
The What’s Next Intermittent Computing Architecture

Karthik Ganesan∗, Joshua San Miguel† and Natalie Enright Jerger∗
∗University of Toronto, †University of Wisconsin-Madison

karthik.ganesan@mail.utoronto.ca, jsanmiguel@wisc.edu, enright@ece.utoronto.ca

Abstract—Energy-harvesting devices operate under ex-
tremely tight energy constraints. Ensuring forward progress
under frequent power outages is paramount. Applications run-
ning on these devices are typically amenable to approximation,
offering new opportunities to provide better forward progress
between power outages. We propose What’s Next (WN), a set
of anytime approximation techniques for energy harvesting:
subword pipelining, subword vectorization and skim points.
Skim points fundamentally decouple the checkpoint location
from the recovery location upon a power outage. Ultimately,
WN transforms processing on energy-harvesting devices from
all-or-nothing to as-is computing. We enable an approximate
(yet acceptable) result sooner and proceed to the next task
when power is restored rather than resume processing from a
checkpoint to yield the perfect output. WN yields speedups of
2.26x and 3.02x on non-volatile and checkpoint-based volatile
processors, while still producing high-quality outputs.

Keywords-energy harvesting; intermittent computing; ap-
proximate computing;

I. INTRODUCTION

Energy-harvesting devices are an emerging class of em-
bedded systems that eschew batteries by running directly off
of energy gathered from the environment. These devices are
powered from sources such as solar, WiFi, RF and motion-
based energy [35]. Ultra-low-power processors running on
harvested energy open up new and exciting applications in
fields such as medical devices [15], computer vision [39],
environmental sensing [52], remote sensing [39], and wildlife
tracking and monitoring [47]. Typical energy-harvesting
applications exhibit several common characteristics that the
What’s Next (WN) architecture targets:

• Subject to non-trivial checkpointing, recovery and re-
execution overheads due to frequent power outages [18].

• Amenable to approximation.
• Contain many word-granularity integer and fixed-point

operations that are costly in ultra-low-power processors.

Harvested energy sources only produce sufficient energy
to power these devices for up to a few milliseconds at a
time [42]. As a result, energy-harvesting devices operate un-
der the intermittent computing paradigm; they incur frequent
power outages. To enable forward progress despite frequent
power outages, these systems use non-volatile processors or
periodically checkpoint to non-volatile memory [42]. This
allows the processing of a single input to span multiple power
cycles. However, when new input data arrives, the system

A B C D E F

time

active

no power

f(A) f(B) f(C) f(D)

(a) conventional

A B C D E F

f’(B) f’(A) f’(D) f’(C)

time

f’(E) f’(F)
active

no power

(b) What’s Next

Figure 1: Overview of application (f) executing on an energy-
harvesting system. With conventional execution, each input
(A to F) is processed to completion. With WN, the application
(f’) returns an acceptable approximate result per input
without running to completion, accelerating forward progress.

must choose to either continue processing old data or discard
it and move on to processing new data.

The goal of WN is to provide a partial answer when
energy is scarce but offer the flexibility to refine that
answer if more energy is available.1 To this end, we extend
the anytime automaton model [45] which provides early
approximate versions of an application’s output; as the
application continues to run, it refines the output towards
the precise result. In particular, the anytime automaton
provides interruptibility and flexibility. With interruptibility,
processing can be halted (e.g., by a power outage) while still
providing a valid, approximate output. This is in contrast to
a more traditional, all-or-nothing computing approach. As
intermittently-powered devices are frequently interrupted due
to power outages, the interruptibility of the anytime model
marries well with this domain. Flexibility is also key; if
greater accuracy is required, an application can run longer
(expending greater energy) to produce a more accurate result.

Consider the example application f in Figure 1. In a
conventional energy-harvesting system (Figure 1a), the device
resumes processing each input after a power outage until the
final precise result is achieved. As a result, input F arrives
while the device is still processing input D. Using the WN
technique (Figure 1b), we work on input A while power
remains. When a power outage occurs, an acceptable result
is already available for A and we can begin processing the
next available input when power returns. As a result, we

1”I understood the point... when I ask what’s next, it means I’m ready to
move on to other things, so what’s next?” – Jed Bartlet, The West Wing

(a) baseline (100% runtime) (b) baseline (50% runtime) (c) WN (50% runtime)

Figure 2: Conv2d output: baseline and subword pipelining

start processing input F soon after it arrives and achieve
greater forward progress across all input samples. The output
quality is best-effort (i.e., we take the approximate result as-is
when forced to power down) but forward progress improves
substantially. As many energy-harvesting applications are
naturally amenable to approximation, this trade-off is an
effective and appropriate one.

To adapt the anytime paradigm to intermittent computing
systems, we propose hardware and software changes to
process data at subword rather than word granularity. Instead
of processing an entire data word at a time, we split
this word into subwords and process subwords from most
to least significant.2 Processing each subword generates
an approximate result. We implement two subword-based
modifications: subword pipelining, which decomposes high-
latency instructions (e.g., multiplication) into smaller subword
operations and subword vectorization, which fuses low-
latency instructions (e.g., add, load, store) such that the
most significant subwords of different data elements are
processed in parallel. These techniques transform word-based
(i.e., all-or-nothing) computing where the entire word must
be processed to generate a result to an iterative model (i.e.,
as-is) where an approximate result is available after the
first subword and the results improve with each subsequent
subword we process.

Finally, we propose skim points. In existing checkpointing
schemes, a backup operation saves the current program
counter to non-volatile memory. Then during a restore, the
system resumes at the saved PC and continues executing.
Skim points decouple the backup PC from the restore PC
to allow processing to skip the remaining subwords if an
acceptable result is available and start processing new data.

II. MOTIVATION

This section presents two examples to demonstrate the
drawbacks of current intermittent computing systems that
WN anytime processing overcomes.
How can anytime processing generate acceptable results
earlier? Intermittent computing systems frequently do not
have sufficient energy to fully process input data in a single
power on cycle. When processing is interrupted, the current
result is likely to be incomplete. In such situations, an
approximate result can serve as a facsimile for the complete

2We use subword sizes of 4 and 8 in our study.

0

50

100

150

200

250

10:48 12:00 13:12 14:24 15:36 16:48 18:00 19:12 20:24

B
lo

o
d

 G
lu

co
se

 (
m

g
/d

L)

Clinical readings Sampled readings

(a) Readings produced via input sampling

0

50

100

150

200

250

10:48 12:00 13:12 14:24 15:36 16:48 18:00 19:12 20:24

B
lo

o
d

 G
lu

co
se

 (
m

g
/d

L)

Clinical Readings Anytime readings

(b) Readings produced via anytime processing

Figure 3: Comparison of blood glucose readings for input
sampling and anytime processing compared to clinical data

precise output. To demonstrate this, we compare the output
of an image processing kernel from an anytime vs. a precise
implementation (Figure 2). Figure 2b shows the output when
the precise implementation losses power halfway through
processing the image. Clearly the result is incomplete and
processing must continue during the next active period to
produce an acceptable output. Yet with anytime processing
and the same total power-on time, we can compute a result
for the entire image (Figure 2c). This result is both complete
and of acceptable quality. If a higher quality output is needed,
the system can run for longer, improving quality over time.
How does anytime processing compare to input sam-
pling? Energy-harvesting devices that operate on continuous
input signals can sample those inputs if the processor is
not able to keep up. Sampling with precise computation
is less desirable than generating approximate outputs for
a larger number of inputs. A precise implementation that
drops samples to keep up with the rate of incoming data
risks losing important information contained in the dropped
samples. WN avoids this by generating an approximate result
for all samples so that critical information is not missed.

