
Rational Unified Process

1

®

IBM Software Group

© 2003 IBM Corporation

Rational Unified Process: A Best

Practices Approach

Rational Unified Process

2

Topics

� What is RUP?

� RUP best practices

� Software economics

� Adapt the process

The new RUP language is a unification of different method and process
engineering languages such as the SPEM extension to the UML for
software process engineering, the languages used for defining content
and process for RUP v7.0, IBM Global Services Method, as well as IBM
Rational Summit Ascendant.

Rational Unified Process

3

What is the Rational Unified Process (RUP)?

There are three central elements that define RUP:

1. An underlying set of principles for successful software development.

� These principles are the foundation on which the RUP has been developed.

2. A framework of reusable method content and process building blocks.

� A family of method plug-ins defines a method framework from which you create

your own method configurations and tailored processes.

3. The underlying method and process definition language.

� A unified method architecture meta-model that provides a language for

describing method content and processes.

The new RUP language is a unification of different method and process
engineering languages such as the SPEM extension to the UML for
software process engineering, the languages used for defining content
and process for RUP v7.0, IBM Global Services Method, as well as IBM
Rational Summit Ascendant.

Rational Unified Process

4

History of the Rational Unified Process

200520032002200120001999199819971996

Objectory

Process

Rational
Approach

•OMT
•Booch
•UML 1.0

•Requirements
•Test Process

•UI Design
•Data Engineering
•UML 1.1

•Performance
Testing

•Business
Modeling

•Configuration and
Change Mgt

•Project
Management

•UML 1.3
•RealTime

•Rational Process
Workbench
•Major addition of
content

•Major addition
of tool mentors

•Introduction of
RUP Platform
providing a
configurable
process
framework

Improved Process for
independent testing

•Tree browser upgraded
for enhanced
capabilities of creating
customized My RUP tree

•Terminology changes
•Introduction of RUP Base Concepts
•Key Principles for Business-
Driven Development

•Delivery processes

Rational Unified Process

5

RUP Disciplines and Related Tools

WBI ModelerWBI Modeler

Rational Requisite ProRational Requisite Pro

Rational Software ModelerRational Software Modeler

Rational Application DeveloperRational Application Developer

Tivoli Configuration ManagerTivoli Configuration Manager

Rational Performance, Functional, Manual TesterRational Performance, Functional, Manual Tester

Rational Rational ClearCaseClearCase, ClearQuest, ClearQuest

Rational Team Unifying PlatformRational Team Unifying Platform

Eclipse, OSEclipse, OS

Rational Unified Process

6

Symptoms of Software Development Problems

� User or business needs not met

� Requirements churn

� Modules do not integrate

� Hard to maintain

� Late discovery of flaws

� Poor quality or end-user experience

� Poor performance under load

� No coordinated team effort

� Build-and-release issues

Rational Unified Process

7

Trace Symptoms to Root Causes

Needs not met

Requirements churn

Modules don’t fit

Hard to maintain

Late discovery

Poor quality

Poor performance

Colliding developers

Build-and-release

Insufficient requirements

Ambiguous communications

Brittle architectures

Overwhelming complexity

Undetected inconsistencies

Poor testing

Subjective assessment

Waterfall development

Uncontrolled change

Insufficient automation

Symptoms Root Causes Key Principles

Ambiguous communications

Undetected inconsistencies

Modules do not fit

Adapt The Process

Balance Competing

Stakeholder Priorities

Demonstrate Value

Iteratively

Elevate Level Of Abstraction

Collaborate Across Teams

Focus Continuously On

Quality

Treat these root causes, and you will eliminate the symptoms. Eliminate
the symptoms, and you will be in a much better position to develop
quality software in a repeatable and predictable fashion.

The Key principles are a set of commercially-proven approaches to
software development, which when used in combination, strike at the
root causes of software development problems. These are so-called
“key principles,” not because you can precisely quantify their value, but
rather because we observe their common use in the industry by
successful organizations.

