
DINAR: Enabling Distribution Agnostic Noise Injection in
Machine Learning Hardware

Karthik Ganesan
karthik.ganesan@mail.utoronto.ca

University of Toronto
Toronto, ON, Canada

Viktor Karyofyllis
viktor.karyofyllis@mail.utoronto.ca

University of Toronto
Toronto, ON, Canada

Julianne Attai∗
julianne.attai@mail.utoronto.ca

University of Toronto
Toronto, ON, Canada

Ahmed Hamoda∗
a.hamoda@mail.utoronto.ca

University of Toronto
Toronto, ON, Canada

Natalie Enright Jerger
enright@ece.utoronto.ca
University of Toronto
Toronto, ON, Canada

Abstract

Machine learning (ML) has seen a major rise in popularity on edge
devices in recent years, ranging from IoT devices to self-driving
cars. Security in a critical consideration on these platforms. State-
of-the-art security-centric ML algorithms (e.g., differentially private
ML, adversarial robustness) require noise sampled from Laplace or
Gaussian distributions. Edge accelerators lack CPUs [15, 25, 36, 50]
to add such noise. Existing hardware approaches to generate noise
on-the-fly incur high overheads and leak side-channel information
that can undermine security [34, 47]. To remedy this, we propose
DINAR,1 lightweight hardware that enables noise addition from
arbitrary distributions. For differentially private ML, DINAR en-
ables noise addition while incurring 23× lower area and 40× lower
energy compared to producing noise directly on-chip.

CCS Concepts

• Computer systems organization → Embedded hardware; Neu-
ral networks; • Security and privacy → Embedded systems

security.

Keywords

Machine learning security, Neural network accelerators, adversarial
attacks, differential privacy

ACM Reference Format:

Karthik Ganesan, Viktor Karyofyllis, JulianneAttai, AhmedHamoda, andNa-
talie Enright Jerger. 2023. DINAR: Enabling Distribution Agnostic Noise
Injection in Machine Learning Hardware. In Hardware and Architectural
Support for Security and Privacy 2023 (HASP ’23), October 29, 2023, Toronto,
Canada. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3623652.
3623665

∗Both authors contributed equally to this research.
1DINAR: Distribution Independent Noise Addition for Robustness

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HASP ’23, October 29, 2023, Toronto, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1623-2/23/10. . . $15.00
https://doi.org/10.1145/3623652.3623665

1 Introduction

Given their tremendous advances in recent years, machine learning
(ML) applications now run on devices from simple edge platforms to
large, cloud-based accelerators [11]. However, due to tight energy,
area and cost constraints, edge ML accelerators typically lack a
CPU [15, 25, 36, 50]. As a result, the accelerator is responsible not
only for performance but also for security. As prior work shows,
security is a first class concern on edge devices [4].

In this paper, we identify a critical gap in current ML accelerators
that prevents them from running security-centric ML algorithms.
Namely, these algorithms require random values, sampled from
specific distributions (e.g., Gaussian or Laplace). Examples of such
algorithms include: differentially private ML (DP-ML), adversarial
robustness and secure split inference.

We focus on DP-ML due to its increasing popularity for privacy-
preserving ML in academia [10] and industry [5]. We explore ad-
versarial robustness in Sec. 6 and secure split inference in Sec. 7.
Differential Privacy (DP) is a widely used statistical technique to
operate on large collections of private data, while protecting the pri-
vacy of each individual [3]. DP-ML extends the privacy-preserving
guarantees of DP to ML models. Prior work shows that models
trained on private user data can ‘memorize’ specific examples and
leak sensitive information [22]. To ensure the integrity of ML mod-
els trained on private data, DP-ML adds Gaussian or Laplace random
values to the activations of each layer during training.

As they lack CPUs, current edgeML accelerators cannot generate
random values in hardware. One option is to include dedicated hard-
ware for producing random values; however, existing approaches to
do so suffer from a number of drawbacks: 1) They impose high over-
heads (Sec. 3.1) which are untenable in resource constrained edge
devices. 2) Different distributions (e.g., Gaussian or Laplace) require
different hardware, which further increases overheads. 3) Gener-
ating random values directly in hardware leaks side-channel in-
formation [47], making them susceptible to attacks. 4) Successful
timing side-channel attacks have been shown against methods that
produce both Gaussian- and Laplace-sampled values [34].

We observe that for the algorithms listed above, each model sam-
ples from a specific distribution with a fixed variance. Leveraging
this, we propose DINAR– lightweight hardware modifications –
to pre-compute and store noise2 with this variance ahead of time.

2We use the terms ‘noise’ and ‘random values’ interchangeably throughout our paper.

https://doi.org/10.1145/3623652.3623665
https://doi.org/10.1145/3623652.3623665
https://doi.org/10.1145/3623652.3623665

During runtime, we randomly sample from these stored points to
produce the noise we need. We show that by storing noise points
in plentiful off-chip memory, DINAR adds significantly less over-
head compared to dedicated on-chip hardware for noise generation.
Furthermore, by not generating the points on-chip, DINAR is not
vulnerable to the side-channel attacks that plague dedicated noise
generation hardware. Thus, DINAR allows ML accelerators to sup-
port a wide range of ML algorithms that require noise sampled
from a variety of distributions.
In summary, we make the following contributions:
• We identify that current ML accelerators are unable to generate
noise from specific distributions and therefore cannot run many
security-critical ML algorithms.

• We explain why current hardware-based noise generation ap-
proaches suffer from high overheads and are insecure.

• To efficiently and safely produce random values, we propose
DINAR, lightweight hardware modifications to ML accelerators
to enable noise generation. DINAR pre-computes and stores ran-
dom values in off-chip memory and randomly samples from these
stored values during runtime.

• DINAR enables crucial algorithms such as differentially private
ML with < 0.5% area and energy overheads. Compared to our
baseline, DINAR has 23× lower area and 40× lower energy, while
avoiding security issues of dedicated noise-generation hardware.

2 Background

Here, we describe the DP-ML algorithm we use to demonstrate the
efficacy of DINAR. We then provide an overview of the architecture
of typical accelerators, to understand how we incorporate DINAR
into these accelerators.

2.1 Differentially Private ML

Differential privacy (DP) leverages the idea that a user’s privacy
is guaranteed if their data is not in the dataset at all. DP gives
each user the same privacy that they would get from having their
data removed from the dataset. Dwork et al. [18] first showed that
adding random noise to each user’s data can mimic the effect of
removing that user’s data from the set. DP is used by companies
such as Facebook [48] and even the US Census Bureau [2].

DP adds noise sampled from either a Laplace or Gaussian distribu-
tion [24]. The Laplace mechanism is preferred for smaller datasets,
while Gaussian is preferred for larger datasets [3]. To keep DINAR
as flexible as possible, we support both these mechanisms. The
amount of noise added controls the trade-off between privacy and
accuracy [40]. Thus, the added noise is tuned per model, depending
on the specific use case [3].
Training Differentially-Private Models. The goal of DP-ML
is to protect private user data, used during model training. DP-
ML adds noise to the activations of each layer during training [1].
DP-ML uses a modified Stochastic Gradient Descent (i.e., DP-SGD)
algorithm, where noise is added to the gradients of each input. After
noise addition, the gradients are accumulated to perform the weight
update for that layer, similar to regular SGD [1]. This crucial noise
addition step extends the certifiable security guarantees of DP to
ML models. We now detail current approaches for producing such
noise directly in hardware.