Consider blood glucose monitoring for patients suffering
from diabetes. Regular monitoring is required to detect
dangerously low levels promptly so corrective action can
be taken. Energy-harvesting, wearable monitoring devices
are being developed to meet this need [15]. However, these
devices must carefully balance their stringent energy supply
with collecting readings as often as possible. A sampling-
based approach collects readings less frequently due to
frequent power outages, increasing the chances of missing
critical events. Anytime processing reduces the energy spent
processing each reading, resulting in more readings being
processed overall (with a small loss in accuracy).

In Figure 3, the dotted line shows the data collected

in a clinical setting at 15 minute intervals over a 10-hour
period [10] with two dips in blood glucose at 14:30 and 18:30.
These dips indicate periods of critically low blood glucose
(values below 50 mg/dL). Quickly and correctly identifying
these dips is critical for the successful management of
diabetes. The input sampling technique in Figure 3a produces
precise results but misses both critical events due to infrequent
sampling. In contrast, if we process only the 4 most signifi-
cant bits of each sample (Figure 3b), we catch both critical
events with an average error of only 7.5%. This error is
within ±20% error range required by international standards
for glucose monitoring [21], making these results valid even
after processing just the first subword. The resulting energy
savings allow us to process more readings and as a result,
catch both critical events. However, in cases where there is
sufficient energy to continue processing the same data, our
technique offers the advantage of improving accuracy over
time. As detailed in the next section, WN easily trades off
accuracy for frequency of samples based on the needs and
constraints of each application and system.

III. WHAT’S NEXT INTERMITTENT COMPUTING
ARCHITECTURE

Building upon the observations in Section II, we propose
the What’s Next Intermittent Computing Architecture, which
consists of three new mechanisms:

1) Anytime subword pipelining for long-latency integer
and fixed-point operations (Section III-A);

2) Anytime subword vectorization for short-latency integer
and fixed-point operations (Section III-B);

3) Skim points for committing approximate results upon
a power outage (Section III-C).

Specifically, we introduce microarchitectural techniques (and
corresponding language and compiler support) for prioritizing
the computation of the most significant subwords. Less
significant subwords are processed incrementally, improving
quality over time. If power is lost before processing all
subwords, the intermediate result serves as an approximation
of the precise result; the application can move on using skim
points. WN brings forth an anytime intermittent computing
paradigm: if sufficient energy is available, work towards the
precise answer; if not, accept the current approximation and
move on to processing the next sample.

A. Anytime Subword Pipelining

Anytime subword pipelining (SWP) breaks long-latency
operations (e.g., fixed-point multiplication) into subword
stages, starting with the most significant subword. The ultra-
low power processors used in energy harvesting [18] such
as the ARM M0+, do not have a hardware multiplier [3]. A
16×16 multiply is carried out iteratively, taking 16 cycles
to complete. Our approach splits each word into smaller
subwords to be processed from most to least significant.
Instead of processing each word to completion as shown in

Figure 4a (words 1 to 3), the most significant subwords from
multiple data elements can be processed in a pipelined fashion
(Figure 4b). Coupled with skim points (Section III-C), the
application can now skip to the end of processing the current
input data if a power outage is encountered. Otherwise,
the entire pipeline runs to completion and is guaranteed
to produce the precise result. To support anytime subword
pipelining in WN, we take a hardware-software co-design
approach and address three challenges.
Which computations are candidates for SWP? We gen-
eralize candidates as any operation or function f that
satisfies the following properties: 1) incurs long latency,
and 2) is distributive over addition. The first property
is not necessary for correctness but is desirable to reap
performance gains. There is no benefit to breaking a single-
cycle operation (e.g., addition) into multiple stages; this
would merely increase its latency and yield slowdown. A
candidate operation must have a latency greater than a
single cycle to see a speedup. The second property is a
requirement for guaranteeing that the precise result is reached
once all subwords have been processed. Figure 5 shows the
transformation of a long-latency function f by the compiler
into smaller subword computations. Assuming that the two
properties listed above are satisfied, the input to f (e.g., a) can
always be broken into subwords and processed in stages as
long as they are accumulated into the same location (e.g., x).
Splitting f into shorter stages allows the individual subwords
to be processed in less time.
What microarchitectural support is needed? To support
subword pipelining, we implement subword variants of long-
latency operations. For some long-latency instruction OP,
we introduce new instructions: <OP>_ASP<BITS>, where
BITS specifies the subword size. This is shown in Listing 2,
which is the assembly code for the example program in
Listing 1 after enabling anytime SWP. MUL_ASP8 (Line 5) is
a variant of the MUL instruction that instead performs a 16×8-
bit multiplication. The third parameter specifies the location
of the 8-bit subword of the second operand; for example,
the most significant 8-bit subword of a 16-bit operand is at
position 1, as shown in Line 5. As a result, multiplication is
performed in shorter stages (e.g., 8 cycles per MUL_ASP).
Note that we use the LDRB instruction (Line 4), which loads
just a single byte from memory instead of the LDR operation,
which loads an entire word.

We find that the multiply operation is the predominant
candidate in our applications.3 As the M0+ processor we
target supports a 32-bit datapath, we use a 16x16 multiplier
as our full precision case. Since the ARM M0+ core uses an
iterative multiplier [3], one bit of the operand is multiplied
each cycle. N cycles are required to obtain the result of

3Although not found in our benchmarks, more complex operations such
as floating point, square root and trigonometric functions are also candidates
for SWP. For example, trigonometric operations are commonly used in
wirelessly powered biomedical applications [40].

Application progress

Word 1

Word 2

Word 3

Less

Significance

More

(a) conventional
Skim points Restore point

Application progress

Word 1

Word 2

Word 3

(b) subword pipelining

Application progress

Less

Significant

More

Significant

1 2 3 Word

(c) conventional

Skim points Restore point

Application progress

Word 1

Word 2

Word 3

(d) subword vectorization

Figure 4: Anytime subword pipelining and vectorization for long-latency and short-latency operations.

a

x

x

f

+

b

y

y

f

+

(a) before

a[MSb]

x

x

f

+

a[LSb]

x

f

+

b[MSb]

y

y

f

+

b[LSb]

y

f

+

skim

(b) after

Figure 5: IR transformation for anytime SWP.

Listing 1: Example source code for 8-bit anytime SWP.
1 #pragma asp input(A, 8); // (array, bits)
2 #pragma asp output(X); // (array)
3 for (i = 0; i < N; i++)
4 X[i] += A[i] * F[i];

multiplying by an N-bit subword. We modify the 16×16-bit
multiply operation to support multiplication with a single
subword operand at a time. This straightforward change
allows us to support multiplication by subword sizes of less
than 16 bits and reap performance gains, since multiplying
by a subword is faster than multiplying by the full word. We
support two subword granularities—4 and 8—and implement
two new instructions: MUL_ASP4 and MUL_ASP8, which
incur 4 and 8 cycles, respectively. We explore smaller
subwords in Section V-E.
How much programmer intervention is required? Since
software support for anytime SWP is implemented entirely
in the compiler’s intermediate representation (IR), minimal
changes are required in the source code. As shown in
Listing 1, we only need programmer declarations (i.e., asp
pragmas) for input and output memory locations that are
amenable to approximation. For each input, the program-
mer specifies the subword size (8 bits in this example).
Computations in the IR that satisfy these two properties
are transformed to enable subword pipelining automatically
(Figure 5). In this example, the candidate computation f is
a multiplication with some array element F[i].

