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Abstract—Long-latency cache accesses cause significant, per-
formance impacting delays for both in-order and out-of-order
processors. One method proposed to tolerate these long latency
accesses, runahead pre-execution, has been shown to produce
speedups for both models of execution through increased overlap
of data memory accesses. However, the reuse of pre-execution
results in an out-of-order runahead processor has previously been
shown to provide little additional benefit compared to a simpler
prefetching-only pre-execution model. This paper examines runa-
head pre-execution and the reuse of results for both in-order
and out-of-order pre-execution models. As previous research
has shown, result reuse on an out-of-order runahead model
provides minimal speedups when compared to simple out-of-
order runahead. For a selection of SPEC CPU2006 benchmarks,
the reproduced results show average speedups of 1.03X and a best
case speedup of 1.12X. However, these results do not provide a
valid picture of the benefits of result reuse for in-order runahead
processors. The fundamentally different behavior of in-order and
out-of-order processors greatly affects the performance impact of
pre-executionuted instruction reuse. In fact, the addition of reuse
to the in-order runahead model results in average speedups of
1.09X and a 1.47X speedup in the best case.

I. INTRODUCTION

As the gap in the relative performance of processors and
memories continues to grow, the amount of time computation
is stalled waiting on memory has become one of the largest
performance hindering conditions. This problem has long been
recognized as the “memory wall” [1][2], and there is no
indication that this memory gap will decrease significantly in
the near future. Several approaches have attempted to address
the performance impact of these high memory latencies.
Some, such as the introduction of caches, reduce the observed
latency of memory. Other strategies attempt to tolerate the
latency of slower secondary or tertiary caches, or even main
memory itself, by overlapping a long latency memory access
with computation or other memory operations. Non-blocking
caches [3] allow data accesses to continue even in the presence
of a waiting cache miss. Hardware prefetching [4] builds on
this strategy by attempting to bring data into some level of the
cache before it is requested by an executing instruction. In this
way, program execution overlaps long latency cache accesses.

Tolerance of the long, variable latency of cache-missing
memory operations is recognized as one of the primary ben-
efits of out-of-order execution [5] and continues to provide
its biggest performance benefit over in-order execution [6].

Compilers for in-order architectures use analysis, transfor-
mations and scheduling to tolerate anticipated latencies but
cannot effectively deal with the unpredictable latency of cache-
missing loads [7]. To address such long-latency operations,
runahead pre-execution was proposed as an execution strategy
to increase latency tolerance for both execution models.

During a long-latency memory operation, runahead pre-
execution provides performance benefits by executing ahead
in program code beyond the normal limitations of the archi-
tecture, be it in-order [8] or out-of-order [9]. By doing so,
memory blocks accessed during runahead are pre-loaded into
the cache resulting in a reduction in the long-latency opera-
tions during normal execution. An obvious question that arises
when contemplating pre-execution is the reuse of instructions
that are correctly executed during the runahead process. The
conventional runahead approach retains only the aftereffects of
prefetching from the pre-execution mode. However, other pre-
execution strategies, detailed in Section II, retain the known
results of instructions processed during that time.

Runahead reuse might potentially increase efficiency and
improve performance by reusing pre-execution results instead
of re-executing instructions during the normal execution mode.
However, this improvement is not clear and the storage of
pre-execution results may require greater complexity and
power consumption than re-execution alone. While several
approaches have been proposed reusing the results of pre-
executed instructions, one study [10] found that out-of-order
runahead reuse provided little or no significant speedup. We
have reproduce these results, showing that within a similar
out-of-order execution model these observations are accurate
and result reuse benefits are relatively insignificant. However,
on further analysis, the benefit of instruction reuse for an in-
order process is a more complex question. On average, the
benefit from result reuse for in-order execution is notably
higher than in our idealized out-of-order execution evalua-
tions. For some benchmarks, the reuse of results for in-order
pipelines provides large speedups. This paper illustrates and
examines the reuse strategy within these two different execu-
tion models and provide detailed explanations regarding the
observed differences between reuse benefits for the two types
of processors. An analysis of the reuse behavioral variations
for in-order pipelines when executed on various benchmarks
is also provided.



