
The Bunker Cache for Spatio-Value Approximation
Joshua San Miguel†, Jorge Albericio†, Natalie Enright Jerger† and Aamer Jaleel‡

†University of Toronto, ‡NVIDIA
joshua.sanmiguel@mail.utoronto.ca, {jorge, enright}@ece.utoronto.ca, ajaleel@nvidia.com

Abstract—The cost of moving and storing data is still a fun-
damental concern for computer architects. Inefficient handling
of data can be attributed to conventional architectures being
oblivious to the nature of the values that these data bits carry.
We observe the phenomenon of spatio-value similarity, where data
elements that are approximately similar in value exhibit spatial
regularity in memory. This is inherent to 1) the data values of
real-world applications, and 2) the way we store data structures
in memory. We propose the Bunker Cache, a design that maps
similar data to the same cache storage location based solely on
their memory address, sacrificing some application quality loss
for greater efficiency. The Bunker Cache enables performance
gains (ranging from 1.08× to 1.19×) via reduced cache misses
and energy savings (ranging from 1.18× to 1.39×) via reduced off-
chip memory accesses and lower cache storage requirements. The
Bunker Cache requires only modest changes to cache indexing
hardware, integrating easily into commodity systems.

I. INTRODUCTION

As today’s data sets grow to enormous proportions, the cost
of moving and storing data on-chip continues to challenge
computer architects. The latency and energy of an off-chip
memory access is still several orders of magnitude greater than
a simple arithmetic operation. As a result, we try to preserve
as much data as possible on-chip at the expense of nearly
half of the chip area dedicated to caches [19], [40]. A major
source of inefficiency is that we architects too often treat data
as nothing more than streams of bits when in reality, these bits
encode real-world information and data values that applications
need to process. And in the real world, such information is
very often approximate and redundant in space and time. For
example, images are discretized grids of repeating colors and
sounds are noisy waves with periodicity in time.

This insight fits well in the wake of approximate com-
puting [10], [13], [17], [21], [25], [33], [35], [39], a design
paradigm that recognizes that many applications only need to
meet acceptable quality levels and do not require the absolute
precision that conventional architectures provide. Our work
exploits the inherent approximate nature of data as opposed to
remaining oblivious to the information that the bits carry. We
identify and explore the phenomenon of spatio-value similarity:
data elements that are approximately similar in value tend to
be stored at regular intervals in memory. Consider the image
in Figure 1. Neighbouring pixels are naturally similar in value.
However, since images are stored in row-major order, adjacent
pixels along a column are not spatially colocated in memory
but rather stored at intervals of the row size.

Index
Function

Cache

C

@A
@B Conventional cache

BA
B

CacheA U B
U C U D

Bunker cache

C
D

@C
@D

A

D

@A
@B

@C
@D

Mapping
Function

Fig. 1: Bunker Cache overview.

We propose the Bunker Cache,1 a design that exploits an
application’s spatio-value similarity to reduce both off-chip
memory accesses and cache storage requirements. It does this
by storing similar data blocks in the same location in the
cache since substituting one for the other still yields acceptable
application quality. Other value approximation techniques
have been proposed recently [37], [44], [47], particularly
Doppelgänger [36], which deduplicates approximately similar
blocks to compress data. Unfortunately, these come at a cost of
dramatic changes to hardware and significant complexity that
arises from the need to manipulate data values themselves. On
the other hand, spatio-value similarity is a consequence of the
inherent nature of 1) the real-world information we process,
and 2) the way we store this information in memory. This
means that we can determine which data blocks are likely to
be similar in value based solely on where they are located. The
example in Figure 1 demonstrates this, where the addresses (not
the values) of similar blocks A, B, C and D are used to store
them in the same cache location. This allows us to save storage
while avoiding the complexity of manipulating data values,
which is expensive considering the wide variety of data types
and value representations that need to be supported. It also
reduces cache misses and off-chip memory accesses, which
is possible since there is no need to retrieve the data values
from memory. Furthermore, the crux of the Bunker Cache
implementation is in its mapping function, leaving much of
the cache architecture itself unchanged. This greatly eases its
adoption in commodity processors.

1The Bunker Cache is named after the famous conjoined twin brothers
Chang and Eng Bunker.

978-1-5090-3508-3/16/$31.00 c©2016 IEEE

x
z
y

x
y
z

Fig. 2: Example of spatial regularity in memory. This shows
how elements in a three-dimensional structure (left) are stored
in one-dimensional memory (right).

We make the following novel contributions:
• We uncover significant spatio-value similarity in PER-

FECT [4] and AxBench [13] applications.
• We design and evaluate the Bunker Cache as a last-level

cache, demonstrating considerable speedups (1.08× to
1.19×), dynamic energy savings (1.18× to 1.39×) and
leakage power savings (1.18× to 1.47×) at only modest
loss in application output quality.

II. SPATIO-VALUE SIMILARITY

Too often we architects treat data as a “black box”; merely
a sequence of memory address requests that govern when
and where to move bits. However, data is inherently some
representation of real-world information. And real-world infor-
mation is highly redundant in space and time, and variations in
information are smooth and sparse. An image, for example, is
simply a two-dimensional projection of a scene, and colors in
scenes are typically clustered and vary in smooth gradients. A
sound wave can be represented as a sparse set of frequencies
or a continuous signal in the time domain with smooth and
periodic repetitions. Neighbouring particles in a dense fluid
are acted upon by similar external forces and tend to converge
towards the same velocities. This inherent nature of real-world
information is obfuscated and abstracted away as merely bits
in a one-dimensional address space.

Though much of this information is ignored in conventional
architectures, we observe that there is still regularity in the
way data is stored. We characterize this via spatio-value
similarity: similarity in data values at regular intervals in
memory. Consider what happens to a general n-dimensional
data structure when stored in one-dimensional memory. An
example is shown in Figure 2. Given a three-dimensional
data set, the figure shows how a row of elements in each
dimension is mapped to memory. In this case, the x-dimension
is the contiguous dimension; thus neighbouring elements in
the x-dimension are stored together. Though neighbouring
elements in the y- and z-dimensions are no longer spatially
colocated, they are still stored at spatially regular intervals (or
strides) in memory as shown by the shaded blocks in the figure.
As discussed, in real-world data, neighbouring elements in n-
dimensional space are typically similar in value. Our notion of
spatio-value similarity captures this by recognizing the spatial
regularity of how data is stored in memory.

To explore this, we examine approximate computing ap-
plications from PERFECT [4] and AxBench [13]. For each

application, we take pairs of memory addresses that are some
arbitrary stride2 apart and map them together. That is to say,
we force addresses that are a given stride apart to store their
data in the same storage location; if there is value similarity
between them, then there should be little to no impact on
the quality of the application output. Consider a data set with
block addresses 0x10, 0x11, 0x12, 0x13, 0x14 and 0x15
in memory. With a stride of 3, address 0x10 would share
storage with 0x13, as would addresses 0x11 and 0x14, and
addresses 0x12 and 0x15. We ask the question: By how
much is output quality affected when every third address in
memory shares the same value? And which strides yield the
highest output quality? We sweep varying strides and observe
their impact on the application’s final output. Figure 3 shows
the results, using signal-to-noise ratio (SNR) as a metric for
output quality relative to the baseline precise output (complete
methodology can be found in Section IV). Absolute SNR values
are not significant at this point; we only focus on the trends.
There is a remarkable amount of regularity in the results. We
make two key observations:

1) There are noticeable hills and valleys where quality is
considerably higher and lower respectively.