Algorithm 1 provides a high-level description of the
compiler pass needed for SWP. If the operation’s input and

Listing 2: Example assembly code for 8-bit anytime SWP.
1 LOOP_MSb:
2 LDR R3, [R0, #0] @ X[i]
3 LDR R4, [R1, #0] @ F[i]
4 LDRB R5, [R2, #1] @ A[i][MSb]
5 MUL_ASP8 R4, R5, #1 @ X += F * A
6 ADD R3, R4
7 STR R3, [R0, #0]
8 ... @ ++i < N
9 B LOOP_MSb

10 SKM END
11 ...
12 LOOP_LSb:
13 LDR R3, [R0, #0] @ X[i]
14 LDR R4, [R1, #0] @ F[i]
15 LDRB R5, [R2, #0] @ A[i][LSb]
16 MUL_ASP8 R4, R5, #0 @ X += F * A
17 ADD R3, R4
18 STR R3, [R0, #0]
19 ... @ ++i < N
20 B LOOP_LSb
21 END:

foreach long-latency operation do
if operands annotated by pragma asp then

Obtain subword size from pragma directive;
Call loop fission pass on loop containing operation;
Modify long-latency operation with anytime

equivalent in each loop instance;
end

Algorithm 1: Compiler pass for SWP

output operands are annotated with a pragma asp directive
(i.e., A & X in Listing 1), the operation is marked as a
target for SWP. Once a target operation is determined, the
loop encompassing this operation is split into multiple loops
(using a simple loop fission compiler pass [2]). The loop is
split twice for the 8-bit case and 4 times for the 4-bit case.
The long-latency operation in each loop instance is modified
with its anytime equivalent. For example, full-precision MUL
operations are changed to anytime MUL_ASP operations,
along with the third parameter to indicate which subword
should be processed in that operation. Minimal code size
increases occur due to multiple loops with SWP operations.
For the largest benchmark in our suite, the code size only
increases by 1KB from the precise 16-bit case to the anytime
4-bit case, allowing SWP to be used even on extremely small

★

x

a b

★

y

c d

(a) before

★

x[MSb] y[MSb]

a[MSb] c[MSb] b[MSb] d[MSb]

★

x[LSb] y[LSb]

a[LSb] c[LSb] b[LSb] d[LSb]

Skim

(b) after

Figure 6: IR transformation for anytime SWV.

energy-harvesting devices with limited on-board memory.
Memoization. SWP allows additional optimizations that can
further boost its gains; we now discuss how to combine
SWP with memoization. Memoization [27] reduces the over-
head of repeated executions of long-latency instructions [49],
[8]. Results from prior executions are stored in a direct-
mapped table. When an anytime multiplication instruction is
encountered, we first check the table. If a matching entry is
found, the result is returned in a single cycle (as opposed to
the 4, 8 or 16 cycles taken for 4-bit, 8-bit or precise multiply
operations, respectively).
Zero Skipping. In addition to memoization, we also support
zero skipping [1]. As multiplications with zero are seen more
often than with any other value, we exclude any multipli-
cations where either input is zero from being memoized. If
either multiplier input is zero, we return an output of zero in
a single cycle. We investigate the speedup of memoization
and zero skipping for multiply instructions in Section V-E.

B. Anytime Subword Vectorization

Anytime subword vectorization (SWV) transposes short-
latency operations (e.g., addition) so the most significant
subwords are processed first. In contrast to anytime SWP
where a single data element is split into subwords, in anytime
SWV, subwords from multiple data elements are processed in
parallel. Thus, we generate an approximate result for several
words in a single cycle, thereby gaining a speedup over the
baseline implementation. The target operations are bitwise
operations such as AND, OR, NOT, XOR etc. as well as
addition and subtraction. In a conventional processor, words
are operated on one at a time, as shown in Figure 4c (words 1
to 3). We transpose the subwords (Figure 4d), operating
on multiple words in parallel and processing subwords in
decreasing order of significance. This enables execution on
the most impactful bits first. Skim points (Section III-C) can
again be used to jump ahead if there is insufficient energy;
otherwise, we continue improving the approximation quality.
The precise result is guaranteed when all subwords of all data
elements have been processed. To support anytime subword
vectorization in WN, we take a similar approach to SWP.

MSB LSB

Conventional

MSB

Sub-word-major

MSB LSB

MSB LSB LSB

Figure 7: Subword-major compared to conventional row-
major layout in memory for both input and output.

Listing 3: Example source code for 8-bit anytime SWV.
1 #pragma asv input(A, 8); // (array, bits)
2 #pragma asv input(B, 8); // (array, bits)
3 #pragma asv output(X, 8); // (array, bits)
4 for (i = 0; i < N; i++)
5 X[i] = A[i] + B[i];

Which computations are candidates for subword vector-
ization? We generalize candidates as any computation that
employs an operator H (Figure 6) that is element-wise on
the binary expansion of its operands. That is, H must satisfy
the following:

a H b =
(
a0 H b0

)
× 20 + ...+

(
an−1 H bn−1

)
× 2n−1

where a0...an−1 and b0...bn−1 are the bits of operands a
and b. We can only vectorize operations where both operands
can be decomposed into subwords, as opposed to just one
operand in subword pipelining.
What microarchitectural support is needed? We introduce
a set of new instructions: <OP>_ASV<BITS>, where OP
specifies some short-latency operation (H) and BITS speci-
fies the subword size. This is shown in Listing 4, which is
the assembly code for the example program in Listing 3 after
enabling anytime SWV for addition. ADD_ASV8 (Line 4) is
a variant of the 32-bit ADD instruction that instead performs
four 8-bit additions. Four elements of X are computed in
a single parallel operation. WN supports anytime SWV for
logical (bitwise-or, bitwise-and, exclusive-or), memory (load,
store) and arithmetic operations (fixed-point addition).
How much programmer intervention is required? As
with pipelining, anytime SWV only requires programmer
declarations (i.e., asv pragmas) for approximate input and
output data, shown in Listing 3. The subword size needs to
be specified for both the inputs and outputs (8 bits in the
example). In this example, H is addition, which is the most
common operator for vectorization in the applications we
studied. For the rest of this section, we focus on addition
but the techniques discussed also apply to other operations.

Figure 6 shows the compiler transformation once a
candidate instruction with operator H is identified. We employ
a similar compiler pass for SWV as the one for SWP shown
in Algorithm 1. To support SWV, we transpose data words
into subword-major order in memory as shown in Figure 7.
As we target energy-harvesting devices that likely obtain
inputs from sensors, it is a simple matter of transposing the
data being received from the sensor to support subword-major
ordering. The inputs and outputs can simply be statically

Listing 4: Example assembly code for 8-bit anytime SWV.
1 LOOP_MSb:
2 LDR R3, [R0, #0] @ A[i:i+3][MSb]
3 LDR R4, [R1, #0] @ B[i:i+3][MSb]
4 ADD_ASV8 R3, R4 @ X = A + B
5 STR R3, [R2, #0] @ X[i:i+3][MSb]
6 ... @ i += 4; i < N
7 B LOOP_MSb
8 SKM END
9 ...

