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ABSTRACT

An interconnection network forms the communication back-
bone in both on-chip and off-chip systems. In networks, con-
gestion causes packets to be blocked. Indefinite blocking can
occur if cyclic dependencies exist, leading to deadlock. All
modern networks devote resources to either avoid deadlock
by eliminating cyclic dependences or to detect and recover
from it.

Conventional buffered flow control does not allow a blocked
packet to move forward unless the buffer at the next hop is
guaranteed to be free. We introduce SWAP, a novel mech-
anism for enabling a blocked packet to perform an in-place
swap with a buffered packet at the next hop. We prove that
in-place swaps are sufficient to break any deadlock and are ag-
nostic to the underlying topology or routing algorithm. This
makes SWAP applicable across homogeneous or heteroge-
neous on-chip and off-chip topologies. We present a light-
weight implementation of SWAP that reuses conventional
router resources with minor additions to enable these swaps.
The additional path diversity provided by SWAP provides 20-
80% higher throughput with synthetic traffic patterns across
regular and irregular topologies compared to baseline es-
cape VC based solutions, and consumes 2-8 x lower network
energy compared to deflection and global-synchronization
based solutions.

1. INTRODUCTION

Interconnection networks form the communication back-
bone of today’s computer systems. They provide the means
for communication between different entities of the system,
be they different cores of a many-core chip multiprocessor
(CMP), or a system-wide network where each node itself
could be a CMP or server.

In a buffered network, packets naturally get blocked due
to contention for shared links. A deadlock occurs when some
packets remain blocked inside the network indefinitely due
to a cyclic dependence between buffers, and never reach
their destination, causing application or system level failure.
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Deadlock freedom is a matter of correctness, rather than
performance. Therefore, careful consideration is given while
designing the network to make it deadlock free; more often
than not, via over provisioning of resources.

Almost every commercial interconnection network today
prevents deadlocks from occurring by ensuring that the afore-
mentioned cyclic dependence between buffers never gets cre-
ated in the first place. This is done by restricting certain turns
(either for all packets such as with dimension-ordered XY
routing [1], or within extra escape virtual channels (VCs) [2])
or by restricting the injection of packets [3,4]. These restric-
tions reduce path diversity; throughput is lost since avoiding
runtime formation of cycles means that links will go unused
by certain packets even if they are idle. Moreover, they are
inherently tied to the topology (e.g., XY routing only works
for a mesh; any other topology requires a full channel depen-
dence graph analysis to disable turns [1], BFC only works in
rings/tori) — making them inflexible as plug-and-play solu-
tions in arbitrary topologies in heterogeneous SoCs or when
links/routers fail due to waning silicon reliability [5].

We focus on schemes that provide full path diversity, and
resolve deadlocks that have occurred. We characterize prior
work on deadlock resolution via the following taxonomy:!

e Deadlock resolution via escaping (e.g., escape buffers [5,
6]); the key drawback is the need for extra buffers;

e Deadlock resolution via misrouting (e.g., deflection rout-
ing [7, 8, 10]); the key drawback is increased energy con-
sumption and loss in throughput;

e Deadlock resolution via coordinating or synchronizing
(e.g., SPIN [9]); the key drawback is expensive global
coordination for detection and spinning.

None of the state-of-the-art deadlock-freedom solutions
(avoidance/recovery) provide full path diversity and high-
throughput without requiring deadlock detection or global
coordination for arbitrary topologies. This motivates our
work. Going back to first principles, we argue that a network
deadlocks because a packet is indefinitely blocked; the reason
is a fundamental network design rule that says that a packet
should be forwarded from an upstream router to a downstream
router if and only if the downstream buffer is free (which
is known via credits/on-off signaling), or is guaranteed to
become free by the time the packet arrives [9, 11]. If this rule
is violated, packets may be dropped.

We question this fundamental rule and propose Synchro-

I'Section 2 provides more details on each of these approaches.
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Figure 1: The basic hardware implementation for swapping the content of two Flip Flops / FIFOs.
Table 1: Qualitative Comparison of Deadlock Freedom Mechanisms

Deadlock Freedom Mechanism Resolution Type | Full Path Diversity | No VCs Required Topology Agnostic | No coordination
CDG / Dally [1] No Cycle X v X v
Duato [2,6] Escape v IX* X VIX* v
BFC [3,4,5] Bubble X v X 4
Deflection [7, 8] Misroute X v v v
SPIN [9] Synchronize v v v X
SWAP Backtrack v v v v

* Within esc VC: limited path diversity + requires topology info for esc path.
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**At low-loads, full path diversity is available. But at medium-high loads, packets cannot control the directions or paths along with they are deflected.

nized Weaving of Adjacent Packets (SWAP). SWAP intro-
duces a new deadlock resolution paradigm: backtracking,
where deadlocked packets yield their position and allow other
packets to move forward. Backtracking is performed via
in-place packet swaps across buffers in neighboring routers.
Fig. 1 shows the conceptual idea. Unlike software, where a
swap requires additional temporary storage, in hardware, an
in-place swap is conceptually the same as a cyclic shift reg-
ister. Intuitively, SWAP allows any blocked packet to make
guaranteed forward progress to its destination, regardless of
the congestion in the network, via the mechanism of swaps.
More formally, we prove that performing swaps at periodic
intervals ensures that any cycles, if they form in the network,
are broken dynamically via swaps, guaranteeing deadlock
freedom. Further we show that despite infrequent misrouting
of packets, SWAP is free from livelock.
This paper makes the following contributions:

e We propose SWAP, a novel mechanism for in-place packet
swaps across routers in a network.

o SWAP provides deadlock-freedom via packet backtrack-
ing, while providing desired metrics of full path diversity,
high throughput, no additional VCs, no deadlock detec-
tion, and topology agnosticism. Table 1 qualitatively con-
trasts SWAP with current deadlock-freedom solutions.

e We present a light-weight implementation of SWAP that
adds 4% area overhead over a state-of-the-art VC router.

o SWAP increases throughput by 20-80% with synthetic
benchmarks for a full and faulty mesh, compared to es-
cape VCs, and reduces network link activity by 2-8 x com-
pared to deflection and synchronization based schemes.

e We show that using SWAP with conventional deadlock-
free routing enhances network throughput by 10% since
swaps allow packets to move away from congested parts
of the network. Thus SWAP emulates the behavior of
VCs without adding any additional buffers, making it
applicable beyond deadlock resolution.