2.2 Hardware for noise generation

We now describe the prior approaches to producing noise directly in
hardware, that we use as our baseline for comparing against DINAR.
First, we describe our notation for distributions used throughout
our paper. Gaussian and Laplace distributions are typically char-
acterized by their mean (`) and scale (𝜎). In our work, we always
consider distributions with a mean of 0 as none of the applications
we study uses a non-zero mean. Therefore, we denote the Gaussian
and Laplace distributions as 𝐺𝜎 and 𝐿𝜎 , respectively. While the
Gaussian distribution is more commonly characterized using it’s
variance (𝜎2), for consistency with the Laplace distribution, we use
the scale for both.

We require a hardware random number generator (RNG), which
produces a uniform distribution (𝑈 ∈ [−2𝑁−1, 2𝑁−1 − 1]), where 𝑁
is the number of random bits generated [9]. We can convert from
a uniform to a different distribution by applying the appropriate
‘transform’. Fig. 1a shows this, along with the equations used for
these conversions.

For the Gaussian distribution, we choose the design proposed by
Lee et al. [39]. This design implements the Box-Muller transform[13],
considered the best approach that balances accuracy and hardware
usage [44]. The Box-Muller transform converts two uniformly dis-
tributed random numbers𝑈0 and𝑈1 to two Gaussian random num-
bers 𝐺1

0 and 𝐺
1
1 . For the Laplace distribution, we use the formula

from Choi et al. [16], which converts𝑈0 and𝑈1 to a single Laplace
random number 𝐿10 .
Hardware implementation. Fig. 1b shows the block diagram
of our implementation of the design of Lee et al. [39]. Blocks in
blue calculate transcendental functions, while blocks in orange
(with rounded corners), compute basic math operations (e.g., mul-
tiplication, subtraction). All transcendental functions (i.e., 𝑙𝑛(𝑈0),
𝑠𝑞𝑟𝑡 , 𝑠𝑖𝑛() and 𝑐𝑜𝑠 ()) are implemented using lookup tables, where
the coefficients are determined using Chebyshev series approxi-
mations [54]. To reduce the table size, this design employs range
reduction to first transform the input to each table into a small
range of values [54].
Generating Laplace noise. The hardware proposed by Lee et al.
only produces Gaussian random values. However, as we explained
in Sec. 2.1, DP-ML sometimes requires Laplace random values. To
enable this, we make minor modifications to the hardware shown
in Fig. 1b to also produce Laplace random values, based on the
formula from Choi et al. [16]. Since many hardware blocks are
shared between the equations shown in Fig. 1a (i.e., 𝑙𝑛(𝑈0) and a
multiplier), we add muxes to switch the inputs to those blocks.

We use the Mode input to switch between generating Gaussian
(𝑀𝑜𝑑𝑒 = 0) and Laplace (𝑀𝑜𝑑𝑒 = 1) noise. In Gaussian mode, we
produce two Gaussian random numbers, while in Laplace mode,𝐺1
is ignored. To maximize throughout, we fully-pipeline our design to
produce 1 random value per cycle, after an initial start-up latency
of 16 cycles for Gaussian mode and 8 cycles for Laplace mode.

2.3 CNN accelerator architecture

To understand how our approach enables noise addition, we de-
scribe a typical ML accelerator. Weights for each layer are stored
in off-chip (DRAM) memory. Accelerators run one layer at a time,
computing the outputs using the processing elements (PEs). The

2

Uniform distribution

Laplace distribution Gaussian distribution

𝐺0
𝜎 = 𝜎(−2 ln 𝑈0 ⋅ sin(2𝜋𝑈1)

𝐺1
𝜎 = 𝜎(−2 ln 𝑈0 ⋅ cos(2𝜋𝑈1)𝐿𝜎 = 𝜎(𝑠𝑖𝑔𝑛 𝑈0 − 0.5 ⋅ ln 𝑈1)

(a)

ln(𝑈0)

𝑠𝑖𝑛(2𝜋𝑈1)

𝑐𝑜𝑠(2𝜋𝑈1)

𝑈0

𝑈1

𝑈1 {𝐺0
1, 𝐿0

1 }

𝐺1
1

×

×𝑅𝑁𝐺

<<1
-

ln(𝑈0)

𝑈0

0
 1

1
 0

0 1

1 0

Mode

Mode

0.5

0

𝑠𝑖𝑔𝑛

(b)

Control Logic

PE
Array

O
ff

-c
h

ip
 M

em
o

ry

G
LB

 (
SR

A
M

)

M
em

. C
o

n
tr

o
lle

r

PPU

(c)

Figure 1: (a) Converting random numbers from uniform to Gaussian and Laplace distributions. (b) Hardware implementation

of Box-Muller transform, to produce 𝐺1
and 𝐿1 random values. (c) Architecture of the DiVa CNN accelerator [50].

on-chip global buffer (GLB) is used to store the weights once they
are read from DRAM and the activations between layers.
Baseline design. We use the DiVa accelerator as our baseline,
as it is designed for DP-ML [50]. DiVa implements the DP-SGD
algorithm, described in Sec. 2.1, To implement the gradient aggre-
gation after adding noise, DiVa adds a post-processing unit (PPU)
for parallel summation. Crucially for our work, DiVa does not de-
tail any hardware for generating noise. Therefore, we compare
DINAR against a version of DiVawhich implements dedicated hard-
ware for noise generation. Finally, while we use DiVa, DINAR is
design-agnostic and can be easily incorporated into a variety of
accelerators. For example, we demonstrate how DINAR can be used
to add noise during inference for adversarial robustness using the
Eyeriss design [15] in Sec. 6.
System integration. To meet strict area and energy constraints,
edge ML accelerators – including DiVa – are typically deployed
without a CPU [15, 25, 36, 50]. Since edge ML accelerators typi-
cally run a single network for long periods of time, they do not
need the flexibility of a tightly-coupled CPU. They are instead con-
figured, when required, using a scan-chain [15], a configuration
bit-stream [25] or using on-chip control logic [36]. We therefore
consider efficient noise addition in accelerators without CPUs.

3 DINAR

We motivate and describe DINAR, our technique for enabling effi-
cient noise injection in ML accelerators. We begin with the chal-
lenges faced by existing approaches which generate noise directly
in hardware. We then provide an overview of the hardware re-
quired for DINAR. Finally, we explain how DINAR overcomes the
challenges of existing approaches.

3.1 Challenges

We now describe the difficulties associated with producing the noise
required by security-centric ML algorithms, including the hardware
shown in Fig. 1b.
C1: Altering the scale of the produced noise. The hardware
shown in Fig. 1b produces 𝐺1 or 𝐿1 noise. However, 𝜎 varies per
network, requiring the hardware to generate noise of different
scales [49]. To get such 𝐺𝜎 or 𝐿𝜎 noise, we need an additional
multiplication operation, as shown in the equations in Fig. 1a.
C2: Floating-point noise. Existing approaches (Fig. 1b) produce
fixed-point values, while training requires floating-point values.
Therefore, these fixed-point values must first be converted to float-
ing point, which requires additional hardware.

