
DINAR: Enabling Distribution Agnostic Noise

Injection in Machine Learning Hardware

Karthik Ganesan, Victor Kariofillis, Julianne Attai, Ahmed Hamoda, Natalie Enright Jerger

October 29, 2023

HASP 2023

Executive Summary

❑ Security-centric ML algorithms require random noise, which
current edge ML accelerators cannot provide.

❑ Existing hardware techniques for generating noise add significant
overhead and leaks side-channel information.

❑ DINAR: light-weight hardware modifications to support noise
addition.

❑ DINAR enables important ML algorithms while adding <0.5% area,
energy and latency overheads.

2

Edge ML accelerators

❑ ML is being deployed in devices ranging from cloud to edge.

3

C
o

n
tro

l Lo
gic

MAC Array

Off-chip (DRAM)

GLB (SRAM)

Mem. Controller

❑ We focus on edge ML accelerators, as prior
works show attacks against them.1,2

❑ Security-centric ML algorithms require
random noise.
❑ Current chips lack CPUs to provide noise.3-5

❑ Important algorithm that requires noise:

Differentially private ML (DP-ML)

Regular edge training

4

❑ Avoids sending private user data to
a central server and instead trains
locally.

❑ The trained model is then released,
while keeping user data private.

❑ However, even the trained model
can leak private user data.9

Private
User data

Local
training

Model
deployment

Private domain Public domain

Differentially private training

5

❑ DP-ML avoids this by adding a small
amount of noise to each user’s data.

❑ Most common is adding Laplace or
Gaussian sampled noise.10

❑ However, learning the added noise
can undermine security.11,12

❑ We focus on securely producing
noise on-chip.

Private
User data

Local
training

Model
deployment

Hardware noise generation

❑ Many prior works have proposed techniques to generate Laplace
and Gaussian noise in hardware.13-19

❑ However, these approaches suffer from several drawbacks:
1. Use complex functions (e.g., Cos/Sin, ln, sqrt) which require lookup tables.

2. Only produce fixed-point values and must be converted to floating point.

3. Suffer from timing-side channels.11,12

6

DINAR: Overview

❑ Pre-compute and store the noise points
ahead of time in plentiful off-chip
DRAM.

❑ Noise values are then loaded along with
model weights from DRAM.

❑ Only requires changes to the on-chip
DRAM memory controller.

7

C
o

n
tro

l Lo
gic

MAC Array

Off-chip (DRAM)

GLB (SRAM)

Mem. Controller

Noise values

DINAR

DINAR: Hardware

❑ DINAR modifies the DRAM address
generation logic

❑ DRAM address is typically calculated as
a base + an offset

❑ For sequential reads, the offset is
incremented by a stride each cycle

❑ For DINAR, we modify this hardware to
support random reads

8

offset

Generate random

address

𝑅𝑁𝐺

clock

stride baseExisting

DINAR

address

DINAR: Hardware Scrambling

❑ The datatype width is typically less than the bus width.
❑ We read a fixed set of values each time.

❑ Could lead to a loss of security.

❑ To increase randomness, we also include hardware to randomly
scramble the values read.

9

A B C D

C A D B

D C A B

Values in DRAM

Read 0

Read N
…

Baseline implementation: NoiseGen

10

❑ Our baseline implementation of prior work to produce
Gaussian and Laplace random numbers.

ln(𝑈0)

𝑠𝑖𝑛(2𝜋𝑈1)

𝑐𝑜𝑠(2𝜋𝑈1)

𝑈0

𝑈1

𝑈1 {𝐺0
𝜎 , 𝐿0

𝜎}

𝐺1
𝜎

×

×𝑅𝑁𝐺

<<1
-

ln(𝑈0)

𝑈0

0
 1

1
 0

0 1

1 0

Mode

Mode

0.5

0

𝑠𝑖𝑔𝑛𝐿 𝐿

×

×

𝜎

𝜎

Methodology: Test setup

11

❑Model accelerators using Accelergy [21].

❑Evaluate 3 models using two datasets, using the Opacus [22]
library for PyTorch.

Model CIFAR-10 CIFAR-100

PreActResNet-18 ✓ ✓

WideResNet-32 ✓ ✓

VGG-16 ✓

❑We use DiVa [20] as our baseline accelerator.

❑ DiVa has no support for adding noise.

❑We evaluate two designs:

 DiVa-NoiseGen and DiVa-DINAR

Evaluation

12

❑ Latency:

❑ Both designs are optimized for performance so add <0.5% latency
overhead.

❑ Area and Energy:

Metric DiVA-DINAR DiVA-NoiseGen

Area overhead 0.4% 9.38%

Energy overhead 0.2% 8.15%

23x

40x

Evaluation: DRAM overhead

13

❑ DINAR requires storing noise points in DRAM.

❑ Even with 219 points, we only add 5% overhead compared to our
smallest model.

No. of noise
points

Storage (KB) Footprint over
smallest model

65536 128 0.56%

131072 256 1.11%

262144 512 2.23%

524288 1024 4.47%

Conclusion

14

❑ Existing edge ML accelerators cannot run security-critical ML
algorithms, as they lack CPUs.

❑ We present DINAR: light-weight hardware for using pre-computed
noise points.

❑ Demonstrate DINAR using differentially-private ML.

❑ Also show DINAR for adversarial robustness in the paper.

❑ DINAR enables key algorithms while adding <0.5% area, energy and
latency overheads.

	Slide 1: DINAR: Enabling Distribution Agnostic Noise Injection in Machine Learning Hardware
	Slide 2: Executive Summary
	Slide 3: Edge ML accelerators
	Slide 4: Regular edge training
	Slide 5: Differentially private training
	Slide 6: Hardware noise generation
	Slide 7: DINAR: Overview
	Slide 8: DINAR: Hardware
	Slide 9: DINAR: Hardware Scrambling
	Slide 10: Baseline implementation: NoiseGen
	Slide 11: Methodology: Test setup
	Slide 12: Evaluation
	Slide 13: Evaluation: DRAM overhead
	Slide 14: Conclusion