2) These hills and valleys are periodic.
We say that spatio-value similarity is high if there is

considerable regularity in where similar values are located in
memory. For example in Figure 3a, 2dconv has hills at strides of
1, 240 and 480 (measured in 64-byte blocks). This implies that
each data element is similar in value to those that are 1, 240 and
480 blocks away from it. Looking closer, we see that 2dconv
processes two-dimensional images. Each image is stored in
row-major order in memory (the x-dimension is contiguous),
and each row is 240 blocks wide. Thus we can conclude that
each data element is similar in value to its neighbours. There
is x-similarity between neighbouring columns at strides of 1,
and there is y-similarity between neighbouring rows at strides
of 240. This holds for all the other applications as well; the
periodic stride of their hills and valleys correspond to the width
of their innermost x-dimension. Thus spatio-value similarity is
commonplace in real-world applications. In this paper, we show
how spatio-value similarity enables significant performance and
energy improvements in modern cache architectures, with only
modest changes to the hardware.

III. THE BUNKER CACHE

By recognizing that approximate applications exhibit spatio-
value similarity, we improve efficiency of accessing and storing
data with mostly commodity cache hardware.

A. Overview

The Bunker Cache is a cache architecture that maps approxi-
mately similar blocks to the same cache location. It recognizes
that such blocks can share a single storage location since
replacing one with the other still yields acceptable application
output. The Bunker Cache uses knowledge of the application’s

2Strides are at the granularity of 64-byte block addresses.

0

5

10

15

20

25

0 200 400 600 800

SN
R

 (
d

B
)

similarity stride (blocks)

(a) 2dconv

0

2

4

6

8

10

0 100 200 300 400

SN
R

 (
d

B
)

similarity stride (blocks)

(b) change-detection

0

5

10

15

0 200 400 600

SN
R

 (
d

B
)

similarity stride (blocks)

(c) debayer

0

8

16

24

32

0 200 400 600 800

SN
R

 (
d

B
)

similarity stride (blocks)

(d) dwt53

0

8

16

24

32

0 200 400 600 800

SN
R

 (
d

B
)

similarity stride (blocks)

(e) histeq

0

5

10

15

20

0 200 400 600 800 1000

SN
R

 (
d

B
)

similarity stride (blocks)

(f) jpeg

0

4

8

12

16

0 200 400 600 800 1000

SN
R

 (
d

B
)

similarity stride (blocks)

(g) kmeans

0

12

24

36

0 100 200 300 400

SN
R

 (
d

B
)

similarity stride (blocks)

(h) lucas-kanade

Fig. 3: Application output quality with varying similarity strides.

spatio-value similarity to distinguish similar blocks. It only
needs address information to identify similar blocks; it does
not need to fetch the data values. This not only minimizes
complexity but also allows for approximations to be made
proactively. A miss for block A effectively becomes a hit
if a similar block B is present in the cache. This enables
performance gains via reduced cache misses as well as energy
savings via reduced off-chip memory accesses and lower cache
storage requirements. Furthermore, the implementation of the
Bunker Cache can be contained entirely within the cache
index function; we refer to this as the spatio-value similarity
mapping function, or mapping function for short. Much of the
cache architecture is left unchanged, easing the adoption of
our technique in commodity systems.

The Bunker Cache mapping function (Section III-B) gen-
erates approximations by introducing a form of constructive
aliasing. Instead of a conventional one-to-one mapping of a
physical address to a cache set index plus a tag, we employ
a many-to-one mapping. The mapping function associates
addresses of multiple similar blocks to generate a single
bunkaddress, allowing them to share the same entries
in the tag and data arrays. It is important to note that the
bunkaddress encompasses both the tag value and set index
when performing a lookup in the Bunker Cache.

For much of the discussion, we assume that the application’s
spatio-value similarity is programmer- or user-specified. That
is to say, the programmer or user selects a similarity stride (or
strides) that they deem acceptable, and this stride is static for the
entire execution. Later, we discuss mechanisms for dynamically
adjusting the similarity mapping function for quality control
(Section III-D2).

Since much of the architecture is unchanged, Bunker Cache
operation (Section III-C) is similar to that of a conventional
cache. We only require that a separate directory structure is
used instead of embedding coherence information in the tag
array. Coherence state and dirty bits must be tracked uniquely
per physical address and thus cannot be stored in the Bunker

Cache. Using separate directory structures is commonplace
when using non-inclusive caches [11], [16] or non-traditional
coherence protocols [48], [50].

B. Mapping Function

The mapping function is the crux of the Bunker Cache
design. It performs the novel spatio-value similarity mapping:
similar blocks are identified by their physical address and are
mapped to the same bunkaddress. This section describes
the mapping function implementation in detail.

1) Spatio-Value Similarity: To characterize spatio-value
similarity in an application, the Bunker Cache mapping function
defines two parameters: the similarity stride and radix. As
discussed in Section II, the stride is the distance between
blocks that are deemed acceptably similar. The radix defines
the degree of similarity (i.e., the aggressiveness of the similarity
mapping). For example, a radix of 2 implies that the Bunker
Cache mapping function employs a two-to-one mapping of
physical addresses to bunkaddresses. The radix can either
be statically programmer- or user-specified or dynamically
selected via quality control mechanisms (Section III-D2). As
we show later in Section V, with higher radix comes more
opportunity for efficiency gains but also more risk of output
quality loss.

Figure 4 shows the algorithm and implementation of the
Bunker Cache mapping function. It takes in the physical
address as input and returns the bunkaddress as output. The
mapping function also takes in the similarity stride (STRIDE)
and radix (RADIX3). The similarity window (WINDOW =
RADIX × STRIDE) is a derived parameter that represents
the size of each contiguous chunk of memory in which similar
blocks are mapped. Figure 5 shows an example where STRIDE
is 3 and RADIX is 2. The address space is effectively divided
into windows of 6 contiguous blocks; and within each window,
every 3rd block is mapped together.

3RADIX does not have to be an integer; for example, RADIX 1.5 yields an
equal mixture of RADIX 1 and RADIX 2 mappings.

addrWINDOW
1

x

fracint

xx

STRIDE
1STRIDE

int frac

+

int bunk@(int addr, int STRIDE, float RADIX):
 WINDOW = (int) (RADIX * STRIDE);
 bunk@ = addr / WINDOW;
 bunk@ *= STRIDE;
 bunk@ += (addr % WINDOW) % STRIDE;

bunk@

Fig. 4: Bunker Cache mapping function for associating ad-
dresses of similar blocks to the same bunkaddress.