C3: Continuous noise. For certifiable privacy guarantees, DP
requires the added noise to follow an ‘ideal’ distribution–every
value across the entire range must be a possible output without any
‘gaps’. Assuming the uniform random numbers are evenly spread
out – which is the case when using a true random number generator,
the transformed distributions are then unevenly spaced, with more
values around 0 and fewer values with larger magnitudes [47]. Prior
work shows that this can be exploited by an attacker to undermine
the guarantees offered by differential privacy [47].
C4: Timing side channel free noise. Techniques to sample from
Gaussian and Laplace distributions suffer from timing side chan-
nels [34]. The time taken to produce a sample leaks the magnitude
of the noise. With a success rate of over 90%, this timing attack
effectively subverts the security of differentially private systems.

3.2 High level overview

DINAR overcomes the challenges described above by not produc-

ing noise directly in hardware. As mentioned earlier, each model
requires noise with a specific scale. Therefore, we pre-compute a
large number of random points with this scale ahead of time and
store them in plentiful off-chip DRAM memory. Thus, the noise
values are loaded onto the accelerator along with the weights.

During runtime, DINAR simply reads a random value from this
stored list to produce the required noise. DINAR only requires
lightweight modifications to the memory controller and imposes

no other limitations on the architecture of theML accelerator.

Specifically, DINAR modifies the address generation logic inside
the memory controller (Fig. 1c).

Fig. 2a shows the hardware for address generation and the modi-
fications made to support DINAR. The region labelled 2○ calculates
the addresses sent to DRAM as a base plus an offset. The base is the
starting address in memory of the item being read (e.g., the weights
of a particular layer). As layer parameters – such as weights and
inputs – are much larger than the size of the DRAM bus, we must
perform multiple read operations to load all the values from DRAM.
To support this, the offset is incremented by the stride value during
each cycle to load the next set of values from DRAM 1○.

As we store a list of pre-computed noise values in memory, we
modify this hardware to randomly read a value from this list instead
of incrementing by the stride every cycle. Our additions are shown
in the region marked 2○. We add a random number generator (RNG)
to select a random instead of fixed value from memory. A 2 : 1 mux
selects between the original offset and our randomly calculated off-
set. The gen_rand_add signal selects between these two modes. We
then add the address where random values are stored in the chip’s

3

offset

clock

stride base

address

gen_rand_add

1 2

3

𝑅𝑁𝐺 ≪ 𝑛

(a)

S[2]
S[1]
S[0]

Data[127:112]

S[2]
S[1]
S[0]

Scrambled[127:112]

T[2:0]0

C[2:0]

C[2]
C[1]
C[0]

Data[111:96]

S[2]
S[1]
S[0]

Scrambled[111:96]

C[2]
C[1]
C[0]

Data[15:0]

Scrambled[15:0]

C[2]
C[1]
C[0]

…

𝑅𝑁𝐺

… … …

… …

(b)

𝐵𝑜𝑥 − 𝑀𝑢𝑙𝑙𝑒𝑟 𝐻𝑊
𝐺0

× scale

𝐺1

×

𝑓𝑖𝑥𝑒𝑑2𝑓𝑙𝑜𝑎𝑡 𝑓𝑖𝑥𝑒𝑑2𝑓𝑙𝑜𝑎𝑡

Floating-point values to global buffer

(c)

Figure 2: (a) Modifications to the address generation logic for DINAR. (b) DINAR hardware to scramble values read from DRAM.

For clarity, some muxes and data lines are omitted. (c) NoiseGen hardware for producing 𝐺𝜎
and 𝐿𝜎 values.

control logic, so that the correct base address is provided for reading
random values. For flexibility, we also add an 𝑛-bit shifter to allow
for reading a contiguous set of noise points, which is greater than
128 bits. While 𝑛 is set to 0 for DP-ML, we evaluate another applica-
tion – adversarially robust ML – in Sec. 6, which requires this shifter.

3.3 Pre-fetching noise values from DRAM

As described in Sec. 2.1, DP-ML adds noise to the activations of every
layer in the network. To seamlessly integrate with the scheduling
schemes of existing accelerators, we frame noise addition as running
a ‘noise layer’. Consider the case of a noise layer being run between
layers 𝑁 and 𝑁 +1 of a network. The weights for layer 𝑁 have been
read from DRAM and are stored in the GLB. Once the input for
layer 𝑁 is ready, that layer is run on the PE array. Since the weights
have been dispatched, we can now pre-fetch the random values
from DRAM and store them in the GLB. Reading random values
while layer 𝑁 is running allows us to hide DRAM read latency.
Once layer 𝑁 finishes running, we schedule our noise layer to run.
The (noised) activations are then ready to be used as the inputs to
layer 𝑁 + 1. While the ‘noise layer’ is running, we pre-fetch the
weights for layer 𝑁 + 1. As we show in Sec. 5, for all the networks
we evaluate, we always have sufficient space in the GLB to store
noise points, along with the layer activations and weights.

3.4 Increasing randomness

For each individual DRAM read, a set of values is read in the same
order each time. For the 128-bit DRAM bus and a 16-bit datatype we
use in our evaluation (Sec. 5), we read 8 values, which are then used
in the same order every time. This fixed ordering can potentially
diminish the security of our approach. To prevent the chance of any
information leakage from using points in-order every time, we add
hardware to randomly scramble the order of values each time.
Scrambling hardware. Fig. 2b shows our scrambling hardware.
We require 128/16 = 8multiplexers so that each 16-bit value can be
placed in any position in the final ‘scrambled’ 128-bit output. We
need a 3-bit RNG (i.e., 𝑙𝑜𝑔2 (8)) to select a random permutation each
time. The RNG output is connected to the select signal of each mux,
with varying negation (shown with the white circle on the mux
select lines). This ensures that each mux selects a unique 16-bit
value from the input. This scrambling produces 8! = 40, 320 possible
scrambled orders. Coupled with the large number of overall values
we store in DRAM (discussed in Sec. 5), this results in a very large
number of possible random values. This makes it untenable for an
attacker to learn the noise values that were added to activations to
subvert the security of DINAR.

3.5 Benefits of DINAR

We now explain how DINAR addresses the challenges faced by
prior approaches, described in Sec. 3.1.
• C1: As DP-ML adds noise with a specific 𝜎 per network, DINAR
simply stores values sampled from this distribution along with
the network weights and avoids additional multiplications.

• C2: DINAR can produce both fixed- and floating-point noise
without additional conversion hardware.

• C3: By producing noise points ahead of time, we obtain noise
sampled from an ‘ideal’ distribution without missing any values
and compromising the privacy guarantee offered by DP.

• C4: As DINAR only reads from memory to get noise values, there
is no variation in time based on the value being read. Therefore,
we naturally obtain a constant time implementation, making
DINAR immune to timing side-channel attacks.

4 Methodology

In this section, we present the methodolgy we use to evaluate
DINAR. We begin by describing the two flavours of the DiVa design
that we use in our evaluation. We then detail our evaluation setup.