II. PRE-EXECUTION FOR MEMORY- AND
INSTRUCTION-LEVEL PARALLELISM

The impact of memory accesses on performance depends
upon how frequently those accesses occur during program
execution and where required memory blocks reside in
the cache/memory hierarchy. A characterization of SPEC
CPU2000 and CPU2006 benchmarks [11] shows that, for all
but one benchmark in these suites, load instructions represent
at least 30% of the instruction profile and stores account
for an additional 10% of the instructions. This means that
approximately 40-50% of the program instructions involve a
data cache access of some type. If all these cache accesses
were L1 cache hits, this instruction distribution would not
present a problem for processor pipelines. However, as also
seen in [11], for the Core 2 Duo processor, over half of the
benchmarks encounter at least 10 L1 and at least one L2 cache
miss for every 1000 instructions. Nine of the SPEC bench-
marks have more that 5 L2 misses for every 1000 instructions.
Most of these misses are the results of load operations. So, at
least part of the time, a set of instructions will be waiting
many, if not hundreds, of cycles for some memory data to
become available. These pipeline stalls increase the number of
cycles required to execute a program while, theoretically, not
being necessary for obeying data-flow execution. Therefore, it
is highly desirable to decrease the impact these stalls have
on a program. Of course, it is also desirable to achieve
this with a minimum investment in system resources and
impact on overall power consumption. Pre-execution is a set of
techniques that have been proposed to minimize the impact of
long latency cache access with inexpensive modifications to
processor hardware. This section discusses several proposed
pre-execution systems thereby exploring pre-execution as a
viable solution to the problem posed by long latency memory
access.

Before defining pre-execution, it is useful to consider the

ld  r1, [r2]
add r3, r1, r4
shl r5, r3, 2
ld  r6, [r5]
mul r7, r6, r8

Fig. 1. Code example to demon-
strate in-order behavior.
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Fig. 2. In-order stall on the result of
cache-missing load.

implications of in-order models of execution. Figures 1 and 2
demonstrate the performance hampering impact of strict in-
order execution. Figure 1 details an example code fragment
that contains two load instructions. The graph in Figure 2
shows the dependences between the instructions in the code
fragment. Assuming that in some in-order execution of this
example, the first load instruction misses in the data cache,
then the subsequent add will stall waiting on the data from
that load instruction. Since this consuming add instruction is
dependent on the load, the add instruction would be delayed
in any data flow obeying execution model. However, the next
three instructions are independent of both the load and the
add instructions. In in-order execution, instructions that follow
the add will also stall even when the subsequent instructions
are independent, as in this case. This implicit program-order
dependence between all instructions limits the achievable
degree of instruction-level parallelism and prevents, in this
example, the overlap of the memory accesses for the two load
instructions. This decreased instruction-level parallelism will
have an especially adverse performance impact if the second
load instruction also misses in the cache. It can be argued
that overlapping memory accesses is more important than the
degree of instruction-level concurrency [12].

Out-of-order execution is one of the most common mi-
croarchitecture strategies in modern general-purpose, high-
performance microprocessors [13][14]. Under this model, the
processor itself is allowed to determine how to effectively
order instruction execution. It attempts to find instruction-
grained parallelism by separating program execution from
program ordering. Instructions are selected for execution once
their instruction dependencies have been resolved. In this way,
processor hardware selects independent instructions to execute
simultaneously regardless of program order. This execution
model allows instruction issue to continue even when a long-
latency cache access occurs. In the example shown in Fig-
ures 1 and 2, out-of-order execution enables the independent
shift, load and multiply instructions to execute during the
handling of the first load’s cache miss. Also, where the second
cache miss occurs, the two long-latency memory accesses can
be overlapped in a way that was impossible under the in-order
execution model.

In one sense, out-of-order processors are the most common
implementation of pre-execution. They hide the long latency
resulting from data-cache-missing instructions (in particular
data-cache-missing loads) through the fine-grained selection of
ready, independent instructions. Out-of-order execution is very
general in that the order of instructions selected is limited only
by the flow of data, however, this execution model restricts
reordering to a markedly limited instruction window.

