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Abstract

It is expected that future high-performance processors
will implement large L2 or L3 caches that will be shared
by multiple cores. Allocating shared cache space among
multiple programs is an important problem and has re-
ceived much attention in recent years. Typically, the ways
or sets of a cache are partitioned across multiple com-
peting programs. Most recent work is built on the con-
cept of marginal utility, i.e., a way is assigned to a pro-
gram that is expected to benefit most by receiving that ad-
ditional way. Benefit is usually quantified as misses per
kilo-instruction (MPKI). A cache partition is chosen such
that overall MPKI for a workload is minimized. However,
the ultimate performance metric of interest is overall IPC
or throughput, not overall MPKI. MPKI is used as a proxy
for IPC because it is much easier to compute – recent work
has suggested that MPKI per additional way can be easily
computed by maintaining a small shadow tag structure. In
this paper, we first quantify how the use of MPKI instead of
IPC can result in sub-optimal cache partitions. It is well-
known that misses have varying impacts on IPC across
programs because of varying levels of latency tolerance
in each program. As a result, we discover a non-trivial
number of cases where the use of MPKI is sub-optimal.
This number increases as more programs share a given
cache. We then propose a simple mechanism that uses two
IPC samples and a miss rate curve to compute an IPC
curve. This allows us to better quantify marginal utility
in terms of IPC and arrive at performance-optimal cache
partitions.

1 Introduction

Future processors will likely implement deep cache hi-
erarchies. Each L2 or L3 cache may be shared by multiple
cores. The shared cache space will therefore have to be
partitioned across multiple programs in a manner that op-
timizes overall performance. This is a problem that has
received much attention in recent years.

A paper by Qureshi and Patt [17] proposesUtility-
based Cache Partitioning (UCP)where the ways of a
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cache are assigned to programs such that the overall num-
ber of misses (misses per kilo instruction or MPKI) is min-
imized. Each program maintains a sampled shadow tag
structure that tracks the tag contents for a few sets assum-
ing that all ways of the cache are available. For each cache
hit, the LRU position of the block is tracked; this allows
estimation of whether the access would have been a hit
or miss for different cache associativities. Thus, an ap-
proximate miss rate curve (MPKI as a function of ways)
is computed for each program. At regular intervals, the
miss rate curves are examined and ways are assigned to
programs such that the overall MPKI is minimized.

However, the end goal of any cache partitioning mech-
anism is the optimization of overall performance, ex-
pressed by either a weighted-speedup metric (sum of rel-
ative IPCs) or a throughput metric (sum of IPCs). MPKI
is used as a proxy for IPC because the former is easier to
calculate with a shadow tag structure. The hope is that
by optimizing MPKI, we will also optimize IPC. But, it is
well-known that the IPC impact of a miss depends on the
extent of latency tolerance within the program. A miss in
one program is usually not equivalent to a miss in another
program. In some cases, throughput may be maximized
by incurring a high MPKI for a latency-tolerant program
while reducing the MPKI for another latency-intolerant
program. The corresponding way partition need not nec-
essarily have the lowest combined MPKI. This is an obser-
vation also made in prior work [9, 15, 22]. The goal of this
paper is to quantify the inaccuracy in way partition deci-
sions by focusing on the easier-to-compute MPKI metric.
As a case study, we will focus most of this analysis on the
approach proposed in the UCP paper [17], i.e., reserving
a fixed number of ways for each program.

The results of this analysis will also have bearing on
other state-of-the-art cache partitioning schemes. There
exist many cache partitioning approaches in the litera-
ture [1, 3, 9–12, 18–21,23–26], described in more detail in
Section 4. Most of these bodies of work, whether they im-
plicitly or explicitly partition the cache, make their final
decisions based on miss counting and not on IPC impacts.
With the exception of a few QoS papers, most do not track
the IPC impact of their policy choices. Hence, the ex-
tent of inaccurate decision-making described in this paper
may also manifest in other mechanisms that are based on
miss rate estimation. We also show that this inaccuracy
increases as more cores share a cache, further motivating



Decode/Issue 128-entry instruction window with
no scheduling restrictions.