4.1 Designs evaluated

We first describe DiVa-DINAR, which adds DINAR to DiVa. As DiVa
does not describe how they generate noise in hardware, we also
evaluate a version ofDiVa incorporating noise generation hardware.
DiVa-DINAR. The first design we evaluate (DiVa-DINAR) imple-
ments DINAR, to read pre-computed values from DRAM. This
includes the hardware to read random values from DRAM (Fig. 2a)
and hardware to scramble these values (Fig. 2b). As we use a 128-bit
DRAM bus and a 16-bit datatype, we read 8 values from DRAM per
cycle. Thus, our scrambling hardware uses 8 muxes.
DiVa-NoiseGen. The second (DiVa-NoiseGen) generates noise di-
rectly on-chip, using the hardware shown in Fig. 1b. As described
in Sec. 3.1, generating noise directly in hardware faces a number
of challenges. To enable a fair comparison against DINAR, we aug-
ment the hardware in Fig. 1b to address two of these challenges. We
refer to the final hardware, shown in Fig. 2c as NoiseGen, where
the block labelled Box-Muller is the hardware in Fig. 1b.
C1: Supporting multiple scale factors. Recall that the hardware
in Figure 1b only produces𝐺1 or 𝐿1 random values. To produce𝐺𝜎

or 𝐿𝜎 noise, we need additional multipliers (equations in Fig. 1a).
Therefore, we add the two additional multipliers in Fig. 2c.
C2: Floating-point noise. NoiseGen produces fixed-point random
values, which must be converted to floating point values using
additional hardware (fixed2float in Fig. 2c). fixed2float is also

4

pipelined and requires 16 cycles to convert a 16-bit fixed-point to a
16-bit floating-point value. Thus, the start-up latency of NoiseGen
is 32 and 24 cycles, for Gaussian and Laplace modes, respectively.
To save energy, we also power gate NoiseGen, when it is not being
used. Finally, to match the operation of DINAR, we also store the
noise values produced by NoiseGen in the GLB until needed.

4.2 Test setup

For training differentially private ML models, we use the Opa-
cus [62] library, which adds DP-ML support to the PyTorch [51]
framework. We evaluate three models using two datasets (Table 1),
similar to prior work [23].
Modelling accelerators.Wemodel our designs usingAccelergy [59],
which canmodel common components such as: multiply-accumulate
units (MACs), SRAM for global memory, networks-on-chip and the
interface to DRAM. We implement all additional hardware in Ver-
ilog, including: 1) the PPU for DiVa, 2) NoiseGen (Fig. 2c), 3) DINAR
(Figs. 1b and 2b) We synthesize these using the Synopsys Design
Compiler 2017.09 for the TSMC 65nm (nominal) process. We clock
our design at 200MHz, matching prior work [15, 57].
Customization for edge ML. DiVa is designed for datacenters,
while we target edge applications. Therefore, we opt for a smaller
version of DiVa, suitable for low-power edge scenarios. DiVa uses a
128 × 128 PE array, while our designs use a 16 × 16 array. Similarly,
our PPU can sum-reduce 16 values, in contrast to the original DiVa
PPU, which operates on 128 values. We also proportionately scale
the on-chip SRAM GLB from the 16MB used in DiVa to 256KB for
our design. Finally, we assume a DRAM bus width of 128bits, similar
to prior work [6, 21].

5 Evaluation

We now evaluate DiVa-DINAR and DiVa-NoiseGen for adding noise
for DP-ML. We do not show accuracy results using noise produced
by DINAR and NoiseGen, as they are within 0.5% of each other for
all cases. Therefore, we focus on the overheads of both versions to
the baseline DiVa accelerator. We first look at global memory and
latency overheads which are similar for both our designs and then
present area and energy overhead which differ by design.
Global memory. For both flavours, we store noise points in global
memory until they are needed. This raises the possibility that we
may not have enough space in the GLB to store the noise points,
without evicting other data. We analyze this using Accelergy, which
outputs the utilization of the GLB per layer. We see that there is no
layer in any of the networks we evaluate where the GLB is more
than 90.5% full. Thus, we always have at least 12 kB of space in
the GLB for storing noise points. This allows us to store over 6000
noise points per layer. Thus, for the networks we evaluate, storing
noise points does not lead to any global memory contention.
Latency. As both flavours read noise values while the previous
layer is running, both incur aminimal latency overhead of just 0.49%
for all the networks we evaluate. This is because both flavours are
designed for low-latency operation. However, enabling low latency
for DiVa-NoiseGen adds non-trivial area and energy overheads,
which we explain next.

5.1 DiVa-DINAR overheads

We now present the DRAM footprint as well as the area and energy
overheads of DiVa-DINAR.
DRAM. We examine the minimum number of noise points that
must be stored to meet security requirements. As C3 in Sec. 3.5
stated, we want to avoid ‘gaps’ when producing random values.
Since we use the 𝑏𝑓 𝑙𝑜𝑎𝑡16 datatype, we must store one of each pos-
sible 65, 536(= 216) points to avoid such gaps. With this minimum
number of points in mind, we quantify the increase in memory
footprint of DRAM. Table 2 shows the footprint of storing different
numbers of points in DRAM. Even when storing over half a million
points, we add just 1MB of storage. 1MB is less than 5% of the size
of the smallest model we evaluate (PreActResNet-18). Thus DINAR
only slightly increases the DRAM memory footprint.
On-chip area and energy. DINAR requires the use of an RNG
for selecting random values from DRAM and for scrambling these
values. We opt for a cryptographically secure RNG [9], which pro-
vides 9.4 Gbps of randomness. As we run our design at 200MHz,
we obtain 9.4 ÷ 0.2 = 47 random bits per cycle. For our scrambling
hardware, we need 3 (i.e., 𝑙𝑜𝑔2 (8)) bits to scramble the 8 muxes
we use in our design. We therefore have 44 bits of randomness
available per cycle to read random values from DRAM. This allows
us to randomly select from 244 addresses in DRAM.

As each location in DRAM contains 8 values, DiVa-DINAR sup-
ports addressing up to 244+3 (over 1013) random values from mem-
ory. However, to address 1MBof stored noise points, we only require
𝑙𝑜𝑔2 (524288) = 19 bits from the TRNG. Thus, the TRNG we use
supports significant headroom to address far more noise points
in memory, if required. In total, DiVa-DINAR incurs only a 0.4%
area and 0.2% energy overhead, compared to our baseline DiVa
accelerator, which does not support any noise addition.

5.2 DiVa-NoiseGen overheads
As our training accelerators use a 16-bit datatype, we configure
NoiseGen to produce 16-bit value every cycle. As shown in Fig. 1b,
our implementation requires a random number generator (RNG)
for its operation. The design by Lee et al. [39] – which we use as
the basis for NoiseGen– requires 64 uniform random bits per cycle.
However, using the RNG from above, we are only able to obtain
47 random bits per cycle. We therefore include two such RNGs to
provide the 64 random bits needed for DiVa-NoiseGen.
On-chip area and energy. Table 3 shows the energy overhead of
DiVa-NoiseGen for each model. We see that compared to the mini-
mal 0.2% energy overhead imposed by DiVa-DINAR, DiVa-NoiseGen
adds an average 8.15% energy overhead. Similarly, DiVa-NoiseGen
adds 9.38% area overhead to the baseline accelerator. This increased
overhead is due to: 1) the hardware to generate noise, including our
augmentations described in Sec. 4.1 and 2) the extra RNG needed
to produce enough random bits. These overheads are significant in
the context of power and cost sensitive edge ML accelerators. This
demonstrates the benefit of DINAR, compared to adding dedicated
noise generation hardware. Note that Table 3 does not distinguish
between CIFAR-10 and CIFAR-100; these models vary only in the
number of output classes. This only impacts the size of the last
layer which accounts for < 1% of the total energy in all cases.