The original runahead pre-execution approach proposed by
Dundas and Mudge [8] increased the overlap of memory load
operations for a narrow-issue in-order processor. In this model
of execution, cache-missing, long-latency loads initiate a pre-
execution mode. We refer to this mode as in-order runahead
mode to distinguish it from other manners of runahead execu-
tion. During in-order runahead mode, consumer dependences



(such as the add’s dependence on load in Figure 2) do not re-
sult in pipeline stalls. Instead, forward execution progress is al-
lowed by deferring the execution of the dependent instruction.
Fortunately, many instructions following such cache misses
are independent [15]. Execution continues pre-computing the
results of independent instructions without retiring the effects
of these pre-executed instructions to architectural state. Once
the data from the cache miss has been fetched, the pre-
executed instructions are flushed and normal execution is
restarted starting immediately after the original cache-missing
load. While this means that pre-executed instructions are
executed again regardless of dependency on the load data,
this process enabled blocks loaded during runahead mode to
be preloaded into the cache. When the load instructions are
re-executed in normal mode, the required block should be
fully or partially loaded into the cache. If this approach is
successful, loading these blocks will decrease the likelihood of
another long-latency memory access since the access’s latency
should have already been handled during the runahead mode
of operation. Dundas showed that this runahead execution
improved the overall performance of the program with little
additional hardware overhead.

While Dundas’ work targeted in-order pipelines, Mutlu
extended this approach to out-of-order processors [9]. Mutlu’s
approach improves the overall performance of an out-of-
order processor and provides a viable alternative to very
large instruction window sizes. In this technique, out-of-order
runahead mode starts when a long-latency cache-missing load
becomes, by program order, the earliest instruction in the
reorder buffer (ROB). The instruction is released from the
ROB without committing its result. This frees up dependent
instructions which are deferred in a similar manner as [8].
Subsequent independent instructions can then execute which
cause the same cache pre-loading effects as in-order pre-
execution. When the cache miss that started runahead mode is
finished, normal execution returns to the original load instruc-
tion. Since the hardware overhead for runahead is significantly
less than what is required to increase the instruction window,
out-of-order runahead execution provides a power-efficient
process for tolerating very long memory latency [16].

Several different runahead approaches have been proposed
that preserve not just the cache pre-warming effects of pre-
execution but the results of correctly pre-executed instructions
as well. Continual flow pipelines could be considered to be
one such out-of-order processor model [17]. In this approach,
instructions that are dependent on a cache missing load are
not held in reservation station entries, but rather flow through
execution stages only to be re-scheduled and re-executed out
of the reorder buffer once the cache miss has (hopefully)
been handled. Very long instruction windows are achieved
virtually through the use of check-pointing, and instructions
that execute correctly are never re-executed.

In-order models of pre-execution with result reuse include
the two-pass pipelining approach [18] in which instructions
that are deferred in an “advanced” pre-execution pipeline are
executed on a second architectural pipeline. Results from the

advanced pipeline are queued for merging into the architec-
tural state by the second pipeline without re-executing the
instructions themselves. A related approach, dual-core execu-
tion [19] utilizes two cores in a dual-core processor to achieve
the benefits of pre-execution with result reuse. A compiler
approach, decoupled software pipelining [20], achieves similar
behavior (and similar memory latency tolerance) through the
static partitioning of loops into different stages based on
recurrences through these loops. These different stages are
executed on different processor cores, with execution in the
first stage scheduled such that non-recurrence, long-latency
memory accesses do not stall execution on that stage. Within
a single processor pipeline, multi-pass pipelining [21] and in-
order continual flow pipelining [22] both provide mechanisms
for execution beyond the consumers of long-latency cache-
missing loads and retain the valid results pre-executed under
this mode. Similarly, the Rock processor [23] developed by
Sun, features an execute ahead capability which utilizes sup-
port for simultaneous multithreading to perform pre-execution
with result reuse in an otherwise in-order processor. It is
notable that all previous evaluations of each of these in-order
approaches show some non-negligible performance benefits
from the reuse of such results in apparent conflict with [10].