10 LOOP_LSb:
11 LDR R3, [R0, #0] @ A[i:i+3][LSb]
12 LDR R4, [R1, #0] @ B[i:i+3][LSb]
13 ADD_ASV8 R3, R4 @ X = A + B
14 STR R3, [R2, #0] @ X[i:i+3][LSb]
15 ... @ i += 4; i < N
16 B LOOP_LSb
17 END:

encoded in subword-major order and stay that way for the
duration of the application. Though it is possible to transpose
the data elements back to row-major order afterwards, we
find that this is not necessary for most applications, since
1) subword-major ordering is deterministic and can be done
statically, and 2) locality of the memory ordering is typically
not a concern since energy-harvesting devices tend to have
no caches (or only small caches, if any).
Provisioned addition. Subword vectorization of logical and
memory operations does not require any new instructions nor
changes to hardware; the compiler can simply use their full-
precision equivalents (e.g., performing four 8-bit exclusive-or
operations can be done via one 32-bit operation). Vectorized
addition, however, cannot use 32-bit adders since carry bits
must not propagate across different subwords. Compared
to traditional vector instructions that expand the datapath
to support parallel operations (such as Intel AVX [20]),
we repurpose existing hardware to achieve vectorization
at a smaller subword granularity.4 We take an existing
32-bit adder unit and reconfigure it with straightforward
modifications to support 4-bit and 8-bit parallel subword
operations, while still maintaining support for full 32-bit
additions. At intervals of every four (1-bit) full adders, a mux
is inserted into the carry chain, as shown in Figure 8. When a
subword vectorization instruction is encountered, the muxes
pass zeroes into the appropriate carry-in bits. For example,
with ADD_ASV8, the muxes between bits 7 and 8, bits 15
and 16 and bits 23 and 24 pass in zeroes, thereby allowing
the adder to perform four independent additions: adding
bits 0-7, bits 8-15, bits 15-23 and bits 23-31, respectively.
While inserting these muxes increases the overall latency of
the adder, we expect this to have no impact on processor
frequency. We evaluate this in Section IV.

Unlike with traditional vector instructions, subword vec-
torization for addition needs to consider the possibility of

4Vector operations for 8-bit data elements exist, such as multimedia ex-
tensions [26], [28]; the key difference is that anytime subword vectorization
computes on full-precision (32-bit) data elements, one subword at a time.

A3 B3

S3

A4 B4

S4

A0 B0

S0

A27 B27

S27

A28 B28

S28

A31 B31

S31

0

1 0

carry

skip

0

1 0

carry

skip

Figure 8: Design of 32-bit adder with SWV support. Muxes
are placed after every 4 full adders for a total of 7 Muxes.

losing carry-out bits between subwords. For example, in
a conventional 32-bit addition, any carry-out when adding
the 8-bit least significant subwords are propagated to the
next subword and eventually accumulated into the 32-bit
sum. However, with anytime subword vectorization, two 8-
bit subword operands (e.g., A[i][LSb] and B[i][LSb]
in Listing 4) are summed into a memory location that is
only 8 bits in size (e.g., X[i][LSb]). Since the subwords
are computed separately (i.e., X[i][MSb] is computed
much earlier than X[i][LSb]), any intermediate carry-out
bits are lost. This is the baseline support that we provide,
where ADD_ASV4 and ADD_ASV8 are used for 4-bit and
8-bit subword additions, respectively. We refer to this as
unprovisioned addition.

For applications where dropping carry-out bits is harmful to
approximation quality, we also support provisioned subword
vectorization. The programmer merely adds a third parameter
to the pragmas in Listing 3: #pragma asv input(A,
8, provisioned). With provisioned vectorization, sub-
words are allocated double the bits to include carry-out bits
in the sum. In this case, ADD_ASV8 and ADD_ASV16 are
used for 4-bit and 8-bit subword additions, respectively. Since
the sum and the carry bits can both be accommodated, there
is no overflow and we are able to always reach the precise
result in the end with no loss of information. This approach
is unique to our anytime WN architecture; conventional
vectorization [26], [28] does not need to support provisioned
addition as it assumes the sum to be the same bit-width as
the operands. We compare unprovisioned and provisioned
addition in Section V-E.

C. Skim Points

Checkpointing ensures forward progress on intermittently
powered systems in the face of frequent power outages.
Checkpointing has been implemented with ultra-low power
processors such as the MSP430 [32], [42] and the ARM
M0+ [18]. These processors consist of traditional volatile
memory elements such as SRAM, which lose data on a power
loss. Thus they are paired up with non-volatile memory such
as Flash [42] or FRAM [32] to allow the system to save state
prior to a power outage. Other processors incorporate non-
volatile memory such as FRAM directly into the processor
pipeline [35]. These processors, designed specifically for
energy harvesting, automatically save state as they proceed.
After power is restored, they resume processing immediately
without needing to restore state from main memory.

Our WN architecture processes more samples than a

conventional energy-harvesting system, by trading off quality
for runtime using SWP and SWV. If an approximate result is
acceptable, we process more input samples and avoid missing
any, which is likely when the precise implementation is
unable to keep up with the rate of incoming samples and must
spend more time computing the precise result. Accepting the
approximate results allows us to then bypass the rest of the
processing for the current set of data and move on to the
new data.

To support this, we introduce skim points, a mechanism for
decoupling the checkpoint location from the restore location.
We implement a new SKM instruction—shown in Listings 2
and 4—which indicates that an acceptable quality level has
been reached. Upon encountering a SKM instruction, the
processor saves the target address in a dedicated SKM non-
volatile register. The system then continues processing the
current input and performs a regular backup upon the next
power outage. When the system resumes from the power
outage however, it first checks the SKM non-volatile register
to see if a skim point was set. If the register was set, the
system jumps to the target address and begins processing the
next input. As shown in line 8 of Listing 4, SKM instructions
are statically inserted in the program by the compiler (or
optionally by the user) after processing all data elements for
each subword. The first skim point is placed at the earliest
point where some approximate output is available, which is
generally after the most significant subwords are processed.

IV. METHODOLOGY

We apply WN to both volatile processor systems [6], [42],
which rely on checkpointing to ensure forward progress
and non-volatile processor systems, which incorporate non-
volatile memory elements such as FRAM directly in the
processor pipeline [35]. For the checkpoint-based volatile
processor, we implement a version of Clank [18], which
uses a writeback buffer to track idempotency violations
and maintain consistent memory state across multiple active
periods. For our non-volatile processor, we implement the
backup-every-cycle policy [35].
Simulation infrastructure. We use a cycle-accurate ARM
M0+ CPU [3] simulator [17]. This CPU, targeted towards
ultra-low power domains such as IoT and energy harvesting,
contains a 2-stage pipeline, no branch predictor or caches
and implements an iterative multiplier that takes 16 cycles to
compute a 16×16 product. The ARM M0+ processor supports
a maximum operating frequency of 48MHz [3]. However,
due to the tight energy budgets of energy-harvesting devices,
processors typically run at much lower frequencies [35]. We
opt for a 24MHz operating frequency [18].
Simulation methodology. Our simulator takes as input 1-
kHz voltage traces captured from a Wi-Fi source [13]. We
model a 10µF capacitor as our energy storage [42]. Our
simulator assumes a constant energy per instruction. This is
consistent with our own hardware validation done using a TI

MSP430 CPU, commonly used for energy-harvesting [22],
[32], [42]. Our measurements show that the energy per
instruction on the MSP430 is also constant [46]. The energy
cost of all instructions (including any additional instructions
due to WN) are faithfully accounted for in our simulations.
To model intermittent execution, each application is invoked
3 times on 9 different voltage traces. We present the median
runtime and error from all the runs in our results.
Benchmarks. Table I lists the kernels evaluated; these kernels
are typically used in energy-harvesting applications [23], [39]
Each program is written in C and compiled using GCC 5.2.
These kernels span a broad range of application domains
and execution times to allow us to explore the diverse areas
energy-harvesting devices are deployed in. These applications
originally use floating point operations; we converted these to
fixed-point, keeping the error between the two to under 1%.
Conv2d, MatMul and Var use 16-bit fixed point values
while Home, NetMotion and MatAdd use 32-bit values.
We also show the percentage of dynamic instructions per
benchmark that are amenable to WN.
Error metric. We use Normalized Root Mean Square Error
(NRMSE) as our quality metric [11], [51]. Since acceptable
quality is inherently subjective and application specific, we
present error curves to demonstrate the runtime-quality trade-
offs as opposed to a choosing a fixed quality target per
application which may or may not be applicable in all cases.