The key principles are harvested from thousands of customers on
thousands of projects and from industry experts.

Rational Unified Process

8

Best Practices
Process Made Practical

Develop Iteratively

Manage Requirements

Use Component
Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

Best Practices of Software Engineering

Developing iteratively is a technique that is used to deliver the
functionality of a system in a successive series of releases of increasing
completeness. Each release is developed in a specific, fixed time period
called an “iteration.”

Each iteration is focused on defining, analyzing, designing, building and
testing some set of requirements.

Rational Unified Process

9

Best Practices
Process Made Practical

Develop Iteratively

Manage Requirements

Use Component
Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

Practice 1: Develop Iteratively

Developing iteratively is a technique that is used to deliver the
functionality of a system in a successive series of releases of increasing
completeness. Each release is developed in a specific, fixed time period
called an “iteration.”

Each iteration is focused on defining, analyzing, designing, building and
testing some set of requirements.

Rational Unified Process

10

Waterfall Development Characteristics

� Delays confirmation of critical
risk resolution.

� Measures progress by
assessing work-products that
are poor predictors of time-to-
completion.

� Delays and aggregates
integration and testing.

� Precludes early deployment.

� Frequently results in major
unplanned iterations.

Code and Test

Design

Subsystem
Integration

System Test

Waterfall Process

Requirements
Analysis

Planning

Waterfall is conceptually straightforward because it produces a single
deliverable for each step (requirements, analysis model, design model,
code, etc), resulting in a single release. The fundamental problem is that
it pushes risk forward in time, where it’s costly to undo mistakes from
earlier phases. An initial design will likely be flawed with respect to its
key requirements, and furthermore, the late discovery of design defects
tends to result in costly overruns or project cancellation. The waterfall
approach tends to mask the real risks to a project until it is too late to do
anything meaningful about them.

To illustrate a problem with
the waterfall model: Suppose
I estimate that the project will
take two years, and it really
takes three years. At the end
of two years, what do I
have? Nothing useful works.
No partial delivery is
possible. Diagrams and
models are great, but they
can not execute.

Rational Unified Process

11

Enable Feedback by Delivering Incremental User Value

� Divide the project into a set of iterations

� In each iteration, we perform some requirements, design,
implementation, and testing of the application, producing a
deliverable that is one step closer to the solution.

� Obtain feedback from stakeholders to find out:

� Are we moving in the right direction?

� Are stakeholders satisfied so far?

� Do we need to change the features implemented so far?

� What additional features need to be implemented to add business
value?

By assessing stakeholder feedback we are more likely to:

• build trust among stakeholders

• ensure that the system we are developing will address their needs

And less likely to:

• over-engineer our approach

• add capabilities that are not useful to the end user.

Rational Unified Process

12

Iterative Development Characteristics

� Resolves major risks before making large investments.

� Enables early user feedback.

� Makes testing and integration continuous.

� Focuses project short-term objective milestones.

� Makes possible deployment of partial implementations.

T I M ET I M E

Iteration 1 Iteration 2 Iteration 3
P

R

D

C

I

T

P

R

D

C

I

T

P

R

D

C

I

T

Iterative processes were developed in response to these waterfall
characteristics. With an iterative process, the waterfall steps are applied
iteratively. Instead of developing the whole system in lock step, an
increment (that is, a subset of system functionality) is selected and
developed, then another increment, and so on. The selection of the first
increment to be developed is based on risk, the highest priority risks
first. To address the selected risk(s), choose a subset of use cases.
Develop the minimal set of use cases that will allow objective
verification, for example, through a set of executable tests, of the risks
that you have chosen. Then select the next increment to address the
next highest risk, and so on. Thus you apply the waterfall within each
iteration, and the system evolves incrementally.