III. METHODOLOGY

The evaluations discussed in Section IV were performed
using Soonergy, a cycle accurate architectural and microarchi-
tectural simulator. The simulator models variable stage length
in-order and out-of-order pipelines with typical microarchi-
tectural components and a realistic memory hierarchy. The
specifications used for our baseline evaluations are detailed in
Table I and have been selected in an attempt to replicate, as
much as possible, the simulation parameters specified by [10].
Note that these specifications represent an admittedly over-
aggressive processor configuration. It should also be noted
that for this paper, a conscious decision was made not to
use the aggressive stride prefetcher [24] used in [10]. This
decision was made because the primary focus of this paper
is a detailed examination of the differences between runahead
pre-execution on in-order and out-of-order processors only.
Experiments including a prefetcher have been performed with
similar results as [10] and therefore have been left out of our
analysis in this work.

As with any attempt to replicate simulated processor results,
exactly matching the original result values produced by differ-
ent simulator proves to be impossible. Section IV demonstrates
a reproduction of similar results and identical trends as seen
in [10]. Significant effort was devoted in attempt to repro-
duce the simulated processor environments used in this work.
However, there are inevitable simulated differences, caused by
slight variations in the design and behavioral implementation
of various structures. Also, the amount of detail any previous
work can provide about the operation of their simulator and
their simulated architecture is limited.

Beyond variations in the simulator design, differences in
observed results are also introduced by the very benchmarks



TABLE I
BASELINE PROCESSOR CONFIGURATIONS

Pipeline A In-order 8-wide in-order processor pipeline
Pipeline B Out-of-

order
8-wide instruction fetch and issue, 128-entry ROB,
128-entry RS, 256 physical registers, 64-entry LSQ

Execution
Core

8 ALUs (with latency): integer ALU (1) integer
multiply (8), floating point ALU (4), FP divide (16)

All Caches 128 entry MSHRs, LRU replacement, 64B line size
L1 64KB, 4 way, 2 cycle, 128 entry MSHRs
I-Cache 4 ld per cycle

Common L1 64KB, 4 way, 2 cycle, 128 entry MSHRs,
Setup D-Cache Write-Through, 4 ld/st per cycle

Unified 1MB, 32 way, 10 cycle, 128 entry MSHRs,
L2 Cache Write-Back, 1 ld/st per cycle
Memory Minimum 500 latency, 32 banks, 32B wide,

split transactions core-to-memory at 4:1 freq. ratio
Branch
Predictor

64K-entry gshare/PAs hybrid branch predictor with
a minimum 20-cycle miss predict penalty

examined. Newer benchmark suites have become available
since many of the previous studies were performed, and
we have utilized these newer and hopefully more interesting
workloads for most of our data analysis. We have compared
experiments using the older and newer benchmark suites which
produced results that imply similar conclusions. In this work,
we have used the newer benchmarks suites for the experiments
presented in Section IV.

The binary executables used for experiments are different
than those in other works because of compilation differences
and the limited program runs. Compliers are different from one
platform to another, and for our simulations, the benchmarks
examined in this work were complied for 64-bit x86 execution
on the Microsoft Windows 7 operating system. Also, as is
common, simulations in both the previous work and this paper
were performed using only a subsection of the program. In the
previous literature, precise information about exactly which
benchmark sections were simulated is not typically reported.
For the purpose of this paper, the simulations were performed
for 250 million instructions where the starting point was
chosen from a statistically relevant section of the program [25].

In spite of our best effort, the simulator used for evaluations
in this study does not produce identical results to previous
simulators used for pre-execution studies. These slight result
variations can be seen when comparing results in Section IV
to those in [10]. These variations can be attributed to the
above mentioned experimental variations; however, the overall
behavioral trends of our experiments and previous research is
similar.

IV. RESULTS

Simulations were run for the set of C language SPEC
CPU2006 benchmarks that were compatible with Microsoft
Visual Studio 2010 on Microsoft Windows 7. The benchmark
values shown are the weighted average for all reference input
where the weight is based upon the total number of instruction
executed during a complete program run for each reference
input. All programs were executed for 250 million instructions
with an additional 25 million instructions used to warm-up
hardware structures such as the branch predictor and caches.
The results shown in this section exclude this warm-up period.