5

Table 1: List of models evaluated.

Model Dataset
Model size (MB)
int8 float16

PreActResNet-18
(P18)

CIFAR-10 11.18 22.36
CIFAR-100 11.32 22.64

WideResNet-32
(W32)

CIFAR-10 46.18 92.36
CIFAR-100 46.35 92.70

VGG-16 (V16) CIFAR-10 14.75 29.50

Table 2: DRAM storage footprint for varying

amounts of noise points stored.

No. of noise
values in DRAM

Storage
required (KB)

Footprint (%) over
smallest model

65536 128 0.56
131072 256 1.11
262144 512 2.23
524288 1024 4.47

Table 3: Energy overhead

of DiVa-NoiseGen.

Model Energy
overhead

P18 10.05%
W32 7.01%
V16 7.39%
Avg. 8.15%

6 Adversarial robustness

So far, our focus has been on enabling DP-ML on edge AI accelera-
tors. We now demonstrate how DINAR can be used to add noise for
robustness against adversarial attacks. Adversarial attacks subtly
alter inputs to cause the ML model to mis-classify those inputs as
a different class [41]. Such attacks predominantly target Convolu-
tional Neural Networks (CNNs) used for image classification [14].
When used against networks powering safety critical systems, such
attacks can have devastating results.

Due to the effectiveness of adversarial attacks, many prior works
investigate makingMLmodels more robust against such attacks [20,
28, 33, 37, 41, 49, 63]. In particular, several techniques add noise
either to the inputs [37] or the layer activations [28] to improve
robustness. The most commonly used noise is sampled from a uni-
variate Gaussian distribution [28, 33, 37]. However, these techniques
are ineffective against specialized attacks [7, 8]. Newer techniques
add noise from a multivariate Gaussian distribution [20, 61].

We use Weight Covariance Alignment (WCA) [20] as our ex-
ample, as it achieves state-of-the-art results for both robustness
and classification accuracy. WCA injects anisotropic multivariate
Gaussian noise before the final fully-connected layer of the network.
During training, WCA uses a modified loss function, to ‘align’ the
network weights with the distribution of the added noise. WCA
outperforms techniques which add noise to the output of several
layers [28, 33]. As we add univariate noise in DP-ML, each noise
value can be treated independently. For WCA, we needmultivariate
noise, which consists of several values that must be stored and
used contiguously and cannot be scrambled. WCA requires the
dimensions of this distribution to be greater than the number of
output classes. They recommend using 32 and 128 dimensions for
CIFAR-10 and CIFAR-100, respectively.

6.1 Test methodology

We now describe our methodology for evaluating DINAR for ad-
versarial robustness. We first establish some terminology required
for our evaluation later.
Attack terminology. The strength of attacks is typically quantified
using 𝜖 , which is the maximum change that can be made to any
single pixel in the input. As pixels in our datasets are in the range
[0, 255], we set 𝜖 = 8/255, matching prior work [55, 65]. We also
distinguish between: classification accuracy, which is the accuracy
for benign test inputs and robustness accuracy, the accuracy for
adversarially attacked images.
Attacks.We evaluate robustness accuracy using two common at-
tacks: 1) Fast Gradient Sign Method (FGSM) [26] calculates the
gradient of the input and alters the input to maximize this gradi-
ent to cause a mis-classification. 2) Projected Gradient Descent

0%

20%

40%

60%

80%

100%

V16 P18 W32 P18 W32 V16 P18 W32 P18 W32 V16 P18 W32 P18 W32

C-10 C-100 C-10 C-100 C-10 C-100

Classification Accuracy FGSM robustness PGD robustness

Unprotected 2-in-1 DINAR

Figure 3: Classification and robustness accuracies for evalu-

ated networks. We use the shortened names listed in Table 1

(PGD) [42] improves on FGSM by iteratively making smaller alter-
ations to the input image to increase the attack’s success rate.
Models. We evaluate the same models as before (Table 1). We use
PyTorch [51] v1.11 to run our models and use the TorchAttacks
library for attacks [35]. Since we target inference, we use an 8-bit
fixed-point datatype. We train all models using 32-bit floating point
and perform post-training quantization using PyTorch to obtain
int8 models. In all cases, we saw a <1% difference in classification
accuracy between the 32-bit floating-point and int8 models.
Architecture description. Since WCA adds noise during infer-
ence, we evaluate a new accelerator design, based on Eyeriss [15].
Eyeriss-DINAR uses DINAR, while Eyeriss-NoiseGen incorpo-
rates NoiseGen. Again we use a DRAM bus-width of 128 bits and
operate our design at 200MHz. As WCA requires points to be used
in the same order, we do not add our scrambling hardware (Fig. 2b)
to Eyeriss-DINAR.
Comparison against prior work. To demonstrate the efficacy of
noise addition, we compare against another hardware technique
for adversarial robustness. 2-in-1 accelerator (2-in-1) trains models
at various bit-widths and randomly selects one model to run each
time [23]. Using a random bit-width during inference makes it more
difficult for the attack to infer gradients.

6.2 Evaluation

Accuracy. To evaluate the efficacy of noise addition for adversarial
robustness, we compare WCA (using DINAR for producing noise)
against the baseline unprotected models and 2-in-1 accelerator.
Fig. 3 shows that the baseline networks achieve high classifica-
tion accuracy but low robustness accuracy. This is expected as
baseline models have no defences applied, either during training
or inference, to improve their robustness. While 2-in-1 improves
robustness accuracy compared to the baseline models, it suffers
from low classification accuracy. We believe this is because models

6

Table 4: DRAMmemory footprint required (compared to the

smallest model we evaluate) for varying amounts of noise

vectors stored.

Number of noise
vectors stored

32 points per vector 256 points per vector
Storage
(KB)

Footprint
(%)

Storage
(KB)

Footprint
(%)

128 4 0.03 32 0.28
256 8 0.07 64 0.55
512 16 0.14 128 1.10
1024 32 0.28 256 2.21
2048 64 0.56 512 4.42

trained at various bit-widths do not significantly alter the model’s
loss landscape to prevent attacks. That is, even when switching
bit-widths for each input, the different models are similar enough
that attacks are still successful.

DINARmaintains high classification accuracy, with a <1% differ-
ence compared to the baseline models and also achieves the highest
robustness accuracy. This demonstrates that noise injection is an
effective method for improving the robustness of ML models, with-
out sacrificing classification accuracy. Similar to DP-ML, we do not
show separate results when using NoiseGen and DINAR, as they
are identical. Thus, any noise generation technique achieves high
robustness and classification accuracy. However, the overheads
vary significantly between Eyeriss-DINAR and Eyeriss-NoiseGen, as
we now show.