V. EVALUATION

Our experimental results explore trade-offs in application
runtime and output quality in our WN architecture. First,
we show how subword pipelining and subword vectoriza-
tion yield decreasing output error over time (Section V-A).
Then we demonstrate the efficacy of our approach for a
checkpoint-based volatile processor (Section V-B) and a non-
volatile processor (Section V-C). We provide an overview
of the power and area impact of WN (Section V-D) and
detail several case studies that explore the design space of
WN (Section V-E).

A. Runtime-Quality Trade-off

Figure 9 shows the runtime-quality curves for our applica-
tions when applying anytime WN techniques. Each figure
shows the curves for 4-bit and 8-bit subwords. Runtime (x-
axis) is normalized to the conventional precise execution. The
y-axis effectively shows the error in output if the application
was halted by a power outage at that moment. For SWV, we
use provisioned addition.

In all cases, quality improves as the application progresses,
until the final precise output is reached for all benchmarks.
Also, an approximate (yet acceptable) output is available early,
allowing the application to be terminated early. However, our
WN techniques incur runtime overhead to reach the precise
output. This is due to the presence of other instructions
that are not amenable to subword pipelining nor subword

Table I: Benchmark descriptions

Benchmark Area Description Insn % Runtime SWP SWV
2D Convolution (Conv2d) Image Processing 9×9 Gaussian filter applied on a 128×128 grayscale image. 10.49% 1487ms 3

Matrix Multiply (MatMul)
Data processing

Multiplication of two 64×64 Matrices 8.84% 298ms 3

Matrix Addition (MatAdd) Addition of two 64×64 Matrices 8.94% 131ms 3

Home Monitoring (Home)
Environmental
Sensing

Periodic calculation of average conditions (e.g., temperature, humidity) 23.19% 30ms 3

Data Logging (Var) Calculates variance on data gathered from sensors 12.26% 32ms 3

Location Tracking (NetMotion) Wildlife location tracking; calculates net movement over period of time 17.93% 47ms 3

1E-3

1E-2

1E-1

1E+0

1E+1

0 0.5 1 1.5 2 2.5

N
R

M
SE

 (
%

)

runtime (normalized to baseline)

4-bit 8-bit

(a) Runtime-quality trade-off of Conv2d with SWP.

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

0 0.5 1 1.5 2 2.5

N
R

M
SE

 (
%

)

runtime (normalized to baseline)

4-bit 8-bit

(b) Runtime-quality trade-off of MatMul with SWP.

1E-3

1E-2

1E-1

1E+0

1E+1

0 0.5 1 1.5 2 2.5

N
R

M
SE

 (
%

)

runtime (normalized to baseline)

4-bit 8-bit

(c) Runtime-quality trade-off of Var with SWP.

1E-6

1E-4

1E-2

1E+0

1E+2

0 0.5 1 1.5 2 2.5 3

N
R

M
SE

 (
%

)

runtime (normalized to baseline)

4-bit 8-bit

(d) Runtime-quality trade-off of Home with SWV.

1E-6

1E-4

1E-2

1E+0

1E+2

0 0.5 1 1.5 2

N
R

M
SE

 (
%

)

runtime (normalized to baseline)

4-bit 8-bit

(e) Runtime-quality trade-off of MatAdd with SWV.

1E-6

1E-4

1E-2

1E+0

1E+2

0 0.5 1 1.5 2 2.5 3 3.5

N
R

M
SE

 (
%

)

runtime (normalized to baseline)

4-bit 8-bit

(f) Runtime-quality trade-off of NetMotion with SWV.

Figure 9: Runtime-quality trade-off curves.

vectorization and must be re-executed several times due
to the iterative nature of our anytime WN techniques
(e.g., conditional branches, address computation). On devices
with frequent power outages, the benefit of producing outputs
early and enabling interruptible execution outweighs the
cost of longer runtime to the precise result. In the case of
MatAdd (Figure 9e), with 8-bit SWV, an approximate result
is available at only half of the baseline runtime. Terminating
the application at that point would effectively yield a 2×
speedup, with a error of just 0.8%.

Subword granularity controls the trade-off between how
early an approximate output is available and how late
the precise output is obtained. With smaller granularities
(e.g., 4 bits), it generally takes longer for the application to
produce the precise output. The advantage, however, is that
an approximate output is available earlier (e.g., 2× earlier
for 4-bit than 8-bit MatAdd, shown in Figure 9e). If the

higher error (13.6% in 4-bit MatAdd) is tolerable based on
the application, this yields a significant speed-up over the
baseline.

For some applications, quality does not increase smoothly
but rather increases in steps: Var (Figure 9c), Home
(Figure 9d) and NetMotion (Figure 9f). Here, SWP and
SWV are employed on reduction computations. Since regis-
ters are typically used to accumulate results, the output in
non-volatile memory is unchanged until the entire reduction
is finished (i.e., when the application finally stores the
accumulated register value into memory). For instance in
Var, several readings from sensors are summed up to
calculate the variance. Thus, the output quality only increases
once the final variance value is calculated and written to
memory. A smoother quality curve could be obtained by
modifying the benchmarks to update memory more frequently.
However, this would incur additional overhead as the final

0%

5%

10%

15%

20%

25%

0.0x

1.0x

2.0x

3.0x

4.0x

5.0x

N
R

M
SE

 (
%

)

Sp
ee

d
u

p

8-bit speedup 4-bit Speedup 8-bit NRMSE 4-bit NRMSE

Figure 10: Speedup and quality (median NRMSE) of all
benchmarks on volatile processor (with checkpointing)

.

variance calculation would have to be redone each time the
value is written to memory.

Although only 10.53% of instructions (on average) are
targeted by SWP (Table I) these long latency operations
(i.e., multiplies) constitute a substantial portion of the total
execution cycles for these applications. Thus, speeding up
multiplies significantly improves overall program runtime.
Similarly, SWV targets 16.68% of instructions on average.
By effectively vectorizing targeted instructions, we increase
throughout substantially and therefore application speedup.

B. Checkpoint-Based Volatile Processor

In checkpoint-based volatile processor systems, check-
points are invoked periodically to back up the processor
state. With Clank, this checkpointing is caused either by an
idempotency violation or by a periodic watchdog interrupt.
After a power outage, the processor state is recovered from
the most recent checkpoint. This forces the application to
re-execute any instructions after the checkpoint that were
executed before the outage. In WN, skim points are inserted
to indicate that an acceptable level of quality has been reached
for the current input. Upon resuming from a power outage,
the application can skip to the end of the current task and
take its result as-is, producing an approximate output.

Figure 10 shows the median speedup and quality for
all samples. By employing SWP and SWV, we observe
considerable speedups, while still yielding high quality
outputs. WN yields average speedups of 1.78× and 3.02×
with errors of 0.36% and 3.17% for 8-bit and 4-bit subwords.
In the best 8-bit case, Var improves performance by 3.02×
with an error of 2%. In the best 4-bit case, Home achieves
a speedup of 4.69× with an error of 9%. Our skim points
eliminate the high overhead of re-executing instructions from
the last checkpoint in volatile processor systems.

8-bit subword pipelining and subword vectorization gener-
ally produce higher quality results than the 4-bit techniques
while 4-bit subword pipelining and subword vectoriza-
tion yield higher speedups. This is expected since using
4-bit subwords allows for the output to be available earlier.
However, as discussed in Section V-A, this comes at a cost
of higher runtime overhead to reach the precise result. As a

0%

5%

10%

15%

20%

25%

0.0x

1.0x

2.0x

3.0x

4.0x

N
R

M
SE

 (
%

)

Sp
ee

d
u

p

8-bit speedup 4-bit Speedup 8-bit NRMSE 4-bit NRMSE

Figure 11: Speedup and quality (median NRMSE) for all
benchmarks on NVP while varying the active power period.

result, 4-bit techniques incur greater overhead compared to
the precise case than the 8-bit versions.