A. Evaluating pre-execution and reuse of pre-executed results

Six different execution models are examined: in-order (IO),
in-order runahead (IORA), in-order runahead with reuse (IO-
RARU), out-of-order (OO), out-of-order runahead (OORA)
and out-of-order runahead with reuse (OORARU). Figure 3
plots each benchmarks normalized number of executed cycles
for each model relative to the number of cycles executed for
that benchmark in the in-order model. In the reuse models,
instructions that are independent of long latency cache misses
and are correctly executed during runahead mode are not re-
executed but rather treated as if they could be skipped once
normal execution is resumed. In the runahead reuse models,
the capacity for reuse is limited only by the ability of the
processor to predict branches in order to fetch instructions
into the processor pipeline. This is especially true for branches
that occur after a cache miss and are on its dependent chain.
This idealized reuse model was chosen to match the reuse
evaluation in [10].

Since the results in Figure 3 are based on the total number
of execution cycles, the shorter the column, the fewer number
of cycles necessary to complete program execution. The first
and most apparent result is that out-of-order execution always
provides a significant speedup in comparison to in-order exe-
cution. This is a well observed characteristic. However, it can
also be seen that for omnetpp and soplex, in-order runahead
with reuse achieves better performance than the normal out-
of-order processor. Also for gcc, lbm and mcf, the in-order
runahead reuse model achieves performance results that are
closer to the performance of out-of-order than that of the in-
order model.

The out-of-order results shown in Figure 3 largely agree
with the results in [10]. Significant speedups are seen for
the application of runahead execution, but only a marginal
1.03 X improvement is seen even with the relatively idealized
reuse model being evaluated. The speedup from out-of-order
runahead reuse is slightly larger than that seen in [10] but
still provide little motivation for the complexity involved in
preserving the results of runahead reuse. However, the reuse
approach provides greater performance improvements for in-
order runahead model than the out-of-order model for astar,
bzip, dealII, gcc, h264, lbm, omnetpp, and soplex. The average
speedup from reuse in the in-order case is 1.09 X. Notably,
the most significant gain from pre-execution reuse in the the
out-of-order model is 1.12 X in mcf while, in the in-order
runahead with reuse model, a 1.48 X speedup is seen from
reuse in lbm. These differences are examined more closely in
the remainder of this section. Note that gobmk, hmmer, namd,
and povray appear to reap little benefit from pre-execution
for either in-order or out-of-order configurations regardless of
reuse. This is examined more closely in Section IV-B

Figure 4 plots the number of times a benchmark entered
runahead mode in increments of 1000 for both in- and out-
of-order execution models. Because mcf enters runahead sig-
nificantly more times than any of the other benchmarks, the
number of runahead entries is noted beside mcf’s columns
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Fig. 4. Number of entries into runahead execution model for in-order and
out-of-order models

instead of plotting them directly. As shown in this figure,
the benchmarks with little to no improvements from runahead
execution seldom enter runahead mode. Runahead mode is
entered more often for in-order pipelines than for out-of-order
pipelines for all benchmarks except hmmer. Since out-of-order
runahead execution is only initiated when a long-latency cache
miss becomes the oldest instruction in-program-order in the
ROB, many L2 cache misses may never reach this point and
never initiate a runahead mode. However, almost every L2 data
cache miss will result in an in-order stall and initiate runahead
execution in the in-order runahead model.

Examining the runahead entires for hmmer compared to
other benchmarks, it was found that hmmer has more L2
misses for out-of-order than for in-order. This behavior is
unique to hmmer for this benchmark suite and can occur
when out-of-order causes thrashing in the cache because load
operations that occur later in the serial program kick out
cache blocks that earlier, not-yet-issued memory operations
will require. As noted in Section IV-B, hmmer, even in the out-
of-order execution model has few long-latency cache misses.
Because of this behavior, it is not surprising that hmmer also
benefits very little from runahead execution in the out-of-order
model.