2. BACKGROUND AND RELATED WORK

There exists a significant body of work on deadlock free-
dom in interconnection networks. For the purpose of discus-
sion, we categorize them into deadlock avoidance and dead-
lock resolution techniques as per our taxonomy in Section 1.
Table 1 summarizes key attributes of different approaches.
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2.1 Deadlock Avoidance

Routing Restrictions. The most common technique to avoid
deadlocks is to make the Channel Dependency Graph (CDG)
acyclic [1]. In one variant of this technique, certain furns in
a given topology are not allowed, to ensure that a deadlock
is never created. The turn model [12] for a mesh is the most
prevalent implementation. These algorithms allow selective
adaptivity in the routing algorithm—for example, west-first
routing only allows adaptivity if the destination happens to
be in the North-East or South-East quadrant of the mesh. An
alternate implementation is to change the virtual channel (VC)
at which the packet would sit at downstream router whenever
certain turns are made, to ensure that the VCs themselves
do not form a cyclic dependence. This is used in off-chip
networks for algorithms such as UGAL [13] in dragon-fly
networks and require at least three VCs. Fully adaptive
routing can be implemented to allow full path diversity across
all VCs, while each VC itself has turn restrictions [14]. In
irregular topologies, arising due to network faults [15, 16, 17]
or power-gated nodes [18], spanning trees are often used to
guarantee the same acyclic CDG behavior.

Injection Restrictions. Another technique to avoid dead-
locks is to ensure that a cyclic dependence never forms at
runtime even though the CDG is cyclic. This can be ensured
by cleverly managing the injection of packets into the net-
work. Bubble flow control [3] and its variants [3,4,19,20] are
the most common implementation of this idea, but only work
for rings and tori. Some extensions of BFC for meshes [21]
and dragon-fly [22] have been explored.

Both of these approaches limit throughput either by restrict-
ing path diversity or by limiting packet injection. They also
tend to be topology-specific, limiting their use in irregular or
faulty networks.

2.2 Deadlock Resolution

Escape Virtual Channels. Escape VCs [2,23,24] allow all
VCs to use deadlock-prone routing with no turn restrictions,
except one (the escape VC) that uses a deadlock-free routing
path. This provides an acyclic CDG only within the escape
VC. Thus, escape VC-based solutions require at least 2 VCs
to provide fully adaptive routing. Escape VCs have been
used across a suite of networks [24,25,26,27,28,29,30]. A
key challenge with escape VCs, just like the CDG schemes,
is that they are topology-dependent—the path through the
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Figure 2. Example comparing (a) Deflection, (b) SPIN and (c) SWAP using a 3x2 mesh. The left side of the figure
(before dotted line) sets up the same initial condition of deadlock in the three designs, and the right side demonstrates
how they operate. In deflection routing, the deadlock does not persist as packets move every cycle. However, the green
packet (going to Router C) and the purple packet (going to Router D) are both misrouted due to conflicts, and take
multiple cycles to be re-routed to their destinations. In SPIN, if a packet in a specific VC (e.g., at Router A) does not
move for a specified number of cycles, a timeout occurs, and a probe is sent to map the possible deadlock path. The
probe returns after 12 cycles. A move message synchronizes all routers on the deadlock path to perform a spin. Once
the move returns, the spin is performed, and every packet moves forward one hop. The deadlock still persists, so the
timeout, probe, move, and spin process repeats. In the last step, packet c¢ reaches its destination and the deadlock is
resolved. In SWAP, Router A (at a fixed period), coordinates locally with its neighbor (Router B) and performs a swap:
packet d is backtracked and packet ¢ moves forward. The deadlock still persists. Packet ¢ performs another swap,
reaches its destination, and the deadlock is resolved. The corresponding CDG at every step in SWAP is also shown.

escape VCs needs to be deadlock-free via routing restrictions.
Further, they require the overhead of provisioning at least
two VCs, one of which typically is not well utilized.
Misrouting packets (Deflection routing). Deflection rout-
ing [7,8,31,32] assigns every input flit some output port every
cycle. When more than one flit requests the same output port,
only one (chosen according to a priority scheme) is allot-
ted the output port and the rest are deflected to some other
available output port. It is primarily intended for bufferless
routers. It is inherently deadlock free because every packet
makes progress every cycle. Although it is not guaranteed
that same packet will make forward progress at each router.
This increases network congestion and energy consumption
due to mis-routing which will be especially bad at high loads,
limiting network throughput significantly [33].
Coordination. Deadlock detection and recovery is an alter-
native approach to provide deadlock freedom. These are mo-
tivated by the fact that deadlocks are actually quite rare [5, 6]
and argue that the routing restrictions or additional escape
VCs are overly conservative. These solutions fundamen-
tally rely on a deadlock detection mechanism [5, 9, 34, 35]
involving time-outs and probes, followed by a recovery mech-
anisms that introduces additional buffers [5, 6,35] or coordi-
nates packet movement [9] to guarantee forward progress.
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Although their datapath overheads are low, these solutions
require extremely complex control circuitry in the form of
time-out counters and state machines to detect deadlocks and
manage false positives and negatives. Moreover, due to the
overhead of deadlock detection, they suffer from low through-
put once the network starts to deadlock. Thus, they have not
made it into mainstream systems.