Pipeline 8-stage, 4-wide pipeline; A maxi-
mum of two loads and a maximum of
one store can be issued every cycle.

Execution
Units

All instructions have one-cycle la-
tency except for cache misses.

branch pre-
dictor

perfect branch prediction

L1 Instruction
Cache

32KB 4-way set associative cache
with LRU replacement

L1 Data
Cache

32KB 8-way set associative with
LRU replacement

Unified L2
Cache

256KB, 8-way set-associative with
LRU replacement; L2 cache hits are
10 cycles.

Last Level
Cache(LLC)

16-way 1 MB cache with LRU re-
placement; L3 cache hits are 30 cy-
cles.

Memory memory requests have a 200-cycle
latency.

Table 1. Baseline processor configuration.

a closer look at IPC-based metrics in future work.
We start by quantifying the differences in way parti-

tion decisions that are focused on IPC optimization and
MPKI optimization. In this initial analysis, we assume
that a miss rate curve and IPC curve (as a function of
cache space) are magically known beforehand. We show
that these optimization strategies often diverge, especially
when more programs share a given cache. We then pro-
pose a simple mechanism that uses two execution samples
and a miss rate curve to estimate an IPC curve. We use
this estimated IPC curve to improve the decisions made
by the UCP mechanism.

2 Comparing MPKI and IPC Optimization

2.1 Experimental Methodology

Simulator We use the simulation framework provided
by the first JILP Workshop on Computer Architecture
Competitions (JWAC-1, Cache Replacement Champi-
onship). It is based on the CMP$im simulator and models
a simple out-of-order superscalar with a 128-entry instruc-
tion window processor. The baseline configuration is de-
scribed in Table1.

Workload We use 23 SPEC CPU2006 benchmarks
compiled for the x86-64 architecture. The reference input
set is used. We fast forward past the first billion instruc-
tions and simulate the following two billion instructions in

detail. For each benchmark, we vary the number of ways
from 1 to 16, while keeping the number of sets fixed at
1024, and compute the MPKI and IPC for each configura-
tion. To facilitate the analysis of all combinations of two,
three, and four benchmarks, we wrote scripts in Perl to
calculate the IPCs and MPKIs of all possible cache parti-
tions for each combination.

Metrics The UCP paper makes periodic partition deci-
sions based on hit counters associated with each position
of the LRU stack for each program’s shadow tag structure.
Hence, UCP estimates misses per kilo cycles (MPKC),
not MPKI, and a partition is selected to optimize over-
all MPKC. Similar metrics are also commonly employed
in other papers. However, overall MPKC is a metric that
suffers from some problems. For example, consider a par-
tition that favors program A, but that is highly unfavorable
to program B. Compared to a baseline where program B
receives the entire cache, B now suffers from many misses
and executes at a much lower IPC. Compared to the base-
line, B has a much higher miss rate, but because it executes
much fewer instructions in a given time quantum, it also
yields fewer misses. Therefore, even though program B is
suffering (much higher MPKI than the baseline), it has a
lower MPKC than the baseline. Therefore, as a baseline in
this paper, we use MPKI instead of MPKC. We have veri-
fied that this change in metric does not impact the overall
conclusions of the study. In hardware, it is easy to replace
the MPKC metric with the more accurate MPKI metric
with an additional counter that tracks committed instruc-
tions per epoch.

In our analysis, the UCP baseline tries to minimize
overall MPKI, i.e., it tries to minimize the sum of MP-
KIs. Our proposed models attempt to pick cache parti-
tions that maximize throughput. We consider two metrics
for throughput. One is the sum of IPCs. The second is
the weighted speedup, where we add the relative IPCs for
each program. Relative IPC for a program is defined as the
IPC of a program divided by its standalone IPC (where the
program receives the entire cache).

2.2 Analysis of results

Our first goal is to understand if MPKI optimization
strategies can indeed result in throughput optimization.
Since we already have miss rate and IPC curves (as a func-
tion of ways), it is easy to estimate cache partitions that
optimize MPKI or IPCs – we use the termdivergenceto
refer to situations where different cache partitions are se-
lected for the two.