A runahead reuse pipeline’s performance improvement de-
pends on providing to the pipeline valid, reusable instruction

results for those instructions that were completely executed
during runahead mode. This performance improvement largely
depends on how many of these “cleanly” executed instructions
occur during a program’s run. The number of these instructions
is contingent on how many instructions depend on the original
runahead-causing load and on the frequency that subsequent
memory access can be “cleanly” executed during runahead. A
cleanly executed memory access is one in which the address
for the memory operation can be calculated (i.e. does not
depend on a deferred runahead instruction) and if the access
returns the requested information in a timely manner. For the
purposes of our evaluations, the acceptable latency represents
the L2 access time for pre-execution reuse models and the
L1 access time for pre-execution models without result reuse.
For a pipeline with reuse, waiting for a cache access to L2
will provide more instructions that can be reused in normal
operation mode. When the pipeline is not going to reuse the
instruction, the memory access itself is sufficient to cause the
cache to be preloaded. Moreover, waiting a significant amount
of time for the data to return does not provide as much benefit
as issuing as many memory operations as possible during
runahead mode. This slight difference in runahead behavior
results in improved performance for in-order runahead with
reuse. It has no noticeable impact on the performance of out-
of-order runahead with reuse.

Figure 5 shows the percentage of the memory instructions
that executed cleanly during pre-execution for runahead with
reuse models. In the in-order model, all of the in-order
benchmarks encounter a greater number of “clean” memory
operations than the out-of-order processor. This graph helps
explain why, despite the large number of entries into runahead
mode, mcf has significant less speedup from reuse as the
other two high runahead usage programs, lbm and soplex. In
mcf, a large number of pre-executed memory accesses miss
in the L2 data cache, leaving only around 50% of memory
operations to execute cleanly. However, lbm and soplex have
over 80% “clean” memory accesses during pre-execution. The
high number of “dirty” memory accesses in mcf means that
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a great deal of main memory overlap is achieved, but only
a small number of independent instructions are left executing
correctly and therefore available for reuse.

B. Categorizing application runahead behavior

The previous section dealt with all of the evaluated bench-
marks as a unit, but as can be seen from Figure 4, there are
really different classes of runahead behavior based upon the
number of times the system actually enters the runahead pre-
execution mode. We classify all the benchmarks into three
groups composed of a high runahead entry set (lbm, mcf and
soplex), a medium runahead entry set (astar, bzip, deall, gcc,
and omnetpp) and a low runahead entry set (gobmk, h264,
hmmer, namd, perl, povray, and xalan). In breaking the entire
collection of benchmarks down into these three groups, it
becomes clearer how runahead pre-execution behaves in its
various models.

The total execution time for the 250 million instruction
simulation for the benchmarks grouped in the low runahead
entry category are presented in Figure 6 along with the average
execution time for these seven benchmarks. Five of these seven
benchmarks (gobmk, h264, perl, povray, and xalan) are the five
benchmarks with the fewest number of executed cycles for all
of the benchmarks evaluated. Hmmer and namd have execution
times which are similar to most of the benchmarks in the
medium runahead entry set shown in Figure 7. However, these
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two benchmarks have significantly fewer L2 cache misses
than any of the benchmarks in the medium set. Figure 9
charts the L2 misses for both low and medium runahead entry
sets. Along with povray, hmmer and namd have the lowest
number of overall L2 cache misses. This results in a relatively
small speedup from runahead pre-execution and a very modest
improvement from the addition of result reuse.

The medium runahead entry benchmarks have similar exe-
cution times and a higher number of L2 cache misses with the
exception of dealII. It can also be observed that reuse provides
more of a benefit to this set of benchmarks than it does for
the low runahead entry set. Notably, gcc’s execution time for
in-order runahead with reuse begins to approach that of the
baseline out-of-order model, and in-order runahead with reuse
actually outperforms the out-of-order model for omnetpp.

The high runahead entry group (lbm, mcf and soplex)
have execution times that are significantly higher than any
benchmark in the other two sets. Because of these extremely
high cycle times, the impact of reuse is significantly more for
high usage than medium usage even though the drop in the
executed cycles with the addition of reuse in Figure 8 appears
to be the similar to the decrease in Figure 7. The magnitude,
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TABLE II
REUSE SPEEDUPS

Program Group In-Order Out-of-Order
High Runahead Entry 1.172 X 1.080 X
Medium Runahead Entry 1.092 X 1.047 X
Low Runahead Entry 1.013 X 1.011 X

in number of cycles, represented by the decrease in the high
usage group reuse cycle time is over five times that of the
medium group’s decrease in cycle time. As was seen with the
medium runahead entry group, lbm and mcf have execution
times approaching that of the baseline out-of-order execution
model and soplex outperforms it. As was stated earlier, mcf’s
improvement from reuse is less than that of either soplex or
lbm because of its relatively smaller number of clean memory
operations as shown in Figure 5.