C. Non-Volatile Processor

In the section, we evaluate the runtime-quality trade-off
of our anytime approximations in the presence of frequent
power outages, assuming a non-volatile processor (NVP).
In a non-volatile processor, the processor’s current state
(e.g., program counter, register file) is backed up every
cycle. Effectively, the current progress of the application
is automatically checkpointed when power is lost. Similar
to the checkpoint-based processor system, skim points allow
the application to skip to the end of the current task and
take its current result in non-volatile memory as-is, thereby
producing an approximate output. Note that these results are
not meant to compare non-volatile processors to checkpoint-
based volatile processors but rather to show that WN provides
benefits on both.

Figure 11 shows the speed-up and error for all benchmarks
on NVP. The overall trend for NVP closely matches the
results for checkpoint-based volatile processors (Section V-B).
Our WN techniques yield average speedups of 1.41× and
2.26× with 8-bit and 4-bit subwords. In the best case,
MatAdd improves performance by 1.78× and 3.44×, with
output quality errors of 0.01% and 12.5% for 8-bit and 4-bit.

In general, we observe higher speedups with a checkpoint-
based volatile processor than a non-volatile processor. This
is expected as the checkpoint-based processor incurs greater
re-execution overhead than the non-volatile processor, which
saves state automatically. Thus, WN, which produces an
approximate output sooner, avoids much of the re-execution
overhead incurred by checkpoint-based systems leading to
greater speedups on these systems.

D. Area and Power Analysis

For synthesis, we use the Synopsys Design Compiler Ver-
sion N-2017.09. As energy-harvesting devices are typically
manufactured at older technologies (e.g., 90nm [50]), we use
TSMC’s 65nm (nominal) process technology [31]. For area
and power estimation, we use Cadence Innovus v16.22-s071
and Mentor Graphics ModelSim SE 10.4c.

1E-4

1E-3

1E-2

0.5 0.75 1 1.25 1.5

N
R

M
SE

 (
%

)

runtime (normalized to baseline)

non-vector loads vector loads

(a) 8-bit

1.E-8

1.E-6

1.E-4

1.E-2

1.E+0

0 0.5 1 1.5 2 2.5

N
R

M
SE

 (
%

)

runtime (normalized to baseline)

non-vector loads vector loads

(b) 4-bit

Figure 12: Runtime-quality trade-off of MatMul with and
without subword vectorization on load instructions.

Using synthesis, we obtain an Fmax of 1.12 GHz. As this
is orders of magnitude above the 24MHz operating frequency
of the CPU, the addition of the muxes has no impact on
processor performance. The muxes in our carry chain incur
an additional 0.02% area overhead, compared to a Cortex
M0+ CPU implemented in 65nm [38]. The addition of the
muxes increases the power consumption of the adder by
4%. Energy savings stem from the reduction in instructions
executed, which we show in our prior performance results.

E. Design Exploration

In this section, we detail several case studies that explore
the design space of WN.
Combining Vectorization and Pipelining. We have thus
far focused on evaluating the impact of SWP and SWV
separately. However, these two techniques are orthogonal and
can be applied simultaneously to reap further gains. Figure 12
shows the runtime-quality curves for MatMul when applying
both SWV and SWP. Specifically, the input data is transposed
to subword-major order, enabling subword vectorization of
the load instructions. Without SWV, each load instruction
retrieves each data word in its entirety (i.e., all subwords)
to perform a multiplication with SWP. This wastes memory
bandwidth since only one of the subwords is needed for the
pipelined multiplication. By vectorizing the loads, we better
utilize bandwidth and improve performance. Applying load
SWV to MatMul produces approximate outputs 1.08× and
1.24× earlier than without vectorization for 8-bit and 4-bit
subwords.
Memoization. In this section, we explore the efficacy of
memoization when used in conjunction with SWP. We employ

1 1.11
1.31 1.42

1.7
1.97

0.0x

0.5x

1.0x

1.5x

2.0x

No table 16-entry No table 16-entry No table 16-entry

Precise 8-bit 4-bit

Sp
ee

d
u

p

Figure 13: Speedup of Conv2d (when earliest available
input is taken) with and without memoization and zero
skipping. Results are normalized to the precise case, with no
memoization or zero skipping.

1E-6

1E-4

1E-2

1E+0

1E+2

0 0.5 1 1.5 2

N
R

M
SE

 (
%

)

runtime (normalized to baseline)

baseline provisioned

Figure 14: Runtime-quality trade-off of MatAdd with and
without provisioned subword vectorization.

a 16-entry direct-mapped lookup table that stores the results
from prior multiplication operations.5 The index into the
table is the concatenation of the two least significant bits
of both operands, while the lookup tag is the concatenation
of the upper 14 bits of both operands. In the case of 16-bit
memoization, we use all 28 tag bits. However, for 8-bit and
4-bit cases we only use 20 bits and 16 bits, respectively.

Figure 13 shows the results for Conv2d when the earliest
available output is taken, with and without memoization and
zero skipping enabled. The speedups are shown normalized
to the precise case, with no memoization or zero skipping.
Memoization and zero skipping further improve the speedup
offered by SWP, from 1.7× to 1.97× for the 4-bit case and
from 1.31× to 1.42× for the 8-bit case, while speeding
up the precise case by 1.11×. The greater speedup for
smaller subwords is expected as smaller subwords are more
likely to be repeated often and therefore hit in the table,
offering greater benefits for SWP compared to the precise
case. Similarly, smaller subwords increase the chances for
more zeros to be seen, making zero skipping more effective
when used in conjunction with SWP. We use CACTI [30]
and find that the 16-entry table only occupies 40.5% of the
area of a 16x16 multiplier, making memoization a viable
option for systems employing WN.
Provisioned Vectorization for Addition. Provisioned addi-
tion allocates extra space to alleviate overflow for computa-
tions that produce carry bits (i.e., addition and subtraction).
Although the unprovisioned case yields an approximate
output slightly earlier, its approximation quality sees little
improvement over time and does not approach the precise

5We empirically determine that more entries only provides modest
additional improvements at the cost of extra area.

0%

10%

20%

30%

0.0x

1.0x

2.0x

3.0x

1-bit 2-bit 3-bit 4-bit

N
R

M
SE

 (
%

)

Sp
ee

d
u

p

Figure 15: Speedup and error of Conv2d when earliest
available output is taken with small subwords.

(a) 1-bit (b) 2-bit (c) 3-bit

Figure 16: Earliest available outputs of Conv2d with small
subwords.

result, due to overflow as shown in Figure 14 (the provisioned
case uses 8 bits per subword). The error for the unprovisioned
case does not decrease when subsequent subwords are
processed. The original 32-bit inputs in an application are
not likely to overflow since they typically do not utilize
all 32 bits. However, with subword vectorization, there is
much higher risk of overflow in the subword results since
less significant subwords are likely to fully utilize their bits.
Using provisioned addition, we eliminate this issue, and
ensure that we eventually reach the precise output as shown
in Section V-A. Provisioned addition marries well with our
goal of producing progressively higher quality results with
each subsequent subword processed. While provisioning is
an issue with operations such as addition and subtraction,
bitwise operations such as AND, OR, NOT etc., can reap
the full performance gains of our unprovisioned SWV.
Pipelining with Small Subwords. Though we have focused
on 8-bit and 4-bit subwords, it is possible to use even smaller
subwords. This section explores the use of 3-, 2- and 1-bit
subwords for SWP. Figure 15 shows the speedup (relative to
the baseline) and quality of Conv2d if the applications were
terminated as soon as an approximate output is available
(i.e., as soon as the most significant subword is processed
in our experiments). Smaller subwords have higher error but
yield greater speedups. Figure 16 visualizes the approximate
outputs of Conv2d with 4-, 3-, 2- and 1-bit subword
pipelining. Contrast these outputs to that of the baseline
precise execution in Figure 2a. In a conventional processor,
terminating the application halfway (i.e., 2× speedup) yields
an unacceptable output (Figure 2b). However, by applying
1-bit subword pipelining, a complete output (Figure 16a) is
achievable with a speedup of 2.26×.
Comparison to Input Sampling. The Var benchmark
collects information from eight sensors and periodically
calculates the variance of the dataset for logging. Figure 17