6.3 Overheads

As before, we first present the global memory and latency overheads
for Eyeriss-DINAR and DiVa-NoiseGenwhich are similar.We then
detail the area and energy overheads, which vary by design.
Global memory. Similar to DP-ML, we ensure there is sufficient
space in global memory to store random noise vectors when needed.
Since WCA only adds a single noise layer, we can fit the required
noise in the GLB for the studied networks without contention.
Latency. Since WCA only requires reading values from DRAM
for a single layer in the network, both Eyeriss-DINAR and Eyeriss-
NoiseGen add minimal latency overhead.

6.3.1 Eyeriss-DINAR Unlike DP-ML, we do not have a theoret-
ical lower limit for the number of vectors that must be stored in
DRAM. Therefore, we opt to perform an empirical analysis to deter-
mine this lower limit. Recall that for WCA, we need vectors of 32
values for CIFAR-10 and 256 values for CIFAR-100. We experiment
with storing 𝑘 such vectors and sampling one each time. We see that
accuracies are unaffected down to 𝑘 = 128 stored vectors. Reducing
𝑘 further results in a drop in both classification and robustness
accuracy. Therefore, we conclude that storing a minimum of 128
vectors is necessary to maintain the benefits of WCA.
DRAM footprint. Table 4 shows the DRAM footprint for different
number of stored vectors. Therefore, we show the footprint for
vectors of size 32 and 256, compared to the smallest model we
evaluate, PreActResNet-18 (P18). We sweep the number of stored
vectors starting from the minimum value of 128, necessary for
maintaining accuracy. While DINAR works with far fewer points,
even storing 2048 vectors adds just 0.56% and 4.42% for the 32 and

256 sized noise vectors, respectively. DINAR only slightly increases
the DRAM memory footprint. For Eyeriss-DINAR, we require 11
bits from the RNG to access a table of 2048 stored vectors. Using the
same RNG as DiVa-DINAR, we have 47 bits from the RNG, providing
us with plenty of headroom for storing many more vectors.
On-chip area and energy. Eyeriss-DINAR adds a 2 : 1mux and an
RNG, similar to DiVa-DINAR. Together, these only add an additional
0.26% area compared to our baseline accelerator, which cannot
add noise. However, as we only require the random values before
a single layer, we use power gating to disable the RNG when it
is not needed. This results in an energy overhead of < 0.1% for
Eyeriss-DINAR.

6.3.2 Eyeriss-NoiseGen To match the 8-bit datatype we use for
inference, we use a NoiseGen configuration which produces an 8-
bit value every cycle, for Eyeriss-NoiseGen. This then reduces the
number of uniform random bits required to 32. Thus, a single RNG is
also sufficient to provide the required noise for Eyeriss-NoiseGen.
On-chip area and energy. Eyeriss-NoiseGen adds 8.05% area
overhead to the baseline accelerator. Despite the smaller size of the
8-bit NoiseGen configuration and the exclusion of the extra hard-
ware shown in Figure 2c, Eyeriss-NoiseGen still adds non-trivial
area overhead. Due to the overall smaller size of the accelerator for
int8 vs. bfloat16, even a small amount of hardware incurs a high
area overhead. Similar to DiVa-DINAR, we employ power-gating
to reduce leakage power in Eyeriss-NoiseGen, resulting in an
average energy overhead of just 0.2%.

7 Securing split inference

We now describe another security-centric ML algorithm that re-
quires random noise. When running large ML models on edge
devices, one approach is to offload a portion of the network infer-
ence to the cloud. This requires transmitting partially processed
data over a network, which can lead to privacy breaches. One ap-
proach to secure this data is to add noise before transmission, to
reduce the mutual information between the original and transmit-
ted data [45, 46, 56]. Titcombe et al. [56] add Laplace noise, while
Cloak [46] adds Gaussian noise. In contrast, Shredder [45] adds
custom noise distributions – learned during training – to the data
before transmission. These works target inference using CPUs or
GPUs, where the required noise is produced ‘on-the-fly’. DINAR
enables these algorithms to run on edge accelerators, which do not
have CPUs or GPUs.

8 Related work

Generating noise in hardware. Various techniques have been
proposed for generating Gaussian random numbers, in addition to
the Box-Muller transform (Sec. 2.2). These include the rejection and
inversion methods. Rejection: These techniques employ ‘sample-
and-reject’ techniques, where they produce random numbers and
sample them to see if they fit ‘inside’ the required Gaussian distri-
bution. An example of this is the Ziggurat method, which is often
used in software [19, 64]. However, this loop-based method is dif-
ficult to deploy in hardware, where constant latency is preferred.
Inversion: This technique uses the inverse of the cumulative dis-
tribution function (ICDF) of the Gaussian distribution to generate
random values. However, this ICDF does not have a closed form

7

solution, leading to approaches implementing piecewise linear ap-
proximations [27, 38]. However, these methods are susceptible to
attacks when used to generate noise for DP-ML [34]. Prior work
produces Laplace random noise for differential privacy [16]. Using
fixed-point can lead to a loss of privacy, due to quantization er-
ror; to counter this, the authors propose hardware to post-process
the produced noise to maintain privacy. By pre-computing and
storing noise points, DINAR allows us to perform any required
post-processing ahead of time and avoid the latency cost of doing
so at runtime.
Using analog noise. Prior work uses the noise inherent in ana-
log components for robustness during inference. Examples include
under-volting the ML accelerator to reduce the transistor error mar-
gins and produce random errors as noise [31, 32, 43], and tuning
the noise of 6T and 8T SRAM cells, used to store model weights
and activations [12]. Roy et al. show that ML accelerators which
use crossbars in non-volatile memory to perform calculations can
also provide robustness against adversarial attacks [52]. However,
achieving robustness using analog noise without sacrificing per-
formance requires careful tuning to account for hardware non-
idealities [53]. In contrast, DINAR enables robustness without any
hardware fine tuning.
ML accelerator security. There has been many works that aim
to make ML accelerators more secure against a variety of attacks.
Encryption [29] and Trusted Execution Environments [17] have
been proposed to secure cloud-based ML accelerators. However, the
overheads of these approaches would be infeasible on the resource
constrained edge accelerators we consider. Other works look at side-
channel attacks against ML accelerators such as recovering inputs
via power side channels [58] or recovering the network structure by
observing off-chip memory access patterns [30]. HuffDuff demon-
strates an attack against accelerators that employ sparsity [60].
All these works rely on side channels, while our work focuses on
enabling security-centric ML algorithms on edge ML accelerators.

9 Conclusion

We identify that current edge accelerators cannot generate noise,
which is essential for security-critical ML algorithms. We present
DINAR, which safely and efficiently enables noise addition on edge
ML accelerators. Compared to generating noise directly in hard-
ware, DINAR adds 23× lower area and 40× lower energy. Our work
is the first to support efficiently adding noise to ML accelerators.
Given the flexibility of DINAR, we hope to motivate architects to
consider other security-centric applications which can benefit from
random noise addition.

Acknowledgments

We thank the anonymous reviewers and the members of NEJ group
for their valuable feedback. We acknowledge the support of the
Natural Sciences and Engineering Research Council of Canada
(NSERC) Discovery Grant RGPIN-2020-04179. This research was
undertaken, in part, thanks to funding from the Canada Research
Chairs program.

