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Abstract
Energy-harvesting devices operate under extremely tight
energy constraints. Ensuring forward progress under fre-
quent power outages is paramount. Applications running
on these devices are typically amenable to approximation.
We proposeWhat’s Next, two anytime approximation tech-
niques for energy harvesting systems: subword pipelining
and skim points. By providing an approximate result sooner
and moving to the next input upon returning from a power
outage, we see up to 1.6× speedup with less than 3% error
for an image processing kernel.

1 Introduction
Energy-harvesting (EH) devices are an emerging class of
embedded systems that eschew batteries by running directly
off of energy gathered from the environment. However, har-
vested power sources only produce sufficient energy to run
these devices for up to a few milliseconds at a time, resulting
in frequent power outages [7]. As a result, energy-harvesting
systems must often spread processing a single input over
multiple power cycles. Thus, when new input data arrives,
the system must choose to either continue processing old
data or discard it and move on to processing new data.

What’s Next (WN) provides a partial answer when energy
is scarce but offers the flexibility to refine that answer if more
energy is available.1 This marries well with the notion of
anytime computation, proposed in the context of real time
systems [2]. Specifically, we extend the anytime automaton
model [8] which provides early approximate versions of an
application’s output; as the application continues to run, it
refines the output towards the precise result.
Consider the application in Fig. 1. In a conventional EH

system (Fig. 1a), the device resumes processing each input
after a checkpoint until the final precise result is achieved.
As a result, inputs C and D arrive while the device is still
processing input B, forcing the system to drop one of those
inputs. Using WN(Fig. 1b), we produce the best possible re-
sult for inputA prior to the first power outage and then begin
processing the next available input when power returns. As
a result, we start processing input C once power returns
and hence achieve greater forward progress across all input
samples. The output quality is best-effort (i.e., we take the
1"I understood the point... when I ask what’s next, it means I’m ready to
move on to other things, so what’s next?" – Jed Bartlet, The West Wing
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Figure 1. Application running on an EH system.
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Figure 2. 2D Convolution output: baseline and What’s Next
approximate result as-is when forced to power down) but
forward progress improves substantially.

2 Motivation
This section presents an example to demonstrate the draw-
backs of current EH systems that WN overcomes. EH sys-
tems frequently do not have sufficient energy to fully process
input data in a single power on cycle. When processing is
interrupted, the result produced thus far is likely to be incom-
plete. In such situations, an approximate result can serve as
a facsimile for the complete precise output. To demonstrate
this, we compare the output of an image processing kernel
fromWN vs. a precise implementation (Fig. 2). Fig. 2b shows
the output when the device running the precise implemen-
tation losses power halfway through processing the image.
Clearly the result is incomplete and processing of the image
must continue during the next power on cycle to produce
an acceptable output. Yet with anytime processing, with the
same total power-on time, we can compute a result for the
entire image (Fig. 2c). This result is both complete and of
acceptable quality. If a higher quality output is needed, the
system can run for longer, yielding greater quality over time.

3 What’s Next
We propose the What’s Next Intermittent Computing Archi-
tecture, which dynamically prioritizes the computation of the
most significant subwords first. Less significant subwords are
processed incrementally, improving quality over time. Our
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Figure 3. Anytime subword pipelining.
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Figure 4. Runtime-quality trade-off
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Figure 5.Median speedup and error while varying the active
power period.

first technique, subword pipelining (SWP) breaks long-
latency operations (e.g., fixed-point multiplication) into sub-
word stages, starting with the most significant subword. The
ultra-low power processors used in energy harvesting [4]
such as the ARMM0+, do not have a hardware multiplier [1].
A 32×32 multiply is carried out iteratively, taking a total of
32 cycles to complete. Our approach splits each data word
into smaller subwords to be processed from most to least sig-
nificant. Instead of processing each data word to completion
as shown in Fig. 3a (data words 1 & 2), the most significant
subwords from multiple data elements are processed in a
pipelined fashion (Fig. 3b). Upon encountering a power out-
age, our second technique skim points, allows the system
to skip processing the rest of the current input data and move
on to processing new data. Otherwise, the entire pipeline
runs to completion and is guaranteed to produce the precise
result.

4 Evaluation
We use a cycle-accurate simulator [3] for the ARM M0+
CPU [1], running at 24 MHz [4]. Our test application is
2D Convolution which applies a 9×9 Gaussian filter on a
128×128 grayscale image. Fig. 4 shows the runtime-quality

curve when applying SWP for 4-bit and 8-bit subwords. Run-
time (x-axis) is normalized to the conventional precise exe-
cution. The y-axis shows the Normalized Root Mean Square
Error (NRMSE) in output if the application were to be halted
by a power outage at that moment. Quality improves as
the application progresses, until the final precise output is
reached. An approximate output is available early, allowing
the application to be terminated sooner by a power outage.
Subword granularity controls the trade-off between how
early an approximate output is available and how late the
precise output is obtained. With smaller granularities (e.g., 4
bits), it takes longer for the application to run to completion
(i.e., produce the precise output). The advantage, however,
is that an approximate output is available earlier. WN incurs
runtime overhead to reach the precise output, due to the
presence of instructions that are not amenable to subword
pipelining and must be re-executed due to the iterative na-
ture of WN (e.g., conditional branches, address computation).
On devices with frequent power outages, the benefit of pro-
ducing outputs early and enabling interruptible execution
outweighs the cost of longer runtime to the precise result.

Next, we evaluate WN in the presence of frequent power
outages on a non-volatile processor based system, commonly
used in the energy-harvesting space [5, 6]. Fig. 5 shows
the median speedup and error from 13 runs of the appli-
cation. We vary the active power period (i.e., power outage
frequency), which is the amount of time that the processor
can run for (i.e., processing time between power outages).
The active period is normalized to the baseline precise exe-
cution time of the application on a single input. For example,
an active power period of 0.5 implies that the application is
likely to process only half of its current input before losing
power, while an active period of 0.1 means the application
is interrupted roughly ten times when processing one input.
In the presence of frequent power outages (i.e., very low
active period), WN achieves a speedup of 1.3× (8-bit) and
1.6× (4-bit) with less than 3% error.

5 Conclusion and Future Work
In this paper, we present What’s Next, a novel technique for
increasing forward progress on energy-harvesting systems.
Specifically, we detail subword pipelining which allows for
computations that dynamically prioritize themost significant
bits first and skim points, which allows for computation to
be skipped when a approximate result is available. We see
speedups of upto 1.6× with errors of less than 3%.
As subwords are 4-bit or 8-bit in size, redundant calcula-

tions are more likely compared to using the full 32-bit word.
Techniques such as memoization can be used to eliminate
these and further increase the speedup offered by SWP. WN
can also be extended to support low-latency operations by
vectorizing them so that subwords from different words can
be processed in parallel to yield a speedup.
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