10@ 2
3 4 5

6 7 8
9 1011

bunk@ 10 2 3 4 5

STRIDE=3

RADIX=2

WINDOW=6

Mapping
Func.

Fig. 5: Bunker Cache mapping function example. Addresses
0 to 11 are mapped to bunkaddresses using a stride of 3
and radix of 2.

STRIDE, RADIX and WINDOW (and their reciprocals) are
assumed to be static during an application’s execution; in our
experiments, we find that all approximate data structures are
static in size. Thus the expensive divide operations to compute
reciprocals only need to happen once at the beginning of
the application’s execution. As Figure 4 shows, the mapping
function uses only three fixed-point multiplications and one
addition. Our implementation is cheap in terms of latency and
cost, which is crucial since the mapping function is on the
critical path of cache requests.

The mapping function effectively quantizes the address space
by WINDOW (first step) and normalizes it to STRIDE (second
step). The first step multiplies the input address with the
reciprocal of WINDOW. This yields the integer and fractional
parts of the product:

int = baddr ÷ WINDOWc
frac = addr mod WINDOW

In the second step, the bunkaddress is computed as:

bunk@ = (int × STRIDE) + (frac mod STRIDE)

The Bunker Cache mapping function generalizes to spatio-
value similarity in arbitrary n-dimensional data sets. If similarity
exists along n dimensions, then it is a simple matter of
invoking n iterations of the mapping function. For the example
in Figure 2, if spatio-value similarity exists along all three
dimensions, then the mapping function can be configured
to iterate three times: first using the x-similarity stride of
1, followed by the y-similarity stride of 4, and finally the
z-similarity stride of 12.

2) Approximate vs. Precise: Only memory addresses of
approximate data are amenable to our similarity mapping. As
we discuss later in Section IV-A, the specification of a block—
approximate or precise—can be passed (via ISA extensions)
with each request to the Bunker Cache. The mapping function
can partition the cache to dedicate some sets for precise data.
However, to minimize impact on performance, the cache must
be partitioned to match the application’s working set footprint,
which can be challenging especially if the fraction of precise
data varies over time. Instead we simply dedicate a bit in
the bunkaddress that specifies whether or not a block is
approximate or precise. This is more flexible to the application’s
working set. Precise requests bypass the similarity mapping
and simply use the physical address as the bunkaddress,
indexing into the cache as in conventional systems. Similarly,
disabling the mapping function simply involves setting RADIX
to 1; in which case, the mapping logic is power-gated and
bypassed completely.

C. Cache Operation

Since much of the design is contained within the mapping
function, the Bunker Cache does not introduce considerable
changes in operation. In this section, without loss of generality,
we describe its operation as a shared last-level cache in a chip
multiprocessor.

1) Lookups: Upon lookup, the physical address of a cache
request is passed through our mapping function. The set index
and the tag from the resulting bunkaddress are used to
locate the corresponding block in the Bunker Cache. This
is identical to a lookup in a conventional cache, with the
exception that a single bunkaddress can correspond to
multiple addresses.

The Bunker Cache architecture is oblivious to this extra
mapping step and operates as if the bunkaddress is the
actual memory address. We effectively emulate an environment
where if blocks A and B are similar, they are treated as if they
are a single block. In parallel, a regular lookup is performed in
the directory. The directory lookup bypasses the Bunker Cache
mapping function since coherence and dirty state are tracked
uniquely per physical address. Thus the directory has the same
effective capacity as the baseline.

2) Insertions and Replacements: Upon a miss in the
Bunker Cache, a request (using the physical address, not the
bunkaddress) is sent to memory to fetch the data block. In
the meantime, a new entry is allocated both in the cache (using
the bunkaddress) and in the directory (using the memory
address). If the miss triggers a replacement, the victim cache
block is deallocated. In order to issue writebacks and back-
invalidations (for inclusive caches), we need to perform lookups
for addresses in the directory that correspond to this victim
block. This requires performing the Bunker Cache mapping
function backwards. Fortunately, this is off the critical path
of cache requests. The backward mapping function is similar
to Figure 4, except instances of STRIDE and WINDOW are
swapped. The backward function is one-to-many; it yields
RADIX lookups in the directory to retrieve coherence and

dirty state. The overheads of these lookups are modeled in our
energy numbers. In our experiments, much of the approximate
footprint is read-only, so overheads are low.

Though we opt for a design with minimal changes to the
cache architecture, an alternative solution is to store multiple
sets of coherence and dirty bits in the Bunker Cache. In this way,
no additional directory structure is needed. Note that an eviction
in the directory does not provoke an eviction in the last-level
cache; blocks can reside in the cache even without tracking
coherence and dirty state (though writebacks are provoked if
the block is dirty). A clean block can remain in the cache
since no private caches are currently using it; any subsequent
requests for the block simply reallocate a directory entry and
send the data from the cache instead of memory.

3) Writes and Coherence: Write requests and writebacks
to the Bunker Cache operate similarly to conventional caches.
As with all lookups, the cache is accessed via our mapping
function while the directory is accessed using the physical
address. Coherence state and dirty bits are updated accordingly,
while the data block is updated in the case of a writeback.
Since coherence is still tracked using memory addresses, the
coherence protocol is unaffected in the rest of the cache hierar-
chy. Coherence and dirty bits can alternatively be replicated in
the Bunker Cache to avoid the need for a separate directory;
we simply opt for a design that makes use of commodity cache
hardware. Since our mapping is many-to-one, a writeback
from one address affects the data values of others that share
the same storage location. This can also lead to incoherence
between private copies of approximate data. Such writebacks
are tolerable since these addresses are expected to be similar in
value anyway, and incoherence is tolerable since the application
is naturally resilient to approximations on its data. These
scenarios are modelled in our experiments; we find that output
quality is not severely degraded.

D. Cache Optimizations

The previous sections describe the core Bunker Cache design,
which can be implemented with mostly commodity cache
hardware, only requiring changes to the index function. In
this section, we discuss design enhancements that may require
modifications to the cache architecture, though at a modest
cost.

1) Drowsy Blocks: With our many-to-one mapping function,
an application’s cache footprint is effectively compressed by a
factor of RADIX. This implies that the Bunker Cache has lower
storage requirements than a conventional cache. To exploit this,
unused blocks in the Bunker Cache can be put into a drowsy
state [14] to save leakage power. Recall that the directory is
indexed by the physical address, so it has the same effective
capacity as the baseline. We consider a block in the Bunker
Cache as unused if there are currently no entries in the directory
that map to it. Such a block has been evicted from the directory
and is no longer used elsewhere in the cache hierarchy. Thus
it can be put into a drowsy state. To enable drowsy states in
the Bunker Cache, an additional log2(MAX_RADIX) + 1 bits
are needed in each tag entry to keep a reference count of how

many entries in the directory are currently mapped to it. A
count of zero implies an unused block, which can then be set
to drowsy state.