P: Planning
R: Requirements analysis
D: Design
C: Code and unit test
I: Integration
T:Test

Rational Unified Process

13

Iterative Development Produces an Executable

Initial
Planning

Planning

Requirements

Analysis & Design

Implementation

Deployment

Test

Evaluation

Management
Environment

Each iteration
results in an
executable release

The earliest iterations address greatest risks. Each iteration produces
an executable release. Each iteration includes integration and test.
Iterations help:

• resolve major risks before making large investments.
• enable early user feedback.
• make testing and integration continuous.
• focus project short-term objective milestones.
• make possible deployment of partial implementations.

Iterative processes were developed in response to these waterfall
characteristics. With an iterative process, the waterfall steps are applied
iteratively. Instead of developing the whole system in lock step, an
increment (i.e. a subset of system functionality) is selected and
developed, then another increment, etc. The selection of the first
increment to be developed is based on risk, the highest priority risks
first. To address the selected risk(s), choose a subset of use cases.
Develop the minimal set of use cases that will allow objective verification
(that is, through a set of executable tests) of the risks that you have
chosen. Then select the next increment to address the next highest risk,
and so on. Thus you apply the waterfall within each iteration and the
system evolves incrementally.

Rational Unified Process

14

TimeTime

R
is

k
Waterfall Risk

Iterative Risk

Risk Profiles

Risk ReductionRisk Reduction

Iterative development produces the architecture first, allowing
integration to occur “as the verification activity” of the design phase and
allowing design flaws to be detected and resolved earlier in the lifecycle.
Continuous integration throughout the project replaces the “big bang”
integration at the end of a project.
Iterative development also provides much better insight into quality,
because of system characteristics that are largely inherent in the
architecture. For example, performance, fault tolerance, and
maintainability are tangible earlier in the process. Thus, issues are still
correctable without jeopardizing target costs and schedules.

Rational Unified Process

15

Project Schedule

Reduce Scrap/Rework: Use an Iterative Process

Prototypes Architecture Functional Product

Releases Release

100%

Waterfall
Project Profile

Iterative
Project Profile

Development
Progress
(% coded)

How you can avoid late life-cycle design breakages and project plan slippages?
Get your teams to use an iterative development process.

This graphic depicts how an iterative development would compare to a
conventional project from the development progress perspective and how the
project schedule can actually be shortened.

The architecture-first approach forces integration into the elaboration phase,
with demonstrations validating the design and requirements. The
demonstrations do not eliminate the design breakage, they just make it happen
in the design phase where it can be fixed more efficiently. This reduces the risk
of the project by confronting it early in the development process. In an iterative
process, the system is “grown” from an immature prototype to a baseline
architectural skeleton to increments of useful capabilities and then finally,
complete product releases. The downstream integration nightmare is avoided
along with late patches and shoe-horned software fixes, thereby resulting in a
more robust and maintainable design.

Rational Unified Process

16

RUP Organization Along Time

Time

Organization by phases helps minimize the risks of resource allocation.

The time aspect of the process is enacted through phases, iterations,
and milestones (end of phase objectives).

Progressing by meeting milestones helps minimize wasted resources
since they are allocated only on a firm basis.

Rational Unified Process

17

17

Inception Phase: Objectives

� Establish project scope and
boundary conditions

� Determine the use cases and
primary scenarios that will drive
the major design trade-offs

� Demonstrate a candidate
architecture against some of the
primary scenarios

� Estimate the overall cost and
schedule

� Identify potential risks (the
sources of unpredictability)

� Prepare the supporting
environment for the project

Note: In addition to an estimate for the Elaboration phase, an overall
estimate of cost and schedule to complete the project is usually made at
this time. However, this estimate must be recognized as being very
rough (low confidence) and subject to revision at the end of Elaboration.