References

[1] Martin Abadi et al. 2016. Deep learning with differential privacy. In Proceedings
of the ACM SIGSAC conference on computer and communications security.

[2] John M Abowd. 2018. The US Census Bureau adopts differential privacy. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2867–2867.

[3] Muhammad Aitsam. 2022. Differential privacy made easy. In Proceedings of the
International Conference on Emerging Trends in Electrical, Control, and Telecom-
munication Engineering (ETECTE). IEEE.

[4] Abdulmalik Alwarafy et al. 2021. A Survey on Security and Privacy Issues in
Edge-Computing-Assisted Internet of Things. IEEE Internet of Things Journal 8,
6 (2021).

[5] Apple. 2017. Learning with Privacy at Scale. https://docs-assets.developer.apple.
com/ml-research/papers/learning-with-privacy-at-scale.pdf.

[6] Hadi Asghari-Moghaddam et al. 2016. Near-DRAM acceleration with single-ISA
heterogeneous processing in standard memory modules. IEEE Micro 36, 1 (2016).

[7] Anish Athalye and Nicholas Carlini. 2018. On the Robustness of the CVPR 2018
White-Box Adversarial Example Defenses. https://arxiv.org/abs/1804.03286

[8] Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated Gradients
Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.
https://arxiv.org/abs/1802.00420

[9] Mohammed Bakiri et al. 2018. A Hardware and Secure Pseudorandom Generator
for Constrained Devices. IEEE Transactions on Industrial Informatics 14, 8 (2018).

[10] Samah Baraheem and Zhongmei Yao. 2022. A Survey on Differential Privacy with
Machine Learning and Future Outlook. arXiv preprint arXiv:2211.10708 (2022).

[11] Sathwika Bavikadi et al. 2022. A Survey on Machine Learning Accelerators and
Evolutionary Hardware Platforms. IEEE Design and Test 39, 3 (2022).

[12] Abhiroop Bhattacharjee, Abhishek Moitra, and Priyadarshini Panda. 2021.
Efficiency-driven Hardware Optimization for Adversarially Robust Neural Net-
works. In Proceedings of the Design, Automation and Test in Europe Conference
(DATE).

[13] George E. P. Box and Mervin E. Muller. 1958. A Note on the Generation of
Random Normal Deviates. Annals of Mathematical Statistics 29 (1958), 610–611.

[14] Anirban Chakraborty et al. 2018. Adversarial Attacks and Defences: A Survey.
https://arxiv.org/abs/1810.00069

[15] Yu-Hsin Chen et al. 2016. Eyeriss: An energy-efficient reconfigurable accelerator
for deep convolutional neural networks. IEEE journal of solid-state circuits 52, 1
(2016), 127–138.

[16] Woo-Seok Choi et al. 2018. Guaranteeing Local Differential Privacy on Ultra-
Low-Power Systems. In Proceedings of the International Symposium on Computer
Architecture (ISCA).

[17] Aritra Dhar, Supraja Sridhara, Shweta Shinde, Srdjan Capkun, and Renzo Andri.
2022. Empowering Data Centers for Next Generation Trusted Computing. arXiv
preprint arXiv:2211.00306 (2022).

[18] Cynthia Dwork. 2006. Differential privacy. In Proceedings of the 33rd International
Colloquium on Automata, Languages and Programming (ICALP). Springer.

[19] Hassan Edrees et al. 2009. Hardware-Optimized Ziggurat Algorithm for High-
Speed Gaussian Random Number Generators. In ERSA. 254–260.

[20] Panagiotis Eustratiadis, Henry Gouk, Da Li, and Timothy Hospedales. 2021.
Weight-covariance alignment for adversarially robust neural networks. In Pro-
ceedings of the 38th International Conference on Machine Learning. PMLR.

[21] Amin Farmahini-Farahani et al. 2015. NDA: Near-DRAM acceleration archi-
tecture leveraging commodity DRAM devices and standard memory modules.
In Proceedings of the 21st IEEE International Symposium on High Performance
Computer Architecture (HPCA).

[22] Matthew Fredrikson et al. 2014. Privacy in Pharmacogenetics: An End-to-End
Case Study of PersonalizedWarfarin Dosing. In 23rd USENIX Security Symposium.

[23] Yonggan Fu et al. 2021. 2-in-1 Accelerator: Enabling Random Precision Switch
for Winning Both Adversarial Robustness and Efficiency. In Proceedings of the
54th annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[24] Quan Geng and Pramod Viswanath. 2015. Optimal noise adding mechanisms for
approximate differential privacy. IEEE Transactions on Information Theory 62, 2
(2015), 952–969.

[25] Graham Gobieski et al. 2021. Snafu: An Ultra-Low-Power, Energy-Minimal
CGRA-Generation Framework and Architecture. In Proceedings of the 48th Annual
ACM/IEEE International Symposium on Computer Architecture (ISCA).

[26] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
Harnessing Adversarial Examples. https://doi.org/10.48550/ARXIV.1412.6572

[27] Roberto Gutierrez, Vicente Torres, and Javier Valls. 2012. Hardware Architecture
of a Gaussian Noise Generator Based on the Inversion Method. IEEE Transactions
on Circuits and Systems II: Express Briefs 59, 8 (2012).

[28] Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. 2019. Parametric noise injec-
tion: Trainable randomness to improve deep neural network robustness against
adversarial attack. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 588–597.

[29] WeizheHua,MuhammadUmar, Zhiru Zhang, andG. Edward Suh. 2020. GuardNN:
Secure DNN accelerator for privacy-preserving deep learning. arXiv preprint

8

https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
https://arxiv.org/abs/1804.03286
https://arxiv.org/abs/1802.00420
https://arxiv.org/abs/1810.00069
https://doi.org/10.48550/ARXIV.1412.6572

arXiv:2008.11632 (2020).
[30] Weizhe Hua, Zhiru Zhang, and G. Edward Suh. 2018. Reverse Engineering

Convolutional Neural Networks through Side-Channel Information Leaks. In
Proceedings of the 55th Annual Design Automation Conference.

[31] Md Shohidul Islam, Behnam Omidi, Ihsen Alouani, and Khaled N. Khasawneh.
2023. VPP: Privacy Preserving Machine Learning via Undervolting. In Proceedings
of the IEEE International Symposium on Hardware Oriented Security and Trust
(HOST).

[32] Shohidul Islam, Ihsen Alouani, and Khaled N. Khasawneh. 2021. Lower Voltage
for Higher Security: Using Voltage Overscaling to Secure Deep Neural Networks.
In Proceedings of the IEEE/ACM International Conference On Computer Aided
Design (ICCAD).

[33] Ahmadreza Jeddi et al. 2020. Learn2Perturb: An End-to-End Feature Perturbation
Learning to Improve Adversarial Robustness. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

[34] Jiankai Jin et al. 2022. Are we there yet? timing and floating-point attacks on
differential privacy systems. In Proceedings of the IEEE Symposium on Security
and Privacy (SP). 473–488.

[35] Hoki Kim. 2020. Torchattacks: A pytorch repository for adversarial attacks.
https://arxiv.org/abs/2010.01950

[36] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: Enabling
Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable Intercon-
nects. In Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems.

