
Despite the good results, neither 2dconv nor debayer (nor
any of the other applications) reach precise output as early
as the baseline execution. This is primarily due to poor
cache locality from non-sequential sampling permutations.
As we discuss later in Section IV-C3, this can be alleviated
by architectural optimizations.

As shown in Figure 13, dwt53 has a steep runtime-
accuracy curve. The automaton produces unacceptable ap-
proximations for over half of the baseline runtime before
finally delivering acceptable output. This is due to the itera-
tive loop perforation. Unlike with diffusive sampling where
the output constantly increases in accuracy as elements are
processed, iterative loop perforation re-executes the com-
putation with progressively larger strides. This results in
redundant computations and yields a runtime-accuracy curve
that is less smooth. Despite this, with the dwt53 automaton,
Figure 17 shows that acceptable output (SNR 16.8 dB) can
be reached at only 78% of the baseline runtime.

As shown in Figures 12 and 15, histeq and kmeans do
not perform as well as 2dconv and debayer. This is due to
the presence of non-anytime stages. Non-anytime stages are
common for performing small (typically sequential) tasks
such as normalization of data structures (as in histeq) or
reducing thread-privatized data (as in kmeans). Despite this,
both applications produce acceptable outputs at about 60%

(a) 78% runtime, SNR 16.8dB

(b) baseline precise

Figure 17: Output of dwt53 anytime automaton.

(a) 63% runtime, SNR 16.7dB (b) baseline precise

Figure 18: Output of kmeans anytime automaton.

of the baseline runtime, visualized in Figure 18 for kmeans.
Note also that though some computation stages are not
anytime in our design, it may still be possible to make them
anytime using other methods. This motivates future research
avenues in the wider design space exploration of anytime
automata and new anytime approximation techniques.

1) Impact of Reduced Fixed-Point Precision: In this sec-
tion, we evaluate the accuracy of applying reduced-precision
operations (integer, in this case) to the 2dconv automaton.
Figure 19 shows the SNR using 8-bit (default), 6-bit, 4-
bit and 2-bit pixel precisions. The x-axis is the increasing
sampling resolution, since output sampling is employed
in the 2dconv automaton. After processing all elements
(i.e., sample size of 1), for 6-bit and 4-bit precision, output
accuracy is 37.9 dB and 24.2 dB respectively. Reduced-
precision can be applied in conjunction with sampling while
still maintaining reasonable accuracy. Furthermore, reduced-
precision operations for integers are diffusive, minimizing
redundant computations, as discussed in Section III-B2.
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Figure 19: Sample size-accuracy of 2dconv anytime automa-
ton when varying pixel precision.
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Figure 20: Sample size-accuracy of 2dconv anytime automa-
ton when varying SRAM read upset probability.

2) Impact of Approximate Storage: In this section, we
evaluate the use of iterative anytime techniques via ap-
proximate storage (low-voltage SRAM [7], in this case).
Figure 20 shows how 2dconv accuracy is impacted with
varying SRAM bit failure probabilities. We explore read
upset probabilities of 0.00001% and 0.001%, the latter
of which is estimated to yield up to 90% supply power
savings [19]. As shown in the figure, allowing for such read
upsets still yields acceptable outputs in many cases. Note
that the curves line up at lower sample sizes; this is expected
since the number of bit flips is directly related to number of
data elements processed so far.

C. Discussion

In this section, we discuss new insights, challenges and
research opportunities that emerge when designing architec-
tures for our anytime automaton model.

1) Multi-Threaded Sampling: Our model supports com-
putation stages that are multi-threaded. Though we use non-
sequential permutations when sampling, sampling can still
be performed by multiple threads. For both the tree and
pseudo-random permutations, the permutation function p(i)
is bijective and deterministic. Given the base index i which
is incremented 1, ...,n, the permutation p(i) simply yields
a different (but still deterministic) sequence for accessing
elements. It is then straightforward to divide this permu-
tation sequence among threads for sampling. For the tree
permutation, we typically want to produce a low resolution
output as early as possible. Thus the permutation sequence
of p can be divided cyclically; given n threads, a thread that

is currently processing the element at p(i) will next access
the element at p(i+n). For the pseudo-random permutation,
either cyclic or round-robin distribution is acceptable.

2) Pipeline Scheduling: The anytime automaton opens
up new interesting challenges in thread scheduling. Given
an architecture with limited cores and hardware threads, it
can be difficult to decide how many threads to allocate per
computation stage. The conventional approach for pipelining
is to assign threads to stages such that all stages have
similar latencies. However, this may not be suitable for the
automaton pipeline.

First, the latency of a computation stage may not be
static. An anytime stage f is broken down into intermediate
computations f1, ..., fn, whose latencies can vary signifi-
cantly. In many cases, the latencies increase from f1 to
fn since the later stages likely perform more computations
to achieve higher accuracy. Thus it may be beneficial to
reassign threads among stages dynamically. However, this
can be difficult since stages are not necessarily synchronized.
For example, at one point in time, fn can be co-executing
with g1, while at another, it can be executing alongside g2.

Second, thread assignment depends on the desired gran-
ularity of anytime outputs. The granularity of outputs is
defined by 1) how early the first approximate output is
available, and 2) how frequently the approximate outputs
are updated as they approach the precise output. Consider
the example pipeline in Figure 2. If we want to minimize the
amount of time it takes to reach the first approximate output
O1111, we need to allocate more threads to the longest stage
f . On the other hand, if we want to minimize the amount
of time between consecutive outputs O1111 and O1112, we
need to allocate more threads to the final stage i. Though
challenging, pipeline scheduling is merely an optimization
problem; correctness is ensured regardless. This motivates
the design of architectures with fine-grained, intelligent
thread migration/scheduling; this is left for future work.

3) Data Locality: In conventional architectures, the any-
time automaton can suffer from poor cache and row buffer
locality when sampling with the non-sequential tree and
pseudo-random permutations. However, both permutations
are deterministic. As a result, simple hardware prefetchers
can be implemented to alleviate the high miss rates due
to poor locality. The overhead and complexity of such
prefetchers is minimal: an address computation unit coupled
with the deterministic tree or pseudo-random (e.g., LFSR)
counters. Furthermore, thanks to recent advancements in
near-data processing [1], input and output data sets can be
reordered in-memory, since the sampling permutations are
typically static throughout the runtime of the application.

V. CONCLUSION

We propose the Anytime Automaton, a new computation
model that represents an approximate application as a paral-
lel pipeline of anytime computation stages. This allows the



application to execute such that 1) it can be interrupted at
any time while still producing a valid approximate output,
and 2) its output quality is guaranteed to increase over
time and approach the precise output. This addresses the
fundamental drawback of state-of-the-art approximate com-
puting techniques: they do not provide guarantees on the
acceptability of all outputs at runtime. With the anytime
automaton model, the application can be stopped at any
point that the user is satisfied, expending just enough time
and energy for an acceptable output. If the output is not
acceptable, it is a simple matter of letting the application run
longer. The anytime automaton greatly simplifies (for users
and system designers) the process of executing applications
in an approximate way. This can catalyze the acceptance of
approximate computing in real-world systems and invigo-
rate the design of architectures where output acceptability
directly governs the amount of time and energy expended
(hold-the-power-button computing).
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