Table 2 shows how optimizing for MPKI and Weighted
Speedup can diverge in various cases. Table 3 is a simi-
lar table that shows how optimizing for sum of IPCs and
MPKI can diverge. The trends are very similar in both ta-
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Metric 2 Programs 3 Programs 4 Programs
Divergent Cases 84/253 (33.20%) 828/1771 (46.75%) 4827/8855 (54.51%)

Wt-Spdup≥ 10% 3/84 (3.57%) 4/828 (0.48%) 0/4827 (0.0%)
Wt-Spdup≥ 8% 4/84 (4.76%) 39/828 (4.71%) 1/4827 (0.02%)
Wt-Spdup≥ 6% 8/84 (9.52%) 99/828 (11.96%) 312/4827 (6.46%)
Wt-Spdup≥ 4% 12/84 (14.29%) 151/828 (18.24%) 1268/4827(26.27%)
Wt-Spdup≥ 2% 24/84 (28.57%) 262/828 (31.64%) 1793/4827 (37.15%)
MPKI ≥ 50% 4/84 (4.76%) 27/828 (3.26%) 154/4827 (3.19%)
MPKI ≥ 40% 4/84 (4.76%) 31/828 (3.74%) 189/4827 (3.92%)
MPKI ≥ 30% 6/84 (7.14%) 72/828 (8.70%) 290/4827 (6.01%)
MPKI ≥ 20% 8/84 (9.52%) 92/828 (11.11%) 574/4827 (11.89%)
MPKI ≥ 10% 11/84 (13.10%) 134/828 (16.18%) 1000/4827 (20.72%)
MPKI ≥ 5% 18/84 (21.43%) 257/828 (31.04%) 1666/4827 (34.51%)

Wt-Spdup avg (all) 0.59% 0.94% 1.13%
Wt-Spdup avg (divergent cases) 1.79% 2.03% 2.08%

MPKI avg (all) 2.54% 2.80% 4.42%
MPKI avg (divergent cases) 7.66% 8.31% 8.12%

Table 2. Extent of divergence when optimizing for MPKI and We ighted Speedup. Cache partitioning
optimized for MPKI is used as the baseline. For all possible w orkloads, the first row shows the
number of cases where MPKI optimization and Weighted Speedu p optimization arrived at different
cache partitions. The next five rows show the magnitude of div ergence, i.e., in how many cases
did the weighted speedups of the two optimization strategie s differ by 10%, 8%, ... . The next six
rows show the magnitude of divergence in terms of MPKI for the two optimization strategies. The
last four rows show the average change in Weighted Speedup an d MPKI (across all cases and
across just the divergent cases) for the two optimization st rategies.

Metric 2 Programs 3 Programs 4 Programs
Divergent Cases 110/253 (43.48%) 1088/1771 (61.43%) 6548/8855 (77.50%)
IPC-Sum≥ 20% 5/110 (4.55%) 26/1088 (2.39%) 8/6548 (0.12%)
IPC-Sum≥ 15% 10/110 (9.09%) 77/1088 (7.08%) 140/6548 (2.14%)
IPC-Sum≥ 10% 16/110 (14.55%) 187/1088 (17.19%) 959/6548 (14.65%)
IPC-Sum≥ 5% 29/110 (26.36%) 352/1088 (32.35%) 2426/6548 (37.05%)
MPKI ≥ 50% 12/110 (10.91%) 96/1088 (8.82%) 412/6548 (6.29%)
MPKI ≥ 40% 15/110 (13.64%) 128/1088 (11.76%) 507/6548 (7.74%)
MPKI ≥ 30% 18/110 (16.36%) 207/1088 (19.03%) 859/6548 (13.12%)
MPKI ≥ 20% 19/110 (17.27%) 252/1088 (23.16%) 1454/6548 (22.21%)
MPKI ≥ 10% 25/110 (22.73%) 331/1088 (30.42%) 2384/6548 (36.41%)
MPKI ≥ 5% 42/110 (38.18%) 565/1088 (51.93%) 3580/6548 (54.67%)