Backtracking. SWAP uses the same underlying theory of
guaranteed forward progress as deflection routing to provide
deadlock freedom—thereby not requiring any turn or injection
restrictions, or detection and recovery. Packet swaps can be
viewed at a high level as controlled deflections. There is a
subtle yet important difference: misrouting is tricky because
you have to make sure that you misroute a packet only to
directions where it still has a legal path to its final destination;
whereas backtracking guarantees this. The key differences
of SWAP compared to a deflection-based mechanism and
SPIN [9] (coordination-based) are highlighted in Fig. 2 and
discussed in detail in Section 4.4.

3. SWAP THEORY

In this section, we present the theoretical underpinnings of
our SWAP scheme. First, we provide necessary definitions
for the reader, overview the basic operation and provide a
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Figure 3: Walk through example of SWAP with corresponding CDG. Each node in the CDG represents a link (e.g., node
‘AB’ is the link from router-A to router-B) and each edge represents a packet that wants to turn from the source link to
target link (e.g., ‘AB’ to ‘BC’ represents the pink packet currently buffered at router-B making a West to South turn).
(a) there is a deadlock between the four packets as seen by the cyclic CDG. A swap is initiated by router-A between the
yellow packet at A with the pink packet at B. (b) The swap completes. Now the yellow packet (swapFwd) moves to B
and wants to go East, while the pink packet (swapBack) is backtracked to A. The CDG is acyclic: the deadlock is broken.

(c) All packets move forward via normal operation.

concrete walk-through example. Then we provide a proof of
deadlock and livelock freedom. Section 4 then presents one
possible realization of our SWAP theory.

3.1 Definitions

Deadlock: Deadlock occurs when packets remain inside
the network indefinitely and never reach their destination.
Packets wait forever to acquire the buffer at next router due
to a cyclic dependency between the buffers.

Forward Progress: We use forward progress for a packet to
refer to a scenario where it moves towards its destination.
Backtrack: We refer to backtracking for the packet that
yields its position and moves back to the upstream router
during the swap.

Swap: A swap refers to the act of interchanging two packets
from two adjacent routers. The high-level idea is shown in
Fig. 1. A Swap requires no additional buffers. It leverages
the bi-directional links between adjacent routers to simulta-
neously send two packets (serializing the flits over the link)
in either direction.

swapFwd packet: During a swap, the initiator (a.k.a. up-
stream router) chooses and routes the swapFwd packet to-
wards the productive direction to the downstream router. This
packet makes forward progress.

swapBack packet: The packet backtracked from the down-
stream router to the initiator to allow swapFwd packet to
sit in its place. The swapBack packet acquires the buffer of
upstream router which was held by the swapFwd packet.
swapCycle: The cycle during which a specific upstream
router performs a swap of one of its buffered packets.
swapPeriod: swapPeriod refers to the number of cycles it
takes for the same router in the network to try and initiate a
swap for one of its buffered packets.
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3.2 Proof of Deadlock Freedom

Theorem 1: In a deadlock cycle of length n, at most n— 1
swaps by a specific packet are sufficient to break the deadlock.

Proof: A swap operation removes one edge from and adds
one new edge to the runtime CDG. The edge that is removed
is the original direction the swapBack packet intended to go
towards, while the edge that is added is the new direction the
swapFwd packet intends to go towards. n — 1 swaps allows
the packet to reach the node one-hop behind it. One of these
n— 1 intermediate routers will either be its final destination, or
an exit point out of this ring. In either scenario, the swapFwd
packet will no longer have an edge in the CDG along the
original dependence cycle, thereby breaking the deadlock.

Example: Fig. 3 shows the network state along with the
channel dependence graph (CDG) at each step. For the sake
of simplicity, we show one VC per port, and single-flit pack-
ets. In Step (a), four packets are in a deadlock, as is also
evident by the cyclic CDG. Suppose Router A chooses the
yellow buffered packet as its swapFwd packet. The yellow
packet wishes to go East making the pink packet at the down-
stream router the swapBack packet. A sends a swap request
to B, receives an ACK, and the swap is executed. In Step
(b), the yellow packet has made forward progress; the dead-
lock is broken as it wants to go East. This is also seen from
the CDG. The packets now move forward via conventional
means, as seen in Step (c). Here, the first swap led to the
CDG becoming acyclic, since the new edge was no longer
along the original cycle. In a more general case, it may be
possible that even after a swap, the CDG remains cyclic (for
example, if there is a longer dependence cycle, as shown in
Fig. 2(c)).

Theorem 2: For a given system which implements SWAP,
as long as every packet gets a chance to perform a swap, the



RIGHTS

—
(b) Mesh

(c) Irregular-1 (d) Irregular-2

Figure 4: Examples of Deadlocks in Arbitrary Topologies

network is deadlock-free.

Proof: A deadlock, by definition, is an indefinite blocking
of a packet. As long as the implementation of SWAP can
guarantee that every packet will have a chance to perform
a swap, it will make forward progress, making the network
inherently deadlock free. However, it is possible for the
packet that made forward progress to later be backtracked
by another packet. Indefinite backtracking could lead to a
livelock (i.e., the packet never reaches its destination). Next,
we discuss why SWAP is livelock free.

3.3 Proof of Livelock Freedom

Theorem: For a given system that implements SWAP, as
long as any backtracked packet eventually has the opportunity
to move forward by two hops before being backtracked again,
the network is livelock-free.

