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Executive Summary

❑ Security-centric ML algorithms require random noise, which 
current edge ML accelerators cannot provide.

❑ Existing hardware techniques for generating noise add significant 
overhead and leaks side-channel information.

❑ DINAR: light-weight hardware modifications to support noise 
addition.

❑ DINAR enables important ML algorithms while adding <0.5% area, 
energy and latency overheads. 
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Edge ML accelerators

❑ ML is being deployed in devices ranging from cloud to edge.
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❑ We focus on edge ML accelerators, as prior 
works show attacks against them.1,2

❑ Security-centric ML algorithms require 
random noise.
❑ Current chips lack CPUs to provide noise.3-5

❑ Important algorithm that requires noise: 

Differentially private ML (DP-ML)



Regular edge training
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❑ Avoids sending private user data to 
a central server and instead trains 
locally. 

❑ The trained model is then released, 
while keeping user data private.

❑ However, even the trained model 
can leak private user data.9
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Differentially private training
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❑ DP-ML avoids this by adding a small 
amount of noise to each user’s data.

❑ Most common is adding Laplace or 
Gaussian sampled noise.10

❑ However, learning the added noise 
can undermine security.11,12

❑ We focus on securely producing 
noise on-chip. 
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Hardware noise generation

❑ Many prior works have proposed techniques to generate Laplace 
and Gaussian noise in hardware.13-19

❑ However, these approaches suffer from several drawbacks:
1. Use complex functions (e.g., Cos/Sin, ln, sqrt) which require lookup tables.

2. Only produce fixed-point values and must be converted to floating point.

3. Suffer from timing-side channels.11,12
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DINAR: Overview

❑ Pre-compute and store the noise points 
ahead of time in plentiful off-chip 
DRAM.

❑ Noise values are then loaded along with 
model weights from DRAM.

❑ Only requires changes to the on-chip 
DRAM memory controller. 
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DINAR: Hardware

❑ DINAR modifies the DRAM address 
generation logic

❑ DRAM address is typically calculated as 
a base + an offset

❑ For sequential reads, the offset is 
incremented by a stride each cycle

❑ For DINAR, we modify this hardware to 
support random reads
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DINAR: Hardware Scrambling

❑ The datatype width is typically less than the bus width. 
❑ We read a fixed set of values each time.

❑ Could lead to a loss of security.

❑ To increase randomness, we also include hardware to randomly 
scramble the values read. 

9

A B C D

C A D B

D C A B

Values in DRAM

Read 0

Read N
…



Baseline implementation: NoiseGen
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❑ Our baseline implementation of prior work to produce 
Gaussian and Laplace random numbers. 

ln(𝑈0)

𝑠𝑖𝑛(2𝜋𝑈1)

𝑐𝑜𝑠(2𝜋𝑈1)

𝑈0

𝑈1

𝑈1 {𝐺0
𝜎 , 𝐿0

𝜎}

𝐺1
𝜎

×

×𝑅𝑁𝐺

<<1
-

ln(𝑈0)

𝑈0

0
      1

1
      0

0     1

1     0

Mode

Mode

0.5

0

𝑠𝑖𝑔𝑛𝐿 𝐿

×

×

𝜎

𝜎



Methodology: Test setup
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❑Model accelerators using Accelergy [21].

❑Evaluate 3 models using two datasets, using the Opacus [22] 
library for PyTorch.

Model CIFAR-10 CIFAR-100

PreActResNet-18 ✓ ✓

WideResNet-32 ✓ ✓

VGG-16 ✓

❑We use DiVa [20] as our baseline accelerator. 

❑ DiVa has no support for adding noise.

❑We evaluate two designs: 

     DiVa-NoiseGen and DiVa-DINAR



Evaluation

12

❑ Latency: 

❑ Both designs are optimized for performance so add <0.5% latency 
overhead.

❑ Area and Energy:

Metric DiVA-DINAR DiVA-NoiseGen

Area overhead 0.4% 9.38%

Energy overhead 0.2% 8.15%

23x

40x



Evaluation: DRAM overhead
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❑ DINAR requires storing noise points in DRAM.

 

❑ Even with 219 points, we only add 5% overhead compared to our 
smallest model. 

No. of noise 
points

Storage (KB) Footprint over 
smallest model

65536 128 0.56%

131072 256 1.11%

262144 512 2.23%

524288 1024 4.47%



Conclusion
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❑ Existing edge ML accelerators cannot run security-critical ML 
algorithms, as they lack CPUs.

❑ We present DINAR: light-weight hardware for using pre-computed 
noise points.

❑ Demonstrate DINAR using differentially-private ML. 

❑ Also show DINAR for adversarial robustness in the paper. 

❑ DINAR enables key algorithms while adding <0.5% area, energy and 
latency overheads. 
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