[37] Mathias Lecuyer et al. 2019. Certified robustness to adversarial examples with
differential privacy. In IEEE Symposium on Security and Privacy (SP). IEEE.

[38] Dong-U Lee, Ray C.C. Cheung, John D. Villasenor, and Wayne Luk. 2006.
Inversion-based hardware gaussian random number generator: A case study
of function evaluation via hierarchical segmentation. In Proceedings of the IEEE
International Conference on Field Programmable Technology.

[39] D-U Lee, John D Villasenor, Wayne Luk, and Philip Heng Wai Leong. 2006. A
hardware Gaussian noise generator using the Box-Muller method and its error
analysis. IEEE transactions on computers 55, 6 (2006), 659–671.

[40] Jaewoo Lee and Chris Clifton. 2011. How much is enough? choosing Y for differ-
ential privacy. In Proceedings of the 14th International Conference on Information
Security (ISC).

[41] Aleksander Madry et al. 2017. Towards Deep Learning Models Resistant to
Adversarial Attacks. https://arxiv.org/abs/1706.06083

[42] Aleksander Madry et al. 2018. Towards Deep Learning Models Resistant to
Adversarial Attacks. In International Conference on Learning Representations.

[43] Saikat Majumdar, Mohammad Hossein Samavatian, Kristin Barber, and Radu
Teodorescu. 2021. Using Undervolting as an On-Device Defense Against Ad-
versarial Machine Learning Attacks. In Proceedings of the IEEE International
Symposium on Hardware Oriented Security and Trust (HOST).

[44] Jamshaid Sarwar Malik and Ahmed Hemani. 2016. Gaussian random number
generation: A survey on hardware architectures. ACM Computing Surveys (CSUR)
49, 3 (2016).

[45] Fatemehsadat Mireshghallah et al. 2020. Shredder: Learning Noise Distributions
to Protect Inference Privacy. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems.

[46] Fatemehsadat Mireshghallah et al. 2021. Not all features are equal: Discovering
essential features for preserving prediction privacy. In Proceedings of the Web
Conference 2021.

[47] Ilya Mironov. 2012. On Significance of the Least Significant Bits for Differential
Privacy. In Proceedings of the 2012 ACM Conference on Computer and Communi-
cations Security.

[48] Chaya Nayak. 2020. New privacy-protected Facebook data for in-
dependent research on social media’s impact on democracy. https:
//research.facebook.com/blog/2020/2/new-privacy-protected-facebook-
data-for-independent-research-on-social-medias-impact-on-democracy/.

[49] Nicolas Papernot et al. 2016. Distillation as a Defense to Adversarial Perturbations
Against Deep Neural Networks. In 2016 IEEE Symposium on Security and Privacy
(SP). 582–597.

[50] Beomsik Park et al. 2022. DiVa: An Accelerator for Differentially Private Ma-
chine Learning. In Proceedings of the 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO).

[51] Adam Paszke et al. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32. 8024–
8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf

[52] Deboleena Roy, Indranil Chakraborty, Timur Ibrayev, and Kaushik Roy. 2021. On
the Intrinsic Robustness of NVM Crossbars Against Adversarial Attacks. In 2021
58th ACM/IEEE Design Automation Conference (DAC).

[53] Deboleena Roy, Chun Tao, Indranil Chakraborty, and Kaushik Roy. 2021. On
the Noise Stability and Robustness of Adversarially Trained Networks on NVM
Crossbars. https://arxiv.org/abs/2109.09060

[54] Michael Schulte and Earl Swartzlander. 1994. Hardware designs for exactly
rounded elementary functions. IEEE Trans. Comput. 43, 8 (1994).

[55] Liwei Song, Reza Shokri, and Prateek Mittal. 2019. Privacy Risks of Securing
Machine Learning Models against Adversarial Examples. In Proceedings of the
Conference on Computer and Communications SecuritySIGSAC.

[56] Tom Titcombe et al. 2021. Practical defences against model inversion attacks for
split neural networks. In Proceedings of the Workshop on Distributed and Private
Machine Learning (DPML) co-located with ICLR.

[57] Xingbin Wang et al. 2019. NPUFort: a secure architecture of DNN accelerator
against model inversion attack. In Proceedings of the 16th ACM International
Conference on Computing Frontiers.

[58] Lingxiao Wei et al. 2018. I Know What You See: Power Side-Channel Attack on
Convolutional Neural Network Accelerators. In Proceedings of the 34th Annual
Computer Security Applications Conference.

[59] Yannan N. Wu, Joel S. Emer, and Vivienne Sze. 2019. Accelergy: An Architecture-
Level Energy Estimation Methodology for Accelerator Designs. In IEEE/ACM
International Conference On Computer Aided Design (ICCAD).

[60] Dingqing Yang, Prashant J. Nair, andMieszko Lis. 2023. HuffDuff: Stealing Pruned
DNNs from Sparse Accelerators. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[61] Hao Yang et al. 2022. Rethinking feature uncertainty in stochastic neural networks
for adversarial robustness. arXiv preprint arXiv:2201.00148 (2022).

[62] Ashkan Yousefpour et al. 2021. Opacus: User-Friendly Differential Privacy Library
in PyTorch. arXiv preprint arXiv:2109.12298 (2021).

[63] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2017. Adversarial Examples:
Attacks and Defenses for Deep Learning. https://doi.org/10.48550/ARXIV.1712.
07107

[64] Guanglie Zhang et al. 2005. Ziggurat-based hardware Gaussian random num-
ber generator. In Proceedings of the IEEE International Conference on Field Pro-
grammable Logic and Applications.

[65] Huan Zhang et al. 2019. The Limitations of Adversarial Training and the Blind-
Spot Attack. In Proceedings of the International Conference on Learning Represen-
tations.

9

https://arxiv.org/abs/2010.01950
https://arxiv.org/abs/1706.06083
https://research.facebook.com/blog/2020/2/new-privacy-protected-facebook-data-for-independent-research-on-social-medias-impact-on-democracy/
https://research.facebook.com/blog/2020/2/new-privacy-protected-facebook-data-for-independent-research-on-social-medias-impact-on-democracy/
https://research.facebook.com/blog/2020/2/new-privacy-protected-facebook-data-for-independent-research-on-social-medias-impact-on-democracy/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2109.09060
https://doi.org/10.48550/ARXIV.1712.07107
https://doi.org/10.48550/ARXIV.1712.07107

	Abstract
	1 Introduction
	2 Background
	2.1 Differentially Private ML
	2.2 Hardware for noise generation
	2.3 CNN accelerator architecture

	3 DINAR
	3.1 Challenges
	3.2 High level overview
	3.3 Pre-fetching noise values from DRAM
	3.4 Increasing randomness
	3.5 Benefits of DINAR

	4 Methodology
	4.1 Designs evaluated
	4.2 Test setup

	5 Evaluation
	5.1 DiVa-DINAR overheads
	5.2 DiVa-NoiseGen overheads

	6 Adversarial robustness
	6.1 Test methodology
	6.2 Evaluation
	6.3 Overheads

	7 Securing split inference
	8 Related work
	9 Conclusion
	Acknowledgments
	References