Proof: Backtracking can be viewed as incrementing a
packet’s number of remaining hops 4 (to its destination) by
at most 1. Assume that the system allows a packet to move
two hops before being backtracked again (i.e., before being
selected as a swapBack packet). For every increment by 1 in
h due to backtracking, there is a decrement by 2. This implies
that in this system, for any given packet, & eventually goes to
0, guaranteeing forward progress to the destination.

Implementation: There are two important design consid-
erations to implement such a system. First, the swapPeriod
must be greater than the time it would take for a packet to
move two hops forward in the absence of contention. This
avoids any pathological cases of packets continuously be-
ing backtracked. Second, the selection scheme that decides
which packet should be swapped next must be fair. Ideally,
this selection is random; though for practical purposes, round
robin is sufficient. A fair selection scheme ensures that no
packet is starved in the presence of contention. Even if a
packet is not able to move two hops forward now, it will even-
tually be able to, as guaranteed by the fair selection. Since the
network topology is finite, / is upper-bounded by the network
diameter (i.e., the largest number of hops between any two
routers). Thus no amount of contention in the system can
cause a packet to be backtracked indefinitely.

3.4 SWAP in Arbitrary Topologies

Arbitrary topologies are challenging for popular deadlock-
avoidance solutions such as X'Y/West-first routing algorithms;
routing algorithms now require CDG analysis to determine
topology-specific turn restrictions (for all paths or within
escape VCs). In contrast, SWAP is agnostic to the topology
as any swap just involves neighboring routers. For example,
the deadlock ring in Fig. 2 could lie within any topology in
Fig. 4 and use the same mechanism of swaps for deadlock
freedom. SWAP is also agnostic to the underlying routing
algorithm. The routing algorithm decides the output port
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(i.e., neighboring router) of the swapFwd packet, and the
swapBack packet is chosen from the corresponding input
port at the neighbor.

4. SWAP IMPLEMENTATION

Multiple implementations of SWAP are possible. We favor
an implementation with low complexity. We describe the pos-
sible design space and the intuition behind our given design
choices, acknowledging that alternate implementations are
possible.

4.1 Initiating a Swap

Although it is possible to map out the full deadlock loop
at runtime via timeout and probes [5, 9], and then perform
controlled swaps to recover from the deadlock (Proof 1 in
Section 3.2), we prefer a less expensive approach. Recall that
any SWAP implementation ensures deadlock and livelock
freedom if it ensures that (a) every packet gets the chance to
make forward progress via a swap, and (b) the system allows
a packet to move two hops in an uncongested scenario, before
being backtracked. To ensure (a), we enforce periodic swaps
by every router at a configurable time period (swapPeriod)
and we add a pointer in every router to cycle through all
VCs at all ports that decides which VC will try and initiate a
swap. To ensure (b), we need to account for the worst case
delay for a packet in two adjacent routers without any stalls
due to insufficient credits. This would be a packet in a VC
contending with all other VCs at that router for a specific
output port, followed by traversing the router and link, and
repeating the same at the next router. Thus,

swapPeriod > 2 x (# ports X # ves/port + (router_pipeline_delay
+link_delay)) + serialization_delay

This works out to be 54 cycles for a 5-ported mesh router with
4 VCs per port, 5-flit packets, 4-cycle routers and 1-cycle
links, and 18 cycles for a 1-cycle, 1 VC per port mesh router.

In our implementation, each router performs a swap during
its swapCycle. The swapCycle is defined as

(cycle/m)% (K x N) == router_id (1)

where K is a configurable swapDutyCycle, N is the number of
routers in the network, m is the maximum number of flits of
any packet in the system and K x N is the swapPeriod. K de-
termines how often each router initiates swaps; the lower the
value of K (minimum could be 1), the more swaps performed
in the network. When K =1 and m = 1, each router initiates a
swap every N cycles in a TDM manner. In a 64-core system,
this means that even with K = 1, each router attempts a swap
once every 64 cycles, which is greater than the minimum
swapPeriod calculated above for livelock avoidance.

The router initiating the swap, as dictated by its ID and
current cycle, is the upstream router and router with which
it will swap its packet, is the downstream router. At any
given cycle, by design, there can only be one upstream router
and several possible downstream routers depending on the
topology.

During the swapCycle, the upstream router selects a swap-
Fwd packet from one of its internally buffered packets. It
sends a swap request signal via a 1-bit wire to the downstream
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router at the output port for this packet (which is determined
by the routing algorithm). The downstream router selects
a swapBack packet and sends an ACK. Section 4.2 details
how the swapFwd and swapBack packets are selected. Upon
receiving the ACK, a swap is executed over the next m cycles
(for m-flit packets at maximum) with both routers sending
their respective packets out at the same time to each other over
the respective unidirectional links connecting them. These
links are reserved for the swap by the ACK and are not allo-
cated to any other packets by the switch allocators at the two
routers.

A successful swap can only be initiated when all the input
buffers of both upstream and downstream routers are occu-
pied. If this condition is false, either the swap request is not
sent or it is NACK’d. Other conditions for NACK’d requests
are discussed in Section 4.2.2.

Deadlock Resolution Time Trade-off. Since deadlocks
are rare [5, 9], our implementation allows only one packet
swap in the system at any time. This reduces the number of
bactracked packets, reduces complexity and eliminates any
race conditions that may arise if the same router is both trying
to initiate a swap as an upstream router, and acknowledge
a swap request as a downstream router. We can tune the
rate of deadlock resolution by tuning the swapPeriod. It is
possible to have implementations that allow multiple routers
in disjoint parts of the network to perform swaps concurrently,
or have implementations that detect deadlocks and perform
controlled swaps to resolve it, at the cost of more overhead.

4.2 Selecting the packets to swap

4.2.1 Selecting the swapFwd packet

Every router has a swapPointer. swapPointer is valid when
there is packet present in any of its input VCs; it points to
that VC. At the onset when there are no packets present in
the router, swapPointer is invalid. If multiple packets arrive
at different input ports of the router in the same cycle, the
swapPointer becomes valid and randomly points to any of the
input VCs containing the recently arrived packets. Conditions
for further updating swapPointer are detailed in Table 2.