Breaking the benchmarks up into three groups makes it
easier to observe the variation in behavior between applica-
tions. Table II summarizes the speedups from the exploitation
of reuse in the two runahead execution models (in-order and
out-of-order). The speedups for reuse in the in-order model
is higher for all three categories than the speedup for the
corresponding out-of-order model; however, even in the high
runahead entry group, reuse in the out-of-order model does
not achieve the speedup that is seen in the in-order model.
This largely confirms the pessimistic results for out-of-order
runahead with result reuse seen in [10], while providing some
indication that the result reuse merits further consideration in
the case of in-order runahead execution.

C. Explaining differences in reuse between in- and out-of-
order runahead

Figure 10 provides an example that illustrates the main
cause for the relative differences in improvement achieved
by the reuse of pre-execution results for in-order and out-
of-order runahead pre-execution. This figure shows a stylized
representation of the sequence of code from astar starting
with the load that causes the single-highest number of entries
into runahead execution mode for both in- and out-of-order
runahead. The load is shown as operation A in Figure 10. Load

A is quickly followed by a consumer B which would cause
a stall under in-order execution and would begin runahead
execution for the in-order runahead-execution model. Though
a couple instructions follow on a dependent chain starting
with A, independent instruction C follows these dependent
instructions. Instructions starting with C (which is almost
always a cache hit) would be able to execute independently
under pre-execution, including load D which like A suffers
from frequent long-latency cache misses. In the case of such
a miss, a long chain of 23 dependent instructions would
all be deferred during pre-execution. However, assuming E
can be reached during runahead, this instruction begins a
sequence of independent instructions all of which can execute
independently during pre-execution.

In both in- and out-of-order pre-execution models, the
relatively short chain from C→D and the long sequence
starting with E will execute and produce correct results. In-
order execution with runahead reuse will exploit both of
these sequences of precomputation, accelerating execution by
skipping the already pre-executed instructions. However, the
benefit during out-of-order execution is not nearly as signifi-
cant. Because normal execution will restart with the load A,
the serial sequence from C→D will be processed sequentially
once normal execution has resumed, and reuse in this case will
provide a slight benefit. Unfortunately for reuse, the sequence
starting with E does not always provide similar potential for
speedup. Instead, in out-of-order pre-execution models, once
normal execution has resumed, program instructions starting
with E will be loaded into reservation station entries even
while the chain of instructions dependent on D are being
issued and executed. Thus, the sequence starting with E can
be entirely overlapped with the chain starting with D by the
normal out-of-order model of execution alone. In this real
benchmark example, reuse of the sequence starting with E
in the out-of-order execution model provides no additional
benefit over the typical out-of-order runahead model.

D. Examining the effects of architectural variations

All the previous experiments were performed using the
parameters specified in Table I which were selected for com-
parison with [10]. To further evaluate the potential for result
reuse for in-order and out-of-order models, two more sets of
experiments were performed. In the first, the access time to
main memory was varied by increasing its latency to 1000
cycles and decreasing its latency to 100 cycles with all other
parameters from Table I remaining the same. The second set
of experiments was performed using the original cache and
memory latencies while decreasing the instruction issue width
from eight to either four, three, or two instructions. For the
smaller instruction issue widths, the number of L1 read/write
ports was also decreased from four memory accesses per
cycle to two. Both of these experiments focused on the set
of medium runahead entry benchmarks.