Rational Unified Process

18

18

Elaboration Phase: Objectives

� Define, validate, and baseline
the architecture as rapidly as is
practical

� Address architectural
significant risks

� Baseline the vision

� Baseline a detailed plan for the
Construction phase

� Demonstrate that the baseline
architecture will support the
vision at a reasonable cost in a
reasonable period of time

� Refine support environment

The cost and schedule to complete are re-estimated at the end of this
phase. At this point, they are considered stable (high confidence), and
firm commitments can be made.

Rational Unified Process

19

19

Construction Phase: Objectives

� Complete the software product for
transition to production

� Minimize development costs by
optimizing resources and avoiding
unnecessary scrap and rework

� Achieve adequate quality as
rapidly as is practical

� Achieve useful versions (alpha,
beta, and other test releases) as
rapidly as possible

Rational Unified Process

20

20

Transition Phase: Objectives

� Achieve user self-supportability

� Achieve stakeholder
concurrence that deployment
baselines are complete and
consistent with the evaluation
criteria of the vision

� Achieve final product baseline
in a rapid and cost-effective
manner

During the Transition phase, a decision is made whether to release the
product.

Rational Unified Process

21

21

One Iteration

Start Iteration Using
Iteration Plan

Start Next Iteration

Complete Planned

Iteration Work

Adjust
Objectives

Adjust Target
Product

Adjust Remaining

Plan

Plan Next
Iteration

Project Stopped

Stop

Assess

Iteration

Continue

•Consider risks

•Add Change
Control Board
approved changes

Artifact: Iteration
Assessment

Artifact:
Iteration Plan

Reduce risk

Accept

change

Steer project

Definition of Artifact – a subtype of Work Product: A piece of
information that: 1) is produced, modified, or used by a process, 2)
defines an area of responsibility, and 3) is subject to version
control. An artifact can be a model, a model element, or a
document. A document can enclose other documents.

Two iteration planning artifacts in RUP are the Iteration Plan and the
Iteration Assessment. In combination, they facilitate decisions that allow
you to reduce risk, accept change, and steer the project through each
iteration.

After an iteration starts, the teams complete the work specified in the
Iteration Plan.

When work is complete, the Iteration Assessment is performed to
determine if and how the iteration goals were achieved, using as many
objective measurements as possible. Based on the assessment, a
determination is made whether or not to continue the project.

If you decide to continue, you have to analyze Change Control Board
(CCB)-approved project changes, revise your risk list and possibly
modify the product’s objectives (requirements) or the specifications of
the product itself (architecture and design). This revised specification for
the project becomes the new target and allows you to steer the project,
taking into consideration requirements and product changes. Based on
this adjusted set of objectives, you can plan the next iteration, creating a
new Iteration Plan.

Rational Unified Process

22

Practice 2: Manage Requirements

Best Practices
Process Made Practical

Develop Iteratively

Manage Requirements

Use Component
Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

A report from the Standish Group confirms that a distinct minority of
software development projects is completed on-time and on-budget. In
their report, the success rate was only 16.2 percent, while challenged
projects (operational, but late and over-budget) accounted for 52.7
percent. Impaired projects (canceled) accounted for 31.1 percent. These
failures are attributed to poor requirements management, incorrect
definition of requirements from the start of the project, and poor
requirements management throughout the development lifecycle.
(Source: Chaos Report, http://www.standishgroup.com)

Rational Unified Process

23

Requirements Management

Making sure you

�solve the right problem

�build the right system

by taking a systematic approach to

�eliciting

�organizing

�documenting

�managing

the changing requirements of a software application.

Rational Unified Process

24

Definitions

� Requirement

� A condition or capability to which the system must conform.

� Requirements management

� A systematic approach to:
• Eliciting, organizing, and documenting requirements.

• Establishing and maintaining agreement between customer/user and the project
team on the changing requirements.

Definitions:

• RUP: A requirement describes a condition or capability to which a
system must conform, either derived directly from user needs, or
stated in a contract, standard, specification, or other formally
imposed document.