The g)acket sitting in the swapPointer VC is the swapFwd
packet” to be sent to downstream router at the swapCycle
of this router. The downstream router is chosen by the next
hop router in the minimal path to this packet’s destination
based on the routing algorithm.> However, if the packet
is due to be ejected, it cannot be the swapFwd packet, as
that would violate the basic requirement of SWAP to have
swapFwd packets always make forward progress towards
their destination. Thus, the swapPointer will move in a round-
robin manner to the next non-empty VC with a packet wishing
to use a non-ejection port. If no such VC exists, it becomes
invalid.

If a valid swapFwd packet exists, the router initiates a
swap by sending a swap_req to the downstream router. The
swap_req carries the VC ID as explained in Section 4.2.2. If
it is ACK’d, the swap operation is setup for the next cycle. A
full swap operation thus takes 4 cycles: (i) req from upstream,

2More complex solutions to select swapFwd packets can be devised
if QoS is needed.

3For example, a fully random routing algorithm might pick the next
hop based on some congestion metric such as available credits.
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Figure 5: Example showing that it is possible for both
the swapFwd (green) and swapBack (yellow) packets to
make forward progress towards their destinations (B and
C respectively) after a swap, due to path diversity in the
underlying topology

(ii) conditions check at downstream, (iii) ACK, and (iv) swap.
These are pipelined; each cycle there can only be one router
performing a swap, as mentioned in Section 4.1.

4.2.2 Selecting the swapBack packet

Upon receiving a swap_req from an upstream router, the
downstream router selects a swapBack packet at the input
port connected to the upstream router and respond with a
swap_ack. The swapBack packet is selected from any VC
within the protocol message class (inferred from the VC ID
sent by the upstream as part of swap_req). For simplicity,
we select the packet with the same VC ID as the swapFwd
packet. Table 2 details the conditions under which the swap
is NACK’d (i.e., swap_ack is sent back as 0).
Backtracking. It may appear that the swapBack packet al-
ways moves away from its destination. This is not always
true. Both the swapFwd and the swapBack packet could move
closer to their destinations (i.e., make forward progress), as
shown in Fig. 5, due to path diversity in the system.
U-turns. A swapBack packet effectively makes a u-turn, and
will request to go back to the router it was swapped from
(unless the routing algorithm finds an alternate minimal path
for it). After the swap, it will move again either via regular
switch allocation or via a swap (once it becomes the swapFwd
packet). It is possible for it to backtrack again in the next
swapPeriod without moving forward due to either of these
conditions. But this will never happen indefinitely, as proven
in Section 3.3.

4.3 Router microarchitecture

Fig. 6 shows the microarchitecture of the SWAP router.

‘We show a mesh router for simplicity, though the same idea
works for a router with any number of ports.
Datapath. We assume bi-directional links. A swap operation
requires both a forward path and a backward path to be setup
between the upstream and downstream routers (red and blue
paths in the Fig. 1) to swap the swapFwd and swapBack
packets between their respective VCs. The additions to the
conventional router are quite minimal: one 2:1 mux and one
2:1 demux in front of every input port, u-turn support in the
crossbar, and a bus connecting all input ports.

As an example, suppose the swapFwd packet is at the
South input port Router A, and the swapBack packet is at
the West input port at Router B (Fig. 3(a)). For generality,
suppose that their current VC IDs are #1 and #3, respectively



Table 2: SWAP Operation Details.

Updating swapPointer

Conditions for Failed Swaps

* When the packet pointed by swapPointer leaves the router naturally by
winning switch arbitration, the swapPointer moves in round-robin fashion to
the next non-empty VC.

* When a swapFwd packet arrives at this router from an upstream router via
a swap. This packet now becomes the swapFwd packet to give it the highest
priority at the next swapCycle in case it does not leave naturally.

* At least one of the VCs within the virtual network of the swap_req is
empty. In this case, the packet could arrive by normal means, and a swap is
not required.

* In virtual cut-through routers, if the candidate swapFwd and swapBack
packet is distributed across two routers, a swap is not performed. In worm-
hole, this condition leads to packet truncation [7, 8].
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Figure 6: SWAP Router Microarchitecture. Features
added by SWAP are shaded in grey. Datapath: bus con-
necting all input ports to allow a swapBack packet from
the downstream router to get buffered at any input VC,
and u-turn support in the crossbar. Control path: Swap
Management Unit controlling when and what to swap.
The blue and red paths show a swapFwd packet going
from South in port to East out port, and a corresponding
swapBack packet entering from East out port and getting
buffered in the South in port.

swap_ack

(even though our implementation restricts the swaps to occur
within the same VC ID).

e forward path (A_South_VC; to B_West_VCj): the
swapFwd packet reuses A’s crossbar to traverse to B’s
West input port (blue path in Fig. 6) and gets buffered
into VC3. This is exactly like a regular traversal. As
mentioned earlier, during the swap, the output link from
A to B is not allocated to any other packet.

e backward path (B_West_VCj; to A_South_VC;): the
swapBack packet reuses B’s crossbar to make a u-turn
towards A. The swapBack packet arrives at the East input
port at A, but needs to be buffered at the South input port.
The pre-set swap_bus transports the packet from East to
South, and buffers it in VC; (red path in Fig. 6).