2) Dynamic Quality Control: The similarity radix acts as a
design knob for tuning the aggressiveness of our approximation
technique. A higher radix yields more similar mappings,
resulting in higher efficiency gains but more quality loss. At
times, it is desirable to tune the radix dynamically, particularly
to target some user-specified quality level. In our evaluations,
we use SNR as a metric for quality.

To enable dynamic quality control in the Bunker Cache,
the user specifies a target quality level SNRt. The Bunker
Cache splits the application runtime into epochs, measured
in approximate LLC accesses (100,000 in our experiments).
Within each epoch, approximate accesses to the cache are
sampled (100 samples in our experiments) and accumulated
into a running SNR value for the epoch: SNRe. To demonstrate
how this works, consider an access to physical address A is
selected as a sample. Regardless of whether or not the access
is a hit, an off-chip memory request is triggered to fetch A.
In addition, we also send a memory request for the block
at address A + WINDOW/2. Upon receiving both data blocks,
we compute the SNR between the data elements in A and
A + WINDOW/2, effectively performing a quality check on
their actual values from memory. The data type and size of
each element can be retrieved via program annotations and ISA
extensions (Section IV-A). This SNR value is then accumulated
into SNRe. At the end of each epoch, we compare against SNRt
and update RADIX accordingly:

if SNRe > (1+α)SNRt, RADIX := RADIX× β
if SNRe < (1-α)SNRt, RADIX := RADIX÷ β

where α and β are design parameters (0.5 and 4 in our
experiments respectively). If this comparison triggers a change
in RADIX, then all approximate data is flushed from the cache.
All overheads associated with this are modelled in our results.
Thus for each epoch, our dynamic quality control mechanism
effectively asks: Is the quality of the current radix too high
or too low relative to the target? If SNRe is close enough to
SNRt, then the current radix is sufficient.

If desired, the similarity stride can also be tuned dynami-
cally using the same mechanism. Instead of tuning RADIX,
various STRIDE values are swept in a geometric fashion
(e.g., STRIDE of 1, 2, 4, 8, etc.). This is inspired from branch
prediction where geometric histories are used to find the optimal
history length efficiently. However, as we explain later in
Section IV-A, the appropriate stride for a given application can
most often be determined statically.

IV. METHODOLOGY

In this section, we describe the benchmarks and experimental
methodology we use in our evaluations.

A. Benchmarks and Program Annotations

We perform experiments on benchmarks from PER-
FECT [4]—2dconv, change-detection, debayer, dwt53, histeq,

2dconv 240 change-detection 128
debayer 192 dwt53 240
histeq 240 jpeg 288

kmeans 288 lucas-kanade 128

TABLE I: Strides (in blocks) used for y-similarity.

lucas-kanade—and AxBench [13]—jpeg, kmeans—which are
suites for embedded computing and approximate computing,
respectively. We select these benchmarks because they are
common in image processing (the killer app for the Bunker
Cache) so that we are able to visualize their outputs for the
purposes of evaluating quality, with the exception of lucas-
kanade whose output matrix is more complex to visually render.
It is important to note that these benchmarks have broader
applicability beyond image processing: 2dconv in linear algebra,
dwt53 in communications, histeq in data mining, kmeans in
machine learning. All benchmarks are parallelized via pthreads
and configured for large input sets.

Similar to prior work, we assume that approximate data is
explicitly annotated in the program. This is facilitated by pro-
gramming languages and tools for approximate computing [3],
[5], [34]. We annotate our benchmarks by hand, identifying
large data structures that are amenable to approximation.4 This
information is then passed down to the architecture via simple
ISA extensions [12]. Alternatively, such information can be
inferred dynamically via monitoring and profiling mechanisms
to identify which data is amenable to approximation, though
this is more challenging. The design of the Bunker Cache
can support any means of specifying approximate data. As
explained in Section III-A, we also assume that spatio-value
similarity information is programmer- or user-specified. This
can be passed down to the architecture using the same
mechanisms and only needs to be done once in the beginning.

Our benchmarks use two-dimensional data structures; we
explore x-similarity and y-similarity in our evaluations (recall
Section II). The x-dimension is contiguous in memory and thus
corresponds to a stride of 1 (i.e., neighbouring elements in the
x-dimension are 1 block apart). Table I shows the y-similarity
strides that we use in our evaluations. The strides are based on
the width of each row in the contiguous x-dimension of our
data sets. For example, in 2dconv, neighbouring elements in
the y-dimension are 240 blocks apart. Note that our selected
strides correspond to the period of hills in Figure 3. Selecting an
appropriate stride is straightforward since it is only dependent
on the dimensions and structure of data sets, which are typically
static and independent of the data values. Thus in most cases,
the appropriate stride can be declared via program annotations.

B. Experiments and Evaluation Metrics
We implement the Bunker Cache as a shared last-level

cache (LLC) in a four-core chip multiprocessor, configured

4In our experiments, we assume large superpages of 256 MB for these data
structures so that similarity strides do not cross physical page boundaries,
preventing 1) similarity mappings between non-contiguous virtual pages and
2) access violations between different processes. This is applicable since in
our benchmarks, all approximate data structures are static in size and allocated
only once in the beginning.

processor 4 IA-32 cores, 1 GHz,
4-wide OoO, 80-entry ROB

private L1 16 KB, 4-way, LRU, 1-cycle, 64 B blocks
private L2 128 KB, 8-way, LRU, 3-cycle

shared LLC 2 MB, 1-bank, 16-way, LRU,
inclusive, 6-cycle (13-cycle Bunker)

directory 2 MB-equivalent (2 K entries),
1-bank, 16-way, LRU, 6-cycle

main memory 1 GB, 160-cycle latency
cache coherence MSI protocol

TABLE II: System configuration used in evaluation.

as in Table II. We evaluate it in terms of application output
quality, dynamic energy savings, leakage power savings and
performance—application speedup and reduction in misses-per-
kilo-instructions (MPKI)—relative to a baseline conventional
cache. We also compare our design to prior work on cache
compression—base-delta-immediate (B∆I) [30] and uniDop-
pelgänger [36]—in terms of cache storage savings.

We run simulations using Pin [23] to measure output
quality and a full-system cycle-level simulator [28] to measure
runtime. Pin simulations are run to completion while full-
system simulations are capped at 100 M user-mode instructions.
We use signal-to-noise ratio (SNR) as a proxy for quality loss
between the approximate and precise baseline outputs. For
images, SNR measures how much of the original precise image
is maintained after employing our approximation technique.
It is a standard metric in image processing and is typically
measured in decibels (dB), where ∞ dB corresponds to zero
quality loss. Note that the outputs of our benchmarks are
often used for further processing and not for their visual
aesthetic. Output quality is a subjective metric and highly
depends on the use case of an application. For this reason, we
present our results as tradeoff curves and show sample outputs
of our benchmarks in our evaluations, for both precise and
approximate executions. This allows readers to visually grasp
the impact of our technique and make their own judgments on
the quality-efficiency tradeoffs.