Figure 11 shows the average execution times for models
with main memory latency of 100, 500, or 1000 cycles. As the
memory latency increases, the benefit from runahead execution
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Fig. 12. Normalized execution time for various issue widths

also increases. However, the difference between the average
execution times between runahead with and without reuse
decrease as the latency goes up for out-of-order models. For
the in-order model, the exact opposite behavior is seen with an
increase in improvement for runahead with reuse in compari-
son to traditional runahead. For the 100 latency runs, runahead
pre-execution in the out-of-order model actually under per-
forms the baseline out-of-order processor model. This occurs
because the out-of-order model is capable of keeping the
processor relatively busy with its 128 instruction window. The
pipeline flush at the end of runahead mode needlessly hurts
the performance of out-of-order runahead model in this case.
Another unusual behavior occurs in the 1000 cycle latency

simulations, where the runahead with reuse model performs
slower than standard out-of-order runahead model. This is the
result of the differences in behavior between runahead and
runahead with reuse described in Section IV-A. In runahead
with reuse, the out-of-order instructions waiting on L2 are not
marked as dirty but wait in reservation stations until they are
ready. In the basic runahead mode, such instructions would
simply be deferred. This difference caused only a minuscule
difference in the out-of-order models with a memory latency
of 500 cycles. If runahead with reuse had behaved the same as
traditional runahead, the slowdown would not have been seen
between the two models in the 1000 cycle memory latency
case instead they would have appeared identical. As described
in Section IV-A, this behavioral difference was in keeping
with the setup of in-order runahead and in-order runahead with
reuse where significant benefit is obtained by waiting for L2
hits when reusing results.

Experiments were also performed by varying the instruc-
tion window sizes from the aggressive out-of-order eight
instruction wide pipeline used in [10] all the way down to
a modest two instruction wide pipeline. As can be seen in
Figure 12, when the instruction width decreases, the number of
cycles required to execute the program increases as expected.
However, the out-of-order pipeline, with its greater ability
to find and exploit instruction-level parallelism, suffers more
from the limited issue widths than the in-order pipeline. Addi-
tionally, as the pipeline width narrows, the overall difference
in performance between the baseline out-of-order and the
runahead with reuse models shrink.

In general, for the medium runahead entry set of bench-
marks, the benefit from both runahead and runahead with
result reuse increases with increasing memory latency for the
in-order models. This is to be expected, as the greater the la-
tency to main memory, the greater the benefit from overlapping
main memory accesses and the more time available during
pre-execution to execute independent instructions. In the out-
of-order models, the benefit from runahead alone increases as
the memory latency increases, but the benefit from result reuse



actually decreases. This is not too surprising, as the benefit
from reuse in the out-of-order case was already minimal. The
normal out-of-order execution mechanism alone hides much
of the latency of instructions that can be skipped due to pre-
execution. In case of the out-of-order models with a longer
latency memory, the slight benefit to result reuse is completely
outweighed by the benefit from overlapping memory accesses.

For both the in-order and out-of-order models, the bene-
fit from runahead and runahead with result reuse decreases
slightly as the issue width shrinks from eight to two instruc-
tions per cycle. This is as expected, as in both models, a lesser
degree of runahead can be achieved because fewer instructions
are issued each cycle. However, the relative decrease in benefit
is slightly larger for the out-of-order model.

V. CONCLUSIONS

While the benefits of reusing the results of pre-execution
provides little speedup for out-of-order runahead systems,
similar reuse does provide much greater speedups for in-order
systems. Similar to results from previous work [10], result
reuse produced during runahead pre-execution mode on an
out-of-order processor was shown to provide on average only
a 1.03 X speedup over typical runahead alone. However, for
an in-order processor model, this result reuse achieves, on
average, a 1.09 X speedup over traditional in-order runahead.

While the runahead with reuse provided only a modest
overall speedup of 1.09 X, there was a large degree of variation
between speedups achieved for the individual benchmarks
used in the simulations. These benchmarks were broken down
into three distinct categories with the high runahead entry
benchmarks experiencing a collective speedup of 1.17 X.
Closer examination illustrated that the degree of speedup for
reuse for a given benchmark directly correlates to the amount
of time spent in runahead mode.

Therefore, even though reuse has little to no impact on
out-of-order processors, this result cannot be used to judge
the effectiveness of reuse for in-order pipelines. Rather, in-
order runahead processors require separate analysis of reuse’s
effectiveness. Our analysis show that reuse can be beneficial
to the in-order runahead systems as a whole, and for certain
categories of programs these benefits can provide speedups
that allow them to match or outperform a basic out-of-order
processors.
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