Why is a simple bus sufficient? SWAP does not support
multiple swaps in the same cycle. Thus, we do not need
a crossbar at the input of the router to support multiple
swaps from multiple downstream routers simultaneously. The
swap_bus is pre-configured by the swap_ack. This makes the

Table 3: SWAP vs. Deflection Routing

Deflection Routing SWAP
Forces packet deflections upon | Provides localized mis-
buffers overflow [10] (every cy- | routing, which we call
Mis- cle in case of bufferless de- | backtracking, the rate of
routing | signs [7]) without support for | which can be controlled
stalls. This leads to high mis- | using the swapPeriod pa-
routing and congestion. rameter.
Deflections in one part of the
network can trigger deflections | Backtracking is con-
Spread | in another part, leading to high | trolled by swapPeriod and
latencies and dropped through- | swapCycle parameters.
put for all packets.
Indirect restriction on the router | Places no restrictions on
Router | micro-architecture: number of | the router’s radix, making
Ports input ports must equal the num- | it more amenable to arbi-
ber of output ports of the router. | trary irregular topologies.
High hardware overhead for | Adds minimal changes to
Router | switch-arbiter to perform the | the baseline router micro-
Critical | best matching upon packet con- | architecture (Fig. 6), with
Path flict. This also lies in the critical | the SMU operating off the
path of the router. critical path.
Deflection routing algorithm is Any routing algo-
. . rithm (minimal/non-
Routin; a de-facto routing algorithm, minimal/adaptive) which
4 p
controlled purely by current net- .
work congestion by itself may or may not
be deadlock-prone.
Table 4: SWAP vs. SPIN
SPIN SWAP
D . Maps entire deadlock path | No detection. Performs
etection . . -
Approach upon a tlmeou.t using probes | swaps periodically based on
that take multiple cycles. a VC occupancy threshold.
Detection | Longer deadlock cycles take | Independent of deadlock cy-
Time longer to map and resolve cle length
Synchro- | Global: all routers in dead- | Local: with neighbor who
nization lock must spin at same time | will be performing swap
Resolution A.H packets in dead}ocked Only two packets move si-
ring move forward simulta-
Approach multaneously.
neously
Resolution | (N-1) spins in worst case for (N-1) Swaps of - specific
Time deadlock of length N packet in worst case for
deadlock of length N
Misrouting| None Backtracks packet one hop

SWAP implementation extremely light-weight.

Virtual Cut-Through (VCT) and Wormhole Implemen-
tations. VCT routers have buffers deep enough to hold an
entire packet. This design naturally works well for SWAP.
Swaps are only performed once the entire packet is received,
as shown in Table 2. To support SWAP with wormhole
routers, we would add packet truncation support, similar to
prior works in deflection routers [7, 8, 10]. Packet truncation
occurs on swapFwd and/or swapBack packets if the former
initiates a swap.

Multi-flit Packets For m-flit packets, the swap operation
takes m cycles, as the flits are serially swapped.

Control Path. The control path of SWAP adds a Swap Man-
agement Unit (SMU) that handles if, when and what to swap,
as described in Section 4.2.
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Figure 7: Percentage of received packets when running a
fully random routing algorithm. SWAP delivers all pack-
ets, irrespective of the traffic pattern. Without SWAP all
traffic patterns see a sharp drop in delivered packets, due
to deadlocks. The injection rate when deadlocks start de-
pends on the traffic pattern and number of VCs.

4.4 SWAP vs. Deflection Routing and SPIN

Deflection routing [7], SPIN [9] and SWAP all rely on mov-
ing packets in the absence of credits; thus, they are similar
in their underlying mechanism for deadlock freedom. Fig. 2
shows an example comparing the three schemes. The key
qualitative differences of SWAP versus these are highlighted
in Table 3 and Table 4. Quantitative comparisons are present
in Section 5.

5. EVALUATION
5.1 Methodology

We use gem5 [36]; to model networks with different con-
figurations we use Garnet [37]. Table 5 provides the de-
tailed configuration parameters. Our baselines include a
mix of state-of-the-art deadlock avoidance (deterministic XY,
congestion-aware adaptive west-first, and escape VC), re-
covery (StaticBubble [5], SPIN [9]), and deflection (CHIP-
PER [8] and MinBD [10]) techniques. Static Bubble relies
on extra buffers added in a subset of routers at design time,
which are turned on upon deadlock detection (via probes) to
drain deadlocked packets. SPIN sends probes (upon timeouts)
to detect the deadlock dependence ring, and then performs a
coordinated forward movement of the entire ring. For full-
system simulations, we run PARSEC [38] and LIGRA [39] (a
graph processing suite) over gem5’s x86 and RISC-V models
which have support for running these respectively.
Irregular Topologies. For our evaluations, we derive some
irregular topologies by removing links from a mesh which
emulates an SoC with heterogeneous-sized cores or accelera-
tors, or a many core where some links are faulty [16, 17], or
have been power-gated [18]. In these scenarios, the resulting
topology will not longer be able to use a simple turn-model
(e.g., XY/west-first) since certain turns are inevitable to reach
some of the destinations. Using these restricted turns can lead
to routing deadlocks. We use a spanning tree based Up-Down
routing algorithm [16, 17,40] across all VCs, or within an
escape VC, as our baseline deadlock avoidance schemes, and
SPIN as the baseline deadlock resolution scheme. For irregu-
lar topologies, we assume that information about the missing
links and the exact routing path (spanning tree vs minimal) is
computed offline and embedded into routing tables [16, 17].