We estimate dynamic energy of all caches and the directory
using CACTI [26] and assume 640 pJ per 32-bit off-chip
DRAM access [18]. For the Bunker Cache index function, we
assume 0.1 pJ and 3.1 pJ for 32-bit integer add and multiply
operations respectively [18]. We also use CACTI to estimate the
leakage power of the total on-chip cache hierarchy including the
directory. For cache blocks in drowsy state, we scale leakage
according to the energy parameters provided by Flautner et
al. [14]. We assume 0.9 pJ and 3.7 pJ for 32-bit floating-
point add and multiply operations respectively for our dynamic
quality control mechanism [18].

V. EVALUATION

We present the quality-efficiency tradeoffs of our design on
each of our benchmarks. We also compare against prior work
on cache compression and evaluate the Bunker Cache when
equipped with further optimizations.

0

5

10

15

20

25

30

1 2 4 8 16 32 64

SN
R

 (
d

B
)

radix

x

y

(a) output quality

1.00

1.01

1.02

1.03

1.04

1.05

1 2 4 8 16 32 64

sp
ee

d
u

p

radix

(b) application speedup

1.00

1.02

1.04

1.06

1.08

1.10

1 2 4 8 16 32 64d
yn

am
ic

 e
n

er
gy

 s
av

in
gs

radix

(c) dynamic savings

1.0

1.1

1.2

1.3

1.4

1.5

1 2 4 8 16 32 64le
ak

ag
e

p
o

w
er

 s
av

in
gs

radix

(d) leakage savings

Fig. 6: Evaluation of 2dconv: output quality (x- and y-similarity) and speedup, dynamic energy savings and leakage power
savings (y-similarity) with varying radix.

0

2

4

6

8

10

12

1 2 4 8 16 32 64

SN
R

 (
d

B
)

radix

x

y

(a) output quality

1.00

1.05

1.10

1.15

1.20

1 2 4 8 16 32 64

sp
ee

d
u

p

radix

(b) application speedup

1.0

1.1

1.2

1.3

1.4

1 2 4 8 16 32 64d
yn

am
ic

 e
n

er
gy

 s
av

in
gs

radix

(c) dynamic savings

1.00

1.05

1.10

1.15

1.20

1 2 4 8 16 32 64le
ak

ag
e

p
o

w
er

 s
av

in
gs

radix

(d) leakage savings

Fig. 7: Evaluation of change-detection: output quality (x- and y-similarity) and speedup, dynamic energy savings and leakage
power savings (y-similarity) with varying radix.

0

5

10

15

20

1 2 4 8 16 32 64

SN
R

 (
d

B
)

radix

x

y

(a) output quality

1.0

1.1

1.2

1.3

1.4

1.5

1 2 4 8 16 32 64

sp
ee

d
u

p

radix

(b) application speedup

1.0

1.3

1.6

1.9

2.2

1 2 4 8 16 32 64d
yn

am
ic

 e
n

er
gy

 s
av

in
gs

radix

(c) dynamic savings

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1 2 4 8 16 32 64le
ak

ag
e

p
o

w
er

 s
av

in
gs

radix

(d) leakage savings

Fig. 8: Evaluation of debayer: output quality (x- and y-similarity) and speedup, dynamic energy savings and leakage power
savings (y-similarity) with varying radix.

0

10

20

30

40

1 2 4 8 16 32 64

SN
R

 (
d

B
)

radix

x

y

(a) output quality

1.00

1.01

1.02

1.03

1.04

1.05

1 2 4 8 16 32 64

sp
ee

d
u

p

radix

(b) application speedup

1.00

1.04

1.08

1.12

1.16

1 2 4 8 16 32 64d
yn

am
ic

 e
n

er
gy

 s
av

in
gs

radix

(c) dynamic savings

1.00

1.05

1.10

1.15

1.20

1 2 4 8 16 32 64le
ak

ag
e

p
o

w
er

 s
av

in
gs

radix

(d) leakage savings

Fig. 9: Evaluation of dwt53: output quality (x- and y-similarity) and speedup, dynamic energy savings and leakage power
savings (y-similarity) with varying radix.

A. Quality-Efficiency Tradeoffs

Figures 6-13 show the quality-efficiency tradeoffs per bench-
mark. In this section, we evaluate application output quality,
speedup and dynamic energy savings as a function of the spatio-
value similarity radix. Dynamic energy pertains to the total
on-chip cache hierarchy (including the directory) as well as
off-chip memory. We also present leakage power savings when
using drowsy cache blocks, though we discuss these results
later in Section V-C. We provide example output images of
our benchmarks in Figures 15-21 to visualize the impact of our
approximation technique. We evaluate trends and present our
results in this manner so that the reader can also make their

own judgments on the tradeoffs, since quality is an inherently
subjective metric.

Output Quality. As described in Section III-B1, the similarity
radix effectively acts as a design knob for the degree (i.e.,
aggressiveness) of our approximation technique. The universal
trend in Figures 6a-13a is that output quality degrades as radix
increases. This is expected since a higher radix yields more
memory addresses mapping to a bunkaddress. The amount of
quality loss varies depending on the benchmark. Computations
that perform large reductions of approximate data tend to be
more tolerant to aggressive approximations. This is because
application output quality is based on the final reduced value;

0

10

20

30

40

1 2 4 8 16 32 64

SN
R

 (
d

B
)

radix

x

y

(a) output quality

1.0

1.2

1.4

1.6

1.8

2.0

1 2 4 8 16 32 64

sp
ee

d
u

p

radix

(b) application speedup

1.0

1.3

1.6

1.9

2.2

1 2 4 8 16 32 64d
yn

am
ic

 e
n

er
gy

 s
av

in
gs

radix

(c) dynamic savings

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1 2 4 8 16 32 64le
ak

ag
e

p
o

w
er

 s
av

in
gs

radix

(d) leakage savings

Fig. 10: Evaluation of histeq: output quality (x- and y-similarity) and speedup, dynamic energy savings and leakage power
savings (y-similarity) with varying radix.

0

5

10

15

20

1 2 4 8 16 32 64

SN
R

 (
d

B
)

radix

x

y

(a) output quality

1.00

1.05

1.10

1.15

1 2 4 8 16 32 64

sp
ee

d
u

p

radix

(b) application speedup

1.0

1.1

1.2

1.3

1.4

1.5

1 2 4 8 16 32 64d
yn

am
ic

 e
n

er
gy

 s
av

in
gs

radix

(c) dynamic savings

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1 2 4 8 16 32 64le
ak

ag
e

p
o

w
er

 s
av

in
gs

radix

(d) leakage savings

Fig. 11: Evaluation of jpeg: output quality (x- and y-similarity) and speedup, dynamic energy savings and leakage power
savings (y-similarity) with varying radix.

0

5

10

15

20

1 2 4 8 16 32 64

SN
R

 (
d

B
)

radix

x

y

(a) output quality

1.00

1.01

1.02

1.03

1.04

1.05

1 2 4 8 16 32 64

sp
ee

d
u

p

radix

(b) application speedup

1.0

1.1

1.2

1.3

1.4

1 2 4 8 16 32 64d
yn

am
ic

 e
n

er
gy

 s
av

in
gs

radix

(c) dynamic savings

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1 2 4 8 16 32 64le
ak

ag
e

p
o

w
er

 s
av

in
gs

radix

(d) leakage savings

Fig. 12: Evaluation of kmeans: output quality (x- and y-similarity) and speedup, dynamic energy savings and leakage power
savings (y-similarity) with varying radix.