IPC-Sum avg (all) 1.85% 2.90% 3.40%
IPC-Sum avg (divergent cases) 4.26% 4.72% 4.60%

MPKI avg (all) 6.97% 9.84% 10.01%
MPKI avg (divergent cases) 16.02% 16.02% 13.54%

Table 3. Extent of divergence when optimizing for MPKI and IP C-Sum. Cache partitioning optimized
for MPKI is used as the baseline. For all possible workloads, the first row shows the number of
cases where MPKI optimization and IPC-Sum optimization arr ived at different cache partitions.
The next four rows show the magnitude of divergence, i.e., in how many cases did the IPC-Sum
of the two optimization strategies diff by 20%, 15%, ... . The next six rows show the magnitude
of divergence in terms of MPKI for the two optimization strat egies. The last four rows show the
average change in IPC-Sum and MPKI (across all cases and acro ss just the divergent cases) for
the two optimization strategies.
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(a) MPKI for bzip2 and gcc as a function of allocated ways.
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Figure 1. MPKI and CPI curves for bzip2 and gcc.
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Figure 2. Combined MPKI and weighted speedup for bzip2 and gc c.

bles; we observe that the divergence is greater when con-
sidering the IPC-sum metric.

The first row in Table 2 shows that of all possible
workload combinations (23C2 for the two program case),
a large fraction is divergent. The percentage of diver-
gent cases grows as more programs share the cache. The
other rows of the table provide a breakdown of how of-
ten significant divergence (10%, 8%, ...) is observed in
terms of weighted-speedup and combined MPKI. For the
4-program model, more than 26% of the cases show a
weighted-speedup difference greater than 4%. It is worth
noting that this difference is comparable to the average
performance improvements shown in many cache opti-
mization papers. The last four rows show an average in
weighted-speedup and MPKI differences. When consid-
ering the average across all possible workload combina-
tions, we see that only about 1% of performance is left
on the table by optimizing for MPKI instead of the per-
formance metric itself. While there are many cases where
divergence is significant, the average difference (1%) is

small because more than half the workload combinations
aren’t divergent. We see that in many cases, weighted-
speedup is optimized by incurring an MPKI that is more
than 50% higher than the alternative MPKI optimization
strategy. This data drives home the point that simply fo-
cusing on miss counting can often lead to highly sub-
optimal cache partitioning decisions.

The importance of IPC optimization is even more stark
when examining the IPC-Sum metric (Table 3). In a num-
ber of cases, the MPKI-optimal strategy is off by more
than 20% in terms of the IPC-Sum metric. On aver-
age across all workload combinations, the MPKI-optimal
strategy is off by about 3.4%, thrice the error seen for the
weighted-speedup metric. Given that most cache policy
papers report performance improvements under 10%, this
difference is significant enough that it is worth considering
seriously when designing cache optimizations.

Most of the divergence is because a cache miss has
varying degrees of latency tolerance in each program. As
an illustrative example, in Figure 1 we show the MPKI and
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CPI curves for a workload consisting of programs bzip2
and gcc. We can see that a comparable MPKI difference in
the two programs results in varying CPI differences. Fig-
ure 2 shows the combined MPKI and weighted-speedup
for this workload as 1 to 15 ways are assigned to the first
of the two programs. Because of the varying latency toler-
ance in these programs, we see that the weighted-speedup
and MPKI curves are optimized at partitions that are very
different. MPKI is minimized when bzip2 receives a sin-
gle way, but weighted speedup is maximized when bzip2
receives 15 ways.

3 Making Accurate CPI Predictions

The previous section shows that better cache partitions
can be made by focusing on the IPC metric instead of on
the MPKI metric and it quantifies the extent of divergence
in the two optimization strategies. The MPKI metric has
the nice feature that a simple sampled shadow tag structure
can estimate the MPKI curve for all possible associativi-
ties at run time. In order to estimate an accurate IPC curve,
we instead need to execute the program with varying ways
for an epoch each. For a 16-way large LLC cache, this im-
plies a large “exploratory” phase before decisions can be
made. To put the analysis of the previous section to good
practical use, we need to find low overhead mechanisms
to estimate an IPC curve. While many possibilities may
exist, we consider the efficacy of one simple mechanism
in this work.