5.2 Correctness

We start by demonstrating why a deadlock-freedom solu-
tion is imperative in any network. Fig. 7 runs a set of synthetic
traffic patterns with fully-random minimal adaptive routing
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Table 5: Network Configuration.
Network

Topology 8x8 Mesh, Irregular

Routing Fully-Adapt Random (except when specified)
Latency Router: 1-cycle, Link: 1-cycle

Num VCs 1,2,3,4

Virtual Cut Through
Single packet per virtual channel
Deadlock Freedom Mechanism
Deadlock Avoidance Mesh: XY, West-first, EscapeVC.
Irregular: Up-Down [40]
Static Bubble [5], SPIN [9] with deadlock-
detection threshold=128 cycles

Buffer Organization

Deadlock Recovery

Deflection CHIPPER [8], MinBD [10]
SWAP SWAP-K, where K = swapDutyCycle
Traffic Pattern

Synthetic Bit-Rotation, Bit—Rerarse, Uniform—.Random,

Transpose, Shuffle. Mix of 1 and 5-flit packets
Real Applications PARSEC [38], LIGRA [39]

System Configuration (for Real Apps)

64 cores, x86/RISC-V In-Order, Private
Core L1D=32kB, L11=32kB, Shared L2 (LLC)

Slice=128kB
Memory MOESI Directory Coherence, 4 DRAM Ctrlrs

with no turn restrictions. The occurrence of deadlock causes
the percentage of delivered packets to drop sharply; the on-
set of deadlock depends on the traffic pattern, injection rate,
and number of VCs. This shows that deadlocks are highly
dependent on the runtime network state. SWAP delivers all
packets successfully. To the best of our knowledge, SWAP
is the first non deadlock-recovery-based scheme®* to provide
fully-adaptive random routing with only 1 VC.

5.3 Performance

Synthetic Benchmarks on a Mesh. Fig. 8 shows the perfor-
mance improvement of SWAP over state-of-the-art deadlock
avoidance and recovery schemes on a 8 x8 mesh. All designs
except XY use adaptive routing. SWAP consistently matches
or beats SPIN. Here are some key observations:

e The swapDutyCycle K does not affect the achieved through-
put; backtracking does not adversely affect throughput.

o SWAP has a large throughput advantages over CHIPPER,
which is known to have low throughput due to deflec-
tions. Compared to MinBD, SWAP still provides better
throughput because even in the extreme design point of
K=1, there is only one potential backtracking packet ev-
ery cycle (at high-loads), while MinBD at high loads (and
high congestion) will result in heavy deflections once its
extra buffer becomes full. We quantify this in Fig. 14.

e Compared to avoidance schemes, the performance ben-
efits of SWAP come because it can use fully adaptive
random routing, with no turn restrictions. In addition,
with SWAP packets can swap and leave a congested re-
gion, without relying in credit flow. Both these features
push throughput.

e Compared to the recovery schemes (SPIN and Static Bub-
ble), SWAP has no inherent advantages due to path diver-
sity — all designs use fully adaptive random routing. How-
ever, the reason SWAP ends up beating SPIN for a few
patterns is because once deadlocks kick-in (see Fig. 7),

4SPIN [9] is the first to provide fully random routing with only 1
VC but relies on deadlock detection and recovery.
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it takes multiple cycles to map out the deadlock path
(scales with length of deadlock) and synchronize [5, 9],
during which time the network essentially saturates (due
to deadlock-driven congestion), leading to loss in through-
put. SWAP on the other hand, with periodic swaps with
a neighbor, ensures that even if a cycle were to form, it
very quickly gets removed.

In summary, SWAP provides robust throughput improvements
over both avoidance and resolution-based deadlock-freedom
techniques.

Synthetic Benchmarks with Irregular Topologies. Next,
we evaluate SWAP with two irregular topologies and compare
it against Up-Down routing (i.e., deadlock avoidance), and
SPIN (i.e., deadlock resolution). These topologies have one
and four links removed in an underlying 8 x8 mesh. Fig. 9
plots the latency vs. injection rate for uniform random and
shuffle. For irregular topologies, non-minimal routing in
Up-Down completely kills throughput. Escape VCs help get
some of the throughput back, but still use Up-Down within
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the escape VC which limits throughput. SWAP gets the same
performance as SPIN. In summary, the performance bene-
fits of SWAP compared to deadlock-free routing algorithms
such as Up-Down are magnified when path diversity is at a
premium, such as in irregular topologies. Moreover, SWAP
matches SPIN without requiring any of the expensive circuitry
and signaling overheads for mapping the deadlock cycle and
performing global synchronization.

Scalability study on saturation throughput. We compared
the effect on saturation throughput as network size increases
across state-of-the-art deadlock avoidance and deadlock re-
covery schemes in Fig. 10. The analysis is done on the
regular mesh, each input port has four VCs in the router
(same as Fig. 8). In summary, we observe the trends in perfor-
mance remain consistent - SWAP continues to provide higher
throughput. However the performance difference between
schemes decreases as network size increases.

Real Benchmarks. Fig. 11 compare the normalized runtime
of PARSEC and LIGRA across deadlock-freedom schemes.
Real applications do not significantly stress the NoC due
to low injection rates; for most benchmarks, all deadlock-
freedom schemes fared similarly as the injection rates were
quite low. In PARSEC, SWAP shows 30% runtime reduction
for swaptions where we saw significant network traffic, and
for LIGRA, SWAP provides 2-4% runtime reduction. This
study re-iterates the motivation of deadlocks being rare and
probabilistic events, where-in a deadlock-freedom solution
is necessary for correctness. SWAP provides deadlock free-
dom without conservative restrictions for a rare event, or
expensive circuitry to detect this event.

SWAP as an overlay over deadlock-free routing. SWAP
can be overlaid on any network since its basic functional-
ity is to enable packet swaps between neighbors. So far we
have focused on the deadlock-freedom capabilities of SWAP,
but it can also help reduce congestion due to forced for-
ward progress. We ran SWAP with an underlying west-first
deadlock-free algorithm. Fig. 12 plots the peak through-
put for two synthetic benchmarks, with one and four VCs,
normalized to the throughput of a west-first system without
SWAP. With one VC, SWAP-1 provides a 12% throughput
boost for uniform random, and 6% for bit complement. This
result can be interpreted as follows: packet swaps emulate the
behavior of additional VCs, as they can force packet move-
ment even if downstream packets are head-of-line blocked.
With larger values of K and with higher number of VCs, west-
first provides similar performance with and without SWAP.
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and Bit Complement traffic running with a deadlock free
routing algorithm. SWAP provides throughput benefits,
especially at low VC counts, by providing extra path di-
versity. With high VC counts, it is no worse than the
underlying algorithm.