0

10

20

30

40

1 2 4 8 16 32 64

SN
R

 (
d

B
)

radix

x

y

(a) output quality

1.00

1.02

1.04

1.06

1 2 4 8 16 32 64

sp
ee

d
u

p

radix

(b) application speedup

1.00

1.06

1.12

1.18

1.24

1 2 4 8 16 32 64d
yn

am
ic

 e
n

er
gy

 s
av

in
gs

radix

(c) dynamic savings

1.00

1.05

1.10

1.15

1.20

1 2 4 8 16 32 64le
ak

ag
e

p
o

w
er

 s
av

in
gs

radix

(d) leakage savings

Fig. 13: Evaluation of lucas-kanade: output quality (x- and y-similarity) and speedup, dynamic energy savings and leakage
power savings (y-similarity) with varying radix.

any quality loss in approximating an individual data element is
weighted less significantly when measuring quality loss in terms
of the final reduced value. For example, histeq (Figure 10a)
constructs a normalized histogram of its entire input data set;
quality loss of a single element becomes less significant since
the final histogram aggregates all elements together, obfuscating
small variations in the quality of individual elements.

To get a better sense of quality loss per benchmark,
Figures 15-21 show example outputs, comparing the baseline
precise output against the Bunker Cache. Though we only show
outputs for y-similarity radix of 4, it is important to note that
outputs at higher radix values are not much worse in quality

and are very likely to still be acceptable. We only discuss trends
in quality and not absolute SNR values since output quality is
highly subjective. For example, change-detection (Figure 7a)
yields the lowest average output quality of all benchmarks, yet
it adequately detects image changes as shown in Figure 18.
The low SNR values are primarily due to the binary nature of
the output; for each pixel location, the output is either 0 or 1.
Thus any pixel that returns the wrong value technically ends
up with worst-case quality loss.

Figures 6a-13a compare the quality trends of x-similarity
and y-similarity. On average, y-similarity delivers higher output
quality for our benchmarks. The reason for this is that our

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64

LL
C

 n
o

rm
al

iz
ed

 M
P

K
I

radix

precise

approx

(a) 2dconv

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64

LL
C

 n
o

rm
al

iz
ed

 M
P

K
I

radix

precise

approx

(b) change-detection

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64

LL
C

 n
o

rm
al

iz
ed

 M
P

K
I

radix

precise

approx

(c) debayer

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64

LL
C

 n
o

rm
al

iz
ed

 M
P

K
I

radix

precise

approx

(d) dwt53

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64

LL
C

 n
o

rm
al

iz
ed

 M
P

K
I

radix

precise

approx

(e) histeq

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64
LL

C
 n

o
rm

al
iz

ed
 M

P
K

I

radix

precise

approx

(f) jpeg

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64

LL
C

 n
o

rm
al

iz
ed

 M
P

K
I

radix

precise

approx

(g) kmeans

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64

LL
C

 n
o

rm
al

iz
ed

 M
P

K
I

radix

precise

approx

(h) lucas-kanade

Fig. 14: Normalized LLC MPKI for precise and approximate data with varying y-similarity radix.

(a) baseline precise

(b) y-similarity radix 4

Fig. 15: Output of 2dconv.

(a) baseline precise

(b) y-similarity radix 4

Fig. 16: Output of dwt53.

(a) baseline precise

(b) y-similarity radix 4

Fig. 17: Output of histeq.

similarity mapping is performed at a cache block granularity.
Cache blocks are fairly large (64 B), so they can contain
several (in some cases, many) data elements. This negatively
impacts x-similarity since the x-dimension is the contiguous
dimension. For example, consider a 4-byte pixel P at location
[i][j]. We expect that it is approximately similar in value
to its neighbour in the x-dimension at [i][j+1]. However,
its neighbour is likely to be within the same cache block as P.
Since there are 16 pixels per block, employing the x-similarity
mapping (i.e., stride of 1) makes P equivalent to [i][j+16]
instead, which is more likely to degrade quality. On the other
hand, y-similarity yields higher output quality since it is not
the contiguous dimension. This means that P can be mapped
to [i+1][j] given the appropriate stride.

For the rest of our evaluation, we focus only on y-similarity.
On average, output quality SNR varies from 18.8 dB, 12.5 dB
and 8.2 dB for y-similarity radix of 2, 8 and 64 respectively.
For reference, this yields 3.7%, 7.7% and 13.4% respectively in

terms of normalized root-mean-square error, another common
metric in approximate computing [13].

Efficiency. As Figures 6b-13b and Figures 6c-13c show,
application speedup and dynamic energy savings increase with
the radix: on average, 1.08× speedup and 1.18× energy savings
with radix 2, and 1.19× speedup and 1.39× energy savings with
radix 64. Both are primarily due to significant reductions in
LLC misses, which are shown in Figure 14. As radix increases,
mapping more memory addresses to a single cache location
yields more hits in the Bunker Cache. This mitigates both the
latency and energy cost of accessing off-chip memory. This
is a benefit that prior work on cache deduplication [36], [46]
cannot obtain since they must fetch the actual data values in
order to perform the deduplication, whereas the Bunker Cache
only needs memory address information. Note that this benefit
applies even for compulsory misses in the LLC.

The efficiency gains vary per benchmark, depending on the
application’s sensitivity to the LLC and the distribution of

(a) baseline precise (b) y-similarity radix 4

Fig. 18: Output of change-detection.

(a) baseline precise (b) y-similarity radix 4

Fig. 19: Output of debayer.

approximate and precise LLC misses, shown in Figure 14. In
general, a higher approximate MPKI corresponds to greater
speedup and dynamic energy savings. Of our benchmarks,
debayer, histeq and jpeg achieve the highest MPKI reduction
since they have the largest fraction of approximate data in their
working sets, benefiting most from our similarity mapping.
This yields speedups of 1.29×, 1.58× and 1.10× with radix
4. Though jpeg has a larger approximate footprint than histeq,
histeq sees higher speedups since jpeg is more computation-
heavy and less memory-bound (baseline LLC MPKI of 0.92)
compared to histeq (baseline LLC MPKI of 5.43). In our
experiments, we find that the energy cost of off-chip memory
is more significant than its latency cost, generally resulting
in higher energy savings than performance gains. These three
benchmarks save 1.61×, 1.72× and 1.28× of dynamic energy
with radix 4 and nearly 2× at even higher radix values.

B. Cache Compression

The Bunker Cache offers a form of cache compression
with minimal changes to the cache architecture (i.e., only
the mapping function). Figure 22 shows compression ratio
(geometric mean) with varying y-similarity radix. As expected,
compression ratio increases with radix, offering more opportu-
nity for LLC storage savings. As with the speedup and dynamic
energy savings, the extent to which storage is saved depends
on how much of the footprint is approximate.