We first make the observation that the CPI curve of-
ten has a somewhat linear relationship with the MPKI
curve. Depending upon the latency tolerance in the pro-
gram, each additional cache miss has a roughly constant
impact on the increase in execution time. Of course, as
a program gets more or less memory bound, the latency
tolerance changes and the impact of each additional miss
on execution time is no longer constant. However, we hy-
pothesize that assuming a constant is a reasonable approx-
imation. We can therefore express a program’s CPI as a
function of the number of allocated waysw as follows:

CPI(w) = c1 + c2 ×MPKI(w)

Given an MPKI curve and the values ofc1 andc2 for each
program, we can estimate the CPI curve for each program
and thus compute better cache partitions. In order to esti-
matec1 andc2, we will need the CPIs for two way allo-
cations. This significantly shortens the exploratory phase;
we simply need to run our workload for two epochs with
different way allocations before making any decisions.

The error in our CPI estimation is a function of the
way allocations selected for our two samples. With perl
scripts, we computed CPI estimation errors for every pos-
sible choice of two samples. We first considered a case
where each benchmark was allowed to magically select

gromacs 0.1367 hmmer 0.0812
gamess 0.0630 namd 0.1625
calculix 0.1116 astar 0.1731

mcf 0.0539 cactusADM 0.0627
lbm 0.1630 bwaves 0.0097

h264ref 0.1187 libquantum 0.0366
leslie3d 0.0449 milc 0.1725
soplex 0.0786 zeusmp 0.0520

sphinx3 0.1029 povray 0.1416
sjeng 0.1327 omnetpp 0.0328
bzip2 0.0557 tonto 0.0714
gcc 0.0157

Table 4. Best estimate of c2 for each bench-
mark.

the two sample points that yielded minimum error in the
CPI estimation curve. In this model, we observed that the
average error in CPI estimations across the entire work-
load suite was only 0.38%. The highest error is 2.04% for
soplex. Only 2 out of 23 benchmarks had an error greater
than 1% and 4 benchmarks had an error greater than 0.5%.
Table 4 shows the best estimated value ofc2 for each pro-
gram. This value represents the latency tolerance of each
program and Table 4 confirms the high variance in this
value across programs.

We also considered a more practical case where every
workload selected the same two sample points for their
estimation ofc1 andc2. Based on our exhaustive analysis,
we selected sample points that allocated 4 and 15 ways as
they had the least average error, 0.53%. The highest error
is 2.53% for soplex. Only 2 out of 23 benchmarks had an
error greater than 2% and 3 of them had error greater than
1%.

Having discussed the accuracy of our CPI estimation
scheme, we next employ this scheme for practical IPC-
based cache partitioning. Specifically, we use the same
two IPC sample points (4 ways and 15 ways) for all bench-
marks, combine this with an MPKI curve to generate an
IPC curve, and use this curve to optimize either weighted
speedup or sum of IPCs. Table 5 repeates the analysis
of Table 2, but uses the estimated IPC curve instead of
a magically known precise IPC curve. The divergence is
very similar to that seen before.

We believe it is worthwhile to explore other low-
overhead strategies to estimate IPC curves. For example,
MLP metrics [16] can be used to modify MPKI curves to
arrive at IPC curves. A similar approach was considered
by Moreto et al. [15].