15

17

19

21

23

25

27

0 5 10 15 20 25

V
ar

ia
n

ce

Data set

Precise WN Sampled

Figure 17: WN vs. input sampling for the Var benchmark.

shows a comparison of the results from this benchmark
using WN vs. input sampling, for 24 data sets. Recall from
Figure 9c that the Var benchmark takes half the time to
calculate the first 4-bits of the result compared to the precise
implementation. Thus, WN can process two samples for each
sample that can be processed by the precise implementation,
with the same energy budget. WN faithfully captures the
peaks and troughs of the input signal, with only a 1.53%
average error in the measured values.

F. Evaluation Summary

We present experimental results that demonstrate the effi-
cacy of our WN mechanisms—subword pipelining, subword
vectorization and skim points—on intermittent computing
systems. Our applications achieve favorable runtime-quality
curves that enable early availability of approximate (yet
acceptable) outputs. Our WN techniques are effective in
both non-volatile processors and checkpoint-based volatile
processors, achieving average speedups of 1.41× (8-bit) and
2.26× (4-bit) in the former and 1.78× (8-bit) and 3.02×
(4-bit) in the latter.

VI. RELATED WORK

In this section, we highlight relevant work in three areas:
techniques for energy-harvesting systems, anytime algorithms
and reduced precision arithmetic.
Energy-Harvesting Devices. Several schemes have been
proposed to allow energy-harvesting systems to make forward
progress in the face of power outages [4], [5], [16]. Prominent
techniques targeting volatile processors include Memen-
tos [42], Hibernus [6], QuickRecall [22] and Clank [18].
There has also been much work in designing entirely non-
volatile processors [33], [35], [41], [44].

Recent work [34] also addresses the timeliness of outputs
on energy-harvesting systems. That work mines historical
information from past inputs, retained in non-volatile memory,
to improve the quality of those results in parallel with
processing new data. Our work differs in several significant
ways. We focus on processing the current data to an
acceptable level of quality before moving onto the new
data. As data in energy-harvesting systems is predominantly
transmitted off-device, the technique proposed by Ma et
al. adds additional overhead on the receiving server to keep
track of multiple copies of a single output, each of possibly

varying quality for the same input data. This also requires
that any processing that depends on this output must be re-
executed when a new output is received. Our work requires
only minor changes to hardware; Ma et al. require significant
changes such as SIMD units and buffers to store information
from previous executions in order to improve on prior results.
Anytime Algorithms. Anytime algorithms produce an output
whose accuracy increases over time and were initially devel-
oped for time-dependent planning and decision-making [9],
[19], [29]. Anytime algorithms are most applicable in
applications operating under real-time constraints where
lower output quality is preferred to exceeding time limits.
In contrast, we focus on the energy budget rather than the
time constraints. Prior work considers the optimal scheduling
policies [14], [48] and the error composition of anytime
algorithms [53]. In computer architecture, there has been
little work looking at anytime algorithms. Existing work
includes the Anytime Automaton [45] on which this paper
builds and work that explores porting contract anytime
algorithms to GPUs and providing CUDA-enabled online
quality control [36]. There has also been work that combines
novel coding techniques with anytime principles to reduce
the impact of stragglers in distributed computations [12].
Reduced-Precision Arithmetic. Reduced precision compu-
tation has been proposed across a number of domains [37],
[43]. Reduced precision is used in deep neural networks to
trade off accuracy for more efficient execution [24]. Bit-serial
computation of reduced-precision operations can achieve even
greater efficiency [25]. Bit-serial computation bears some
similarity to our anytime subword computations; the key
differences are 1) granularity and 2) our anytime approach
is flexible, allowing computations to stop early. One of the
key distinctions in our work is that we do not unilaterally
reduce the precision of our computations; we take an anytime
approach that may compute a reduced-precision result if the
energy budget does not permit the full computation but also
may produce the full result. Not all operands require the full-
width precision of their datatype; dynamically recognizes
operations that require less precision and performing these
operations on a narrower bit-width saves power [7]; in
contrast, we assume the full-width is needed and dynamically
select how much of the data to process based on power
available and desired quality.

VII. CONCLUSION

In this paper, we present novel techniques for anytime
approximations on energy-harvesting devices. Specifically,
we provide architectural support for subword pipelining and
subword vectorization, allowing computations to dynamically
process the most significant bits first. We then introduce
skim points, which decouple the checkpoint locations from
their recovery locations. Together, these mechanisms allow
applications to produce an approximate (yet acceptable)
output early. Then in a best-effort manner, the application

can continue refining the results towards the precise output.
When a power outage occurs, the application bypasses to the
end and takes its current approximate result as-is, enabling
greater forward progress. We observe speedups of 2.26×
and 3.02× on non-volatile and checkpoint-based volatile
processors, respectively, while still producing high-quality
outputs.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers and members
of the NEJ group for their valuable feedback. We also
thank Mostafa Mahmoud for his help with synthesis. This
research has been funded in part by the Computing Hardware
for Emerging Intelligent Sensory Applications (COHESA)
project. COHESA is financed under the National Sciences and
Engineering Research Council of Canada (NSERC) Strategic
Networks grant number NETGP485577-15. This work is
further supported by a Percy Edward Hart Early Career
Professorship, an IBM PhD Fellowship, the University of
Toronto and the University of Wisconsin-Madison.

REFERENCES

[1] J. Albericio et al., “Cnvlutin: Ineffectual-neuron-free deep neu-
ral network computing,” in Int. Sym. on Computer Architecture,
2016.

[2] R. Allen and K. Kennedy, Optimizing compilers for mod-
ern architectures: a dependence-based approach. Morgan
Kaufmann San Francisco, 2002, vol. 289.

[3] ARM Cortex M0+ Technical Reference Manual, ARM Tech-
nologies Ltd., https://bit.ly/2KZ1WGf.

[4] D. Balsamo et al., “Graceful performance modulation for
power-neutral transient computing systems,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 5, pp. 738–749, 2016.

[5] D. Balsamo et al., “Hibernus++: A self-calibrating and
adaptive system for transiently-powered embedded devices,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 35, no. 12, pp. 1968–1980, 2016.

[6] D. Balsamo et al., “Hibernus: Sustaining Computation During
Intermittent Supply for Energy-Harvesting Systems,” IEEE
Embedded Systems Letters, 2015.

[7] D. Brooks and M. Martonosi, “Dynamically exploiting narrow
width operands to improve processor power and performance,”
in High-Performance Computer Architecture, 1999, pp. 13–22.

[8] D. Citron, D. Feitelson, and L. Rudolph, “Accelerating multi-
media processing by implementing memoing in multiplication
and division units,” in Architectural Support for Programming
Languages and Operating Systems, 1998, pp. 252–261.

[9] T. L. Dean and M. Boddy, “An analysis of time-dependent
planning,” in AAAI, 1988.

[10] C. G. Enright et al., “Modelling glycaemia in ICU patients:
A dynamic Bayesian network approach,” in Int. Conf. on
Biomedical Engineering Systems and Technologies, 2010.