Figure 22 compares the compression ratio of our technique
against B∆I [30] and uniDoppelgänger [36] (with 14-bit

(a) baseline precise (b) y-similarity radix 4

Fig. 20: Output of jpeg.

(a) baseline precise (b) y-similarity radix 4

Fig. 21: Output of kmeans.

similarity maps). B∆I is a state-of-the-art intra-block com-
pression technique that operates on both approximate and
precise data. The uniDoppelgänger Cache is an inter-block
deduplication technique that captures value similarity for only
approximate data. At low radix, the Bunker Cache has a lower
compression ratio than B∆I, primarily since B∆I is applied
to both precise and approximate data whereas our technique is
only for approximate data. However, the approximate footprint
is relatively large, and approximate data are far more amenable
to compression due to applications’ tolerance to quality loss.
As a result, the Bunker Cache eventually achieves higher
compression ratio at higher radix (i.e., beyond radix of 4).
The uniDoppelgänger Cache achieves a high compression ratio
since it is able to find similar blocks at arbitrary memory
locations. This comes at a high complexity cost whereas the
Bunker Cache can use mostly commodity cache hardware.
Furthermore, our technique only needs memory addresses to
identify similar blocks whereas uniDoppelgänger needs to fetch
the actual data values. This enables us to reduce LLC misses
and off-chip accesses in addition to storage compression. It is
important to note that B∆I, uniDoppelgänger and our technique
are all orthogonal; they can be applied simultaneously for even
more storage savings.

C. Cache Optimizations

We evaluate the Bunker Cache with additional optimizations
of drowsy blocks and dynamic quality control.

1

2

3

4

1 2 4 8 16 32 64

co
m

p
re

ss
io

n
 r

at
io

radix

BΔI uniDoppelgänger Bunker

Fig. 22: Compression ratio with varying y-similarity radix,
compared to B∆I and uniDoppelgänger.

1.0

1.2

1.4

1.6

1.8

2.0

0
5

10
15
20
25
30

d
yn

am
ic

 e
n

er
gy

 s
av

in
gs

SN
R

 (
d

B
)

output quality dynamic energy savings

Fig. 23: Output quality and dynamic energy savings using
dynamic quality control of y-similarity radix. Initial radix is 4
and target SNR is 10 dB.

Drowsy Blocks. As discussed in Section V-B, spatio-value
similarity enables storage savings. This can translate to leakage
power savings by enabling drowsy state for cache blocks, as
described in Section III-D1. Figures 6d-13d show the leakage
power savings with varying y-similarity radix when using
drowsy blocks. Leakage power pertains to the total on-chip
cache hierarchy including the directory. These results account
for the additional reference counter bits to track unused cache
blocks. As expected, more leakage power is saved with higher
radix, and benchmarks with larger approximate footprints
achieve more savings (e.g., debayer and jpeg approach 2×
at higher radix). Note that leakage power can alternatively
be saved by reducing the size of the LLC according to the
average compression ratio, which is a typical approach in cache
compression work.
Dynamic Quality Control. We implement our dynamic
quality control mechanism for the Bunker Cache, described
in Section III-D2. In our experiments, we assume epochs
of 100,000 approximate cache accesses. We sample 100
of these accesses per epoch to compute SNRe. We set the
design parameters α and β to 0.5 and 4 respectively, derived
empirically.

Figure 23 shows how our dynamic quality control mechanism
impacts both output quality and dynamic energy savings for
each benchmark. For these experiments, we select a target SNR
value of 10 dB and address only y-similarity. The initial radix
is set to 4; the minimum and maximum are 1 (i.e., precise case)

and 64 respectively. The results show that our mechanism is
able to keep output quality near the target 10 dB consistently
in all benchmarks. Though we introduce overheads in flushing
the cache and computing SNR values, we find that for our
benchmarks, the radix tends to settle early: radix of 1 for
change-detection and lucas-kanade; 4 for debayer, jpeg and
kmeans; 16 for 2dconv; and 64 for dwt53 and histeq. This
implies that there are only a few changes in radix (and thus
cache flushes) during execution, allowing us to achieve high
dynamic energy savings despite the overheads (up to 1.61×
and 1.84× for debayer and histeq). Given the large epochs and
infrequent sampling, the cost of our dynamic quality checks
is outweighed by the significant reduction in off-chip memory
accesses.

VI. RELATED WORK

This section discusses how the Bunker Cache relates to
previous proposals on cache hash functions and value locality.
Cache Hash Functions. Instead of simply using some of
the block address bits as the cache index, previous research
has proposed better hash functions [20], which have been
implemented in commercial processors [1]. Skew-caches [43]
use a different hashing function per way, reducing the number
of conflict misses but breaking the concept of a set. Inspired
by cuckoo hashing [29], a technique originally proposed to
create space-efficient hash tables, the ZCache [40] provides as-
sociativity by increasing the number of replacement candidates
but not the number of ways. The Bunker Cache implements a
mapping function which effectively groups together data with
similar values which are spatially close in the data-structure
space.
Value Locality. Value locality was first explored in the context
of value prediction [6]–[9], [15], [22], [27], [41]; current
values for instructions can be predicted based on previous
values. Value prediction faces implementation challenges due
to rollbacks, pipeline complexity and memory consistency
models [24]. Recent work has revisited practical and efficient
implementation techniques [31], [32]. To avoid many of these
complexities, one can relax the notion that predicted values
must match exactly with actual values [37], [38], [44], [45],
[47]; this observation marries well with approximate computing.
Value redundancy is exploited in other techniques such as cache
compression [2], [30], frequent value caching [49], address
correlation [42] and cache deduplication [46]. Extending the
latter, Doppelgänger [36] exploits approximate value similarity
but at the cost of a radically new and more complex cache
architecture. The Bunker Cache exploits a fundamentally
different locality known as spatio-value locality and does so
with minimal changes to the cache structure.

VII. CONCLUSION

In this paper, we explore the notion of spatio-value similarity
in approximate computing. Such similarity exists in general
applications whose data sets exhibit value locality between
neighbouring elements. We propose the Bunker Cache, an
architecture that maps approximately similar blocks to the same

cache location using knowledge of an application’s spatio-value
characteristics. This effectively treats similar blocks as one and
the same; a miss for block A is now a hit if a similar block
B is present in the cache. This enables significant reductions
in cache misses, off-chip memory accesses and cache storage
requirements. Furthermore, the implementation of the Bunker
Cache is contained entirely within the cache index function.
Thus we offer an approximate computing technique that can
achieve efficiency gains with mostly commodity hardware.
Our experiments uncover significant spatio-value similarity
in image processing applications; however, Bunker Cache’s
applicability is not limited to such applications. Many of the
applications we consider have uses beyond image processing;
further exploration of the application space is left for future
work.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their thought-
ful feedback. This work is supported by a Queen Elizabeth
II/Montrose Werry Scholarship in Science and Technology,
the Natural Sciences and Engineering Research Council of
Canada, the Canadian Foundation for Innovation, the Ministry
of Research and Innovation Early Researcher Award and the
University of Toronto.