5



Metric 2 Programs 3 Programs 4 Programs
Divergent Cases 89/253 (35.18%) 844/1771 (47.66%) 5038/8855 (56.89%)

Wt-Spdup≥ 10% 3/89 (3.37%) 4/844 (0.47%) 0/5038 (0.00%)
Wt-Spdup≥ 8% 4/89 (4.49%) 39/844 (4.62%) 1/5038 (0.02%)
Wt-Spdup≥ 6% 8/89 (8.99%) 99/844 (11.73%) 303/5038 (6.01%)
Wt-Spdup≥ 4% 12/89 (13.48%) 151/844 (17.89%) 1253/5038 (24.87%)
Wt-Spdup≥ 2% 23/89 (25.84%) 262/844 (31.04%) 1779/5038 (35.31%)
IPC-Sum≥ 20% 4/89 (4.49%) 24/844 (2.84%) 8/5038 (0.16%)
IPC-Sum≥ 15% 7/89 (7.87%) 61/844 (7.23%) 117/5038 (2.32%)
IPC-Sum≥ 10% 12/89 (13.48%) 140/844 (16.59%) 731/5038 (14.51%)
IPC-Sum≥ 5% 25/89 (28.09%) 265/844 (31.40%) 1783/5038 (35.39%)
MPKI ≥ 50% 4/89 (4.49%) 25/844 (2.96%) 135/5038 (2.68%)
MPKI ≥ 40% 4/89 (4.49%) 29/844 (3.44%) 155/5038 (3.08%)
MPKI ≥ 30% 6/89 (6.74%) 70/844 (8.29%) 251/5038 (4.98%)
MPKI ≥ 20% 7/89 (7.87%) 100/844 (11.85%) 538/5038 (10.68%)
MPKI ≥ 10% 10/89 (11.24%) 147/844 (17.42%) 981/5038 (19.47%)
MPKI ≥ 5% 17/89 (19.10%) 262/844 (31.04%) 1703/5038 (33.80%)

Wt-Spdup avg (all) 0.58% 0.93% 1.11%
Wt-Spdup avg (divergent cases) 1.66% 1.96% 1.96%

IPC-Sum avg (all) 1.44% 2.23% 2.56%
IPC-Sum avg (divergent cases) 4.09% 4.68% 4.50%

MPKI avg (all) 2.42% 3.90% 4.34%
MPKI avg (divergent cases) 6.89% 8.19% 7.63%

Table 5. Extent of divergence when optimizing for MPKI and We ighted Speedup, based on MPKI
(former) or fixed-way predicted CPIs (latter). Cache partit ioning based on the MPKI is used as the
baseline. The first row shows the number of divergent cases, t he next five rows show the extent
of weighted-speedup divergence, the next four rows show the extent of IPC-sum divergence (note
that we are optimizing for weighted-speedup), and the next s ix rows show the extent of MPKI
divergence. The last six rows show the average difference (a cross all combinations and across
only divergent combinations) in these three metrics for the two optimization strategies.

4 Related Work

A large number of papers use cache miss rates as a met-
ric when selecting a configuration or policy. Since cache
misses have varying impacts on IPC, its use as a metric
can lead to inaccurate decisions when comparing misses
for different programs. This effect shows up most promi-
nently when a shared cache is being partitioned across
multiple programs for throughput or QoS. This effect has
been previously mentioned in other papers [9, 15, 16, 22],
but its impact on cache partition decisions has not been
quantified. Jaleel et al. [9] use policies that are based
on miss rate estimates, but point out that accuracy can
be improved by using metrics that more closely approx-
imate CPI. Qureshi et al. [16] take MLP (a measure of
latency tolerance) into account in their replacement pol-
icy. Suo et al. [22] propose a modified version of UCP
that attempts to optimize IPC instead of miss rates. How-
ever, that work uses an equation based on cache access
latencies to convert MPKI to CPI and focuses on an algo-
rithm to efficiently compute the optimal partition. Moreto

et al. [15] propose an algorithm that takes an application’s
MLP into account when estimating cache partitions. Our
work focuses on an analysis to understand the error intro-
duced by simpler MPKI metrics; we then propose the use
of a simple 2-sample exploration to convert MPKI to CPI.