[11] H. Esmaeilzadeh et al., “Architecture support for disciplined
approximate programming,” in Architectural Support for
Programming Languages and Operating Systems, 2012.

[12] N. S. Ferdinand and S. C. Draper, “Anytime coding for
distributed computation,” in IEEE Allerton conference on
Communication, Control, and Computing, 2016, pp. 954–960.

https://bit.ly/2KZ1WGf

[13] M. Furlong et al., “Realistic simulation for tiny batteryless
sensors,” in International Workshop on Energy Harvesting
and Energy-Neutral Sensing Systems, 2016.

[14] A. Garvey and V. Lesser, “Design-to-time real-time scheduling,”
IEEE Transactions on Systems, Man, and Cybernetics, 1993.

[15] T. N. Gia et al., “IoT-based continuous glucose monitoring
system: A feasibility study,” in Int. Conf. on Sustainable
Energy Information Technology, 2017.

[16] J. Hester, L. Sitanayah, and J. Sorber, “Tragedy of the
Coulombs: Federating energy storage for tiny, intermittently-
powered sensors,” in ACM Conference on Embedded Net-
worked Sensor Systems, 2015.

[17] M. Hicks, Thumbulator: Cycle accurate ARMv6-m instruction
set simulator., 2016, https://bit.ly/2RJX36A.

[18] M. Hicks, “Clank: Architectural Support for Intermittent
Computation,” in Int. Sym. on Computer Architecture, 2017.

[19] E. J. Horvitz, “Reasoning about beliefs and actions under com-
putational resource constraints,” in Workshop on Uncertainty
in Artificial Intelligence, 1987.

[20] Intel AVX-512, Intel Corp., https://intel.ly/2SyYl4i.
[21] ISO Accuracy standards for Diabetes Monitoring, ISO, https:

//bit.ly/2dLMX03.
[22] H. Jayakumar, A. Raha, and V. Raghunathan, “QUICKRE-

CALL: A low overhead HW/SW approach for enabling
computations across power cycles in transiently powered
computers,” in Int. Conf. on Embedded Systems, 2014, pp.
330–335.

[23] P. Juang et al., “Energy-efficient computing for wildlife
tracking: Design tradeoffs and early experiences with zebranet,”
in Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2002.

[24] P. Judd et al., “Proteus: Exploiting numerical precision variabil-
ity in deep neural networks,” in Int. Conf. on Supercomputing,
2016.

[25] P. Judd et al., “Stripes: Bit-serial deep neural network
computing,” in IEEE/ACM Int. Sym. on Microarchitecture,
2016, pp. 1–12.

[26] L. Kohn et al., “The visual instruction set (VIS) in ultrasparc,”
in Compcon’95. ’Technologies for the Information Superhigh-
way’, Digest of Papers. IEEE, 1995, pp. 462–469.

[27] R. Lee, “Memo functions and machine learning,” Nature, vol.
218, pp. 19–22, 1968.

[28] R. Lee, “Subword parallelism with MAX-2,” IEEE Micro,
vol. 16, no. 4, pp. 51–59, 1996.

[29] V. Lesser, J. Pavlin, and E. Durfee, “Approximate processing
in real-time problem-solving,” AI Magazine, 1988.

[30] S. Li et al., “CACTI-P: Architecture-level modeling for sram-
based structures with advanced leakage reduction techniques,”
in Int. Conf. on Computer-Aided Design, 2011, pp. 694–701.

[31] Y. Liu et al., “A 65nm reram-enabled nonvolatile processor
with 6x reduction in restore time and 4x higher clock
frequency,” in 2016 IEEE International Solid-State Circuits
Conference (ISSCC), 2016.

[32] B. Lucia and B. Ransford, “A Simpler, Safer Programming
and Execution Model for Intermittent Systems,” in Int. Conf.
on Programming Language Design and Implementation, 2015.

[35] K. Ma et al., “Architecture exploration for ambient energy
harvesting nonvolatile processors,” in Proceedings of the Int.
Sym. on High Performance Computer Architecture, 2015.

[33] K. Ma et al., “NEOFog: Nonvolatility-exploiting optimizations
for fog computing,” in Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, 2018.

[34] K. Ma et al., “Incidental computing on IoT nonvolatile
processors,” in Int. Sym. on Microarchitecture, 2017.

[36] R. Mangharam and A. A. Saba, “Anytime Algorithms for
GPU Architectures,” in RTSS, 2011.

[37] T. Moreau et al., “Approximating to the last bit,” in Workshop
on Approximate Computing, 2016.

[38] J. Myers et al., “An 80nw retention 11.7pj/cycle active
subthreshold arm cortex-m0+ subsystem in 65nm cmos for
wsn applications,” IEEE International Solid-State Circuits
Conference, 2015.

[39] S. Naderiparizi et al., “WISPCam: A battery-free RFID
camera,” in IEEE Int. Conf. on RFID, 2015.

[40] G. O’Leary et al., “Nurip: Neural interface processor for
brain-state classification and programmable-waveform neu-
rostimulation,” IEEE Journal of Solid-State Circuits, 2018.

[41] M. Qazi, A. Amerasekera, and A. P. Chandrakasan, “A 3.4-pJ
FeRAM-enabled D flip-flop in 0.13-m CMOS for nonvolatile
processing in digital systems,” in IEEE Journal of Solid-State
Circuits, vol. 49, 2014, pp. 202–211.

[42] B. Ransford, J. Sorber, and K. Fu, “Mementos: system support
for long-running computation on RFID-scale devices,” in Int.
Conf. on Architectural Support for Programming Languages
and Operating Systems, 2011.

[43] C. Rubio-Gonzalez et al., “Precimonious: Tuning assistant
for floating-point precision,” in Int. Conf. High Performance
Computing, Networking, Storage and Analysis, 2013.

[44] N. Sakimura et al., “A 90nm 20MHz fully nonvolatile
microcontroller for standby-power-critical applications,” in
IEEE International Solid-State Circuits Conference Digest of
Technical Papers, 2014.

[45] J. San Miguel and N. Enright Jerger, “The Anytime Automa-
ton,” in Int. Sym. on Computer Architecture, 2016.

[46] J. San Miguel et al., “The EH Model: Early Design Space
Exploration of Intermittent Processor Architectures,” in Int.
Sym. on Microarchitecture, 2018.

[47] M. W. Shafer and E. Morgan, “Energy Harvesting for Marine-
Wildlife Monitoring,” in ASME Conference on Smart Materials,
Adaptive Structures and Intelligent Systems, 2014.

[48] W.-K. Shih, J. W. S. Liu, and J.-Y. Chung, “Fast algorithms
for scheduling imprecise computations,” in RTSS, 1989.

[49] A. Sodani and G. Sohi, “Dynamic Instruction Reuse,” in Int.
Sym. on Computer Architecture, 1997.

[50] Microcontroller Advances from STMicroelectronics Extend
Performance Leadership for Smarter Technology Everywhere,
ST Microelectronics, https://bit.ly/2PofKuy.

[51] A. Yazdanbakhsh et al., “RFVP: Rollback-free value predic-
tion with safe-to-approximate loads,” ACM Transactions on
Architecture and Code Optimization, 2016.

[52] F. Zamora-Martinez et al., “On-line learning of indoor temper-
ature forecasting models towards energy efficiency,” Energy
and Buildings, vol. 83, pp. 162–172, 2014.

[53] S. Zilberstein, “Operational Rationality through Compilation
of Anytime Algorithms,” Ph.D. dissertation, Technion - Israel
Institute of Technology, 1982.

https://bit.ly/2RJX36A
https://intel.ly/2SyYl4i
https://bit.ly/2dLMX03
https://bit.ly/2dLMX03
https://bit.ly/2PofKuy