Thus SWAP’s backtracking does not adversely affect the un-
derlying system performance. This study demonstrates that
deadlock-freedom benefits aside, adding SWAP to existing
routers does not hurt, and can potentially enhance throughput
as it emulates the behavior of VCs.

5.4 Sensitivity Studies

Recall that the swapDutyCycle K controls the rate of swaps
in the network. In Fig. 13, we study the impact of K on the
number of initiated and successfully executed swaps. Let us
start with a pathological worst case: very high post saturation
injection rate (last column), and K=1. K=1 leads to a swap
getting initiated every cycle by each router in the network in
a round-robin manner. In this case, the number of initiated
swaps is close to 1, irrespective of VC count since all VCs
are active post saturation. Moreover, nearly all swap requests
are successfully executed. For the same K=1, when network
the injection rate is lower, or if the number of VCs is high,
the number of swaps initiated drops close to zero, since the
likelihood of the VC pointed to by the swapPointer being
empty becomes very high. At very low injection rates (first
column), the average number of swaps initiated per cycle
is less than 0.02 for VC=1, and less than 0.001 for VC=4.
Moreover, the number of successful swaps is zero, since
the input port from where a swapBack packet would have
been selected has empty VCs. When K becomes greater than
32, the number of initiated swaps drops close to zero at all
injection rates. This study shows that the number of swaps
is actually quite low; SWAP is a low-complexity solution
for deadlock freedom with low overhead. We quantify this
overhead next.

5.5 Overheads

Energy Overhead due to Swaps vs. Spins vs. Deflections.
Recall that a swap operation involved two packets: a swapFwd
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and a swapBack packet. The swapFwd packet makes forward
progress: it gets read out of its upstream buffer, traverses
the link, and gets written into the downstream buffer. These
are actions it would have had to take anyway and thus do
not contribute any energy overhead. The swapBack packet,
however, makes a u-turn and goes back to the router it came
from. Its corresponding buffer read, link traversal and buffer
write are direct energy overheads. Fig. 14 quantifies the extra
link activity due to swaps for uniform random traffic. With
VC=4, the overhead is close to zero with K=1024, since swap
requests fail due to free VCs. With an aggressive K=1, the
additional link activity starts rising and goes up to 30% post
saturation.

In contrast, CHIPPER and minBD start showing higher
link activity at the onset of contention even at low loads, and
have 40-80% higher link utilization post saturation. Although
SPIN does not inherently misroute like deflection routing or
backtrack like SWAP, it adds link activity overhead due to its
global synchronization messages (probe, move). This leads
to 2.8 x higher link activity in the network post saturation
due to the incessant number probes that are sent and forked
along the way to detect deadlocks.

The link activity behaviour at the extreme design point
of one VC is interesting. Here, SPIN’s probes increase link
activity by 8-10x. Deflection routing NoCs (which do not
have VCs) have the same 40-80% higher link activity dis-
cussed above. SWAP-1024 sees increased activity, but it
remains within 10%. The aggressive K=1 configuration sees
a jump in link activity once the network starts to saturate,
and eventually adds similar energy overhead as MinBD. This
analysis shows that SWAP is a better design choice than both
deflection routing and SPIN. Compared to Deflection routing,
it provides steady movement that resolves deadlocks, without
adding significant energy overhead due to backtracking as its
rate can be controlled. It also provides much better energy
efficiency than SPIN as it does not require probe broadcasts
which consume significant energy.

Area Overhead. Fig. 15 plots the area breakdown of the
SWAP router compared to X'Y/West-first, Escape VC, MinBD
and SPIN. All routers were implemented using open-source
RTL [41] and synthesized and placed-and-routed using TSMC
28nm, targeting 1GHz with 1-cycle pipelines. MinBD, which
evolves a bufferless NoC with some buffers, naturally has the
lowest area, but comes with misrouting overheads discussed
above. All buffered NoCs have 1 VC per port. The escape VC
router is assumed to have 2 VCs per port. SPIN’s overhead
comes due to the synchronization, storage and management
of the detected deadlocked loop, that adds about 15% over-
head. SWAP has ~30% lower area overhead than an escape
VC router, and ~4% higher area than a XY/West-first router.
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The area overhead comes due to the swap management com-
ponents that were presented earlier in Fig. 6.

6. CONCLUSION

We present SWAP, a novel technique that enables in-place
packet swaps across neighboring routers. SWAP guarantees
deadlock freedom by design as it can dynamically break any
buffer dependence cycles that might form in the network. It
enables the network to take full advantage of available path
diversity without requiring turn restrictions, injection restric-
tions or escape VCs to avoid deadlocks. A steady rate of
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packet swaps also means that deadlocks do not need to be ex-
plicitly detected and recovered from. We present lightweight
extensions to implement swaps in our baseline router microar-
chitecture using a simple bus connecting all input ports of the
router, and a unit to initiate the swap at a fixed rate. SWAP is
the first non-recovery based deadlock-freedom technique that
enables fully-random minimally adaptive routing with just 1
VC. Moreover, it works seamlessly in systems with irregular
network topologies, emanating from heterogeneity, faults or
power gating. SWAP is a powerful idea that goes beyond just
deadlock resolution. It allows packets to escape congested
parts of the network and can be overlaid on any network for
enhancing throughput, without adding additional buffers.
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