The following bodies of work focus on cache partition-
ing for throughput. Suh et al. [21] were the first to use
marginal utility for cache partitioning and use a large num-
ber of counters to estimate miss rate curves. The work of
Qureshi and Patt [17] shows that low-complexity mech-
anisms can be designed to achieve coarse-grained (one
way at a time) cache partitioning. Yeh and Reinman use
a shadow tag structure to estimate miss rate curves and
implement cache partitioning in a D-NUCA cache [25].
PIPP [24] and TADIP [9] are implicit cache partitioning
schemes that determine insertion points based on miss rate
curves or miss rates for competing policies. The work
of Liu and Yeung [14] picks a victim selection policy
for implicit cache partitioning based on the IPC impact
of different policies. Chang and Sohi [3] cycle through
unfair partitions where one cache receives most of the
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available cache space. Adaptive Set Pinning [19] allo-
cates sets among competing applications by measuring
hits and misses to a set from different applications. Tam
et al. show how miss rate curves can be computed at run-
time on modern processors and use this information to
implement cache partitions with page coloring [23]. The
same authors also suggest the use of cache stall-rate curves
that can be estimated with performance counters [2]. The
works of Cho and Jin [4], Lin et al. [12, 13], and Awasthi
et al. [1] also implement set-based cache partitioning with
page coloring that is primarily based on miss rate estima-
tions. Zhuravlev et al. [26] compute approximate miss
rates of programs and assign programs to a collection of
shared caches such that overall miss rates of each shared
cache are equalized. Jiang et al. [10] allocate heteroge-
neous private caches across many programs in a workload
based on miss rate curve estimations.

The following bodies of work fall under the umbrella
of QoS policies. Rafique et al. [18] focus most of their
cache partitioning study on cache miss metrics, but also
employ policies that use IPC metrics to ensure that pro-
gram slowdowns are in proportion to program priorities.
Guo et al. [6] point out that it is easier to achieve cache
space targets than IPC or miss rate targets when provid-
ing QoS. Iyer et al. [7, 8] also focus on cache space tar-
gets for QoS enforcement. Srikantaiah et al. [20] express
equations so miss rates can be translated into IPC when
providing QoS. Kim et al. [11] effect incremental cache
allocation adjustments every epoch to cause uniform miss
rate degradations in all applications.

Apart from the few exceptions mentioned above, al-
most all related work on cache partitioning focuses on
miss rates to guide their policies. QoS policies are better
at being IPC-aware because many QoS policies ultimately
try to cap IPC slowdown. In other related work, Dropsho
et al. [5] estimate miss rate curves with per-way counters
to reduce energy by selectively disabling cache ways.

5 Conclusions

It is well known that misses have varying impacts on
IPC across programs. Even though IPC is the ultimate
metric of interest, several cache optimization policies base
their decisions on miss rate estimates because they are eas-
ier to compute. Little is known about the possible error in-
troduced by using miss rate as a proxy for IPC. This work
uses utility-based cache partitioning (UCP) as a case study
for examining this error.

Our findings show that the error is non-trivial and
grows as more programs share a given cache. While the
difference in the optimization strategies is fairly small
(1%-3%) when taking an average across all workloads,
there are many instances where the difference is signifi-
cant. When 4 programs share a cache, MPKI-based de-
cisions are sub-optimal 55% of the time. Cache parti-

tioning based on accurate IPCs can improve the weighted
speedup metric by more than 4% in 1268 of the 4827 pos-
sible workloads, and cause an average increase of 1% in
weighted speedup across all possible workloads. When
considering sum of IPCs as the performance metric, an
average 3% performance increase over MPKI-based UCP
can be achieved, across all possible workload combina-
tions. The IPC-based optimization strategy can improve
the IPC-Sum metric by more than 5% in 37% of all 4-
program workloads. This argues for the use of IPC-based
metrics in any cache optimization mechanism, especially
when multiple programs are sharing a cache.

We suggest a simple IPC estimation mechanism that is
based on a short exploratory phase and the expected lin-
ear relationship between MPKI and CPI. With this mech-
anism, we are able to make cache partition decisions that
are sub-optimal in few cases, causing an average perfor-
mance increase comparable to cache partitioning based on
accurate CPIs. As future work, we believe that it is worth-
while to explore other IPC estimation mechanisms, espe-
cially those that do not involve an exploratory phase. For
example, MLP may be used to estimate latency tolerance
and generate IPC curves out of MPKI curves.
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