REFERENCES

[1] “UltraSPARC T2 supplement to the Ultra- SPARC architecture 2007,”
Sun Microsystems, Tech. Report, 2007.

[2] A. Alameldeen and D. A. Wood, “Adaptive cache compression for
high-performance processors,” in International Symposium on Computer
Architecture, 2004.

[3] W. Baek and T. M. Chilimbi, “Green: a framework for supporting energy-
conscious programming using controlled approximation,” in PLDI, 2010.

[4] K. Barker et al., PERFECT (Power Efficiency Revolution For Embedded
Computing Technologies) Benchmark Suite Manual, Pacific Northwest
National Laboratory and Georgia Tech Research Institute, December
2013, http://hpc.pnnl.gov/projects/PERFECT/.

[5] J. Bornholt et al., “Uncertain<T>: A first-order type for uncertain data,”
in ASPLOS, 2014.

[6] M. Burtscher, “Improving context-based load value prediction,” Ph.D.
dissertation, University of Colorado, 2000.

[7] M. Burtscher and B. G. Zorn, “Load value prediction using prediction
outcome histories,” University of Colorado, CS Department Technical
Report CU-CS-873-98, 1998.

[8] M. Burtscher and B. G. Zorn, “Exploring last n value prediction,” in
PACT, 1999.

[9] B. Calder et al., “Selective value prediction,” in Proc. Int. Symp. Computer
Architecture, 1999.

[10] V. K. Chippa et al., “Analysis and characterization of inherent application
resilience for approximate computing,” in Proc. Int. Design Automation
Conference, 2013.

[11] P. Conway et al., “Cache hierarchy and memory subsystem of the AMD
opteron processor,” IEEE Micro, 2010.

[12] H. Esmaeilzadeh et al., “Architecture support for disciplined approximate
programming,” in ASPLOS, 2012.

[13] H. Esmaeilzadeh et al., “Neural acceleration for general-purpose approx-
imate programs,” in MICRO, 2012.

[14] K. Flautner et al., “Drowsy caches: simple techniques for reducing
leakage power,” in ISCA, 2002.

[15] F. Gabbay, “Speculative execution based on value prediction,” Technion
- Israel Institute of Technology, EE Department Technical Report 1080,
1996.

[16] J. Gaur et al., “Bypass and Insertion Algorithms for Exclusive Last-level
Caches,” in ISCA, 2011.

[17] J. Han and M. Orshansky, “Approximate computing: an emerging
paradigm for energy-efficient design,” in Proc. European Test Symposium,
2013.

[18] S. Han et al., “Learning both Weights and Connections for Efficient
Neural Networks,” 2015, arXiv:1506.02626 [cs.NE].

[19] D. Kadjo et al., “Power gating with block migration in chip-
multiprocessor last-level caches,” in ICCD, 2013.

[20] M. Kharbutli et al., “Using prime numbers for cache indexing to eliminate
conflict misses,” in HPCA, 2004.

[21] D. S. Khudia et al., “Rumba: An Online Quality Management System
for Approximate Computing,” in Proc. Int. Symp. Computer Architecture,
2015.

[22] M. H. Lipasti et al., “Value locality and load value prediction,” in
ASPLOS, 1996.

[23] C.-K. Luk et al., “Pin: building customized program analysis tools with
dynamic instrumentation,” in PLDI, 2005.

[24] M. M. K. Martin et al., “Correctly implementing value prediction in
microprocessors that support multithreading or multiprocessing,” in
MICRO, 2001.

[25] T. Moreau et al., “SNNAP: Approximate Computing on Programmable
SoCs via Neural Acceleration,” in HPCA, 2015.

[26] N. Muralimanohar et al., “CACTI 6.0: A Tool to Model Large Caches,”
Technical Report HPL-2009-85, HP Labs, 2009.

[27] T. Nakra et al., “Global context-based value prediction,” in HPCA, 1999.
[28] N. Neelakantam et al., “FeS2: a full-system execution-driven simulator

for x86,” poster presented at ASPLOS, 2008.
[29] R. Pagh and F. F. Rodler, “Cuckoo hashing,” J. Algorithms, vol. 51,

no. 2, pp. 122–144, May 2004.
[30] G. Pekhimenko et al., “Base-delta-immediate compression: Practical data

compression for on-chip caches,” in PACT, 2012.
[31] A. Perais and A. Seznec, “EOLE: Paving the way for an effective

implementation of value prediction,” in Proc. of the International
Symposium on Computer Architecture, 2014.

[32] A. Perais and A. Seznec, “Practical data value speculation for future
high-end processors,” in HPCA, 2014.

[33] M. Samadi et al., “SAGE: Self-tuning approximation for graphics engines,”
in MICRO, 2013.

[34] A. Sampson et al., “EnerJ: approximate data types for safe and general
low-power consumption,” in PLDI, 2011.

[35] A. Sampson et al., “Approximate storage in solid-state memories,” in
Proc. Int. Symp. Microarchitecture, 2013.

[36] J. San Miguel et al., “Doppelganger: A cache for approximate computing,”
in MICRO, 2015.

[37] J. San Miguel et al., “Load value approximation,” in International
Symposium on Microarchitecture, 2014.

[38] J. San Miguel and N. Enright Jerger, “Load value approximation: Ap-
proaching the ideal memory access latency,” in Workshop on Approximate
Computing Across the System Stack, 2014.

[39] J. San Miguel and N. Enright Jerger, “The anytime automaton,” in ISCA,
2016.

[40] D. Sanchez and C. Kozyrakis, “The ZCache: decoupling ways and
associativity,” in MICRO, 2010.

[41] Y. Sazeides and J. Smith, “The predictability of data values,” in Proc.
Int. Symp. Microarchitecture, 1997.

[42] R. Sendag et al., “Address correlation: Exceeding the limits of locality,”
IEEE Computer Architecture Letters, 2003.

[43] A. Seznec, “A case for two-way skewed-associative caches,” in Proc. Int.
Symp. Computer Architecture, 1993.

[44] M. Sutherland et al., “Texture cache approximation on GPUs,” in WAX,
2015.

[45] B. Thwaites et al., “Rollback-free value prediction with approximate
loads,” poster presented at PACT, 2014.

[46] Y. Tian et al., “Last-level cache deduplication,” in ICS, 2014.
[47] A. Yazdanbakhsh et al., “RFVP: Rollback-free value prediction with

safe-to-approximate loads,” ACM TACO, vol. 12, no. 4, 2016.
[48] J. Zebchuk et al., “A Tagless Coherence Directory,” in Proc. Int. Symp.

Microarchitecture, 2009.
[49] Y. Zhang et al., “Frequent value locality and value-centric data cache

design,” ACM SIGOPS Operating Systems Review, vol. 34, pp. 150–159,
2000.

[50] H. Zhao et al., “SPATL: Honey, I Shrunk the Coherence Directory,” in
PACT, 2011.