• UML: A desired feature, property, or behavior of the system.
Requirements specify what the system must do rather than how the
system does it.
There are many kinds of requirements. For example, feature
requirements are requirements that are directly tied to user needs, and
software requirements give the detailed requirements for the software.
These different types of requirements are discussed later in the course.
Do not expect to “get it right first time”. Requirements management is
successful only if it allows for uncertainty of the requirements early in
the project. However, requirements management also ensures that
requirements become better defined over time.

Rational Unified Process

25

Problem

Solution
Space

Problem
Space

Needs

Features

Software
Requirements

Test Scripts
Design User

Docs

The The

Product Product

to Be to Be

BuiltBuilt

T
ra

c
e
a
b
ility

Map of the Territory

Managing requirements involves the translation of stakeholder requests
into a set of key stakeholder needs and system features. These in turn
are detailed into specifications for functional and nonfunctional
requirements. Detailed specifications are translated into test
procedures, design, and user documentation.

Traceability allows us to:
• Assess the project impact of a change in a requirement
• Assess the impact of a failure of a test on requirements (that is, if

the test fails, the requirement may not be satisfied)
• Manage the scope of the project
• Verify that all requirements of the system are fulfilled by the

implementation
• Verify that the application does only what it was intended to do
• Manage change

Rational Unified Process

26

Requirements Are Accessible to the Whole Team

Change
Management

Project
Management

Design and
Development

QA and
Test

Documentation

RequisitePro

Reqt. Reqt.

Reqt.
Reqt.

Reqt.

Reqt.

Effective requirements management requires you to organize your
requirements so that they are available to the whole team. It also
requires you to control change and ensure that your project does not
spiral out of control as changes occur. When a change occurs, it must
be communicated effectively, and the impact of the change must be fully
understood.

Rational Unified Process

27

RequisitePro Project structure

Requirement
Types

Attributes

Document
Types

Outlines
(templates)

RequisitePro
Project

define

have
associated

define

based on
have default

has

maintains

Revision History

Security

may be
saved as

RequisitePro
Documents

associated
with

may be used
to create

MS Word
Packages

contain

Requirements

contains

based
on

trace
to/from

Views

Your Requirements Management Plan dictates your project structure in
RequisitePro. Your RM Plan specifies the types of requirements you want
to capture, the relationships between the requirement types, and the
attributes you want to capture with each requirement.

This slide shows a high-level overview of all the components in a
RequisitePro project and how they relate to each other. Requirement
types, attributes, and document types define RequisitePro project
structure.

Every requirement is associated with a requirement type. All
requirements are maintained in the project database but can be located
in documents as well. Requirements may have relationships among or
dependencies upon one another. They can be traced from one
requirement to another.

Rational Unified Process

28

Practice 3: Use Component Architectures

Best Practices
Process Made Practical

Develop Iteratively

Manage Requirements

Use Component
Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

Software architecture is the development product that gives the highest
return on investment with respect to quality, schedule, and cost,
according to the authors of Software Architecture in Practice (Len Bass,
Paul Clements & Rick Kazman [1998] Addison-Wesley). The Software
Engineering Institute (SEI) has an effort underway called the
Architecture Tradeoff Analysis (ATA) Initiative to focus on software
architecture, a discipline much misunderstood in the software industry.
The SEI has been evaluating software architectures for some time and
would like to see architecture evaluation in wider use. By performing
architecture evaluations, AT&T reported a 10 percent productivity
increase (from news@sei, Vol. 1, No. 2).

Rational Unified Process

29

Focus on Architecture First

� Design, implement, and test the architecture early in the project.

� Focus on the following goals:

� Define the high-level building blocks and the most important components, their

responsibilities, and their interfaces.

� Design and implement architectural mechanisms.

Getting the architecture right early-on makes it easier to manage complexity. It also

helps to identify what reusable assets we can leverage, and what aspects of the

system need to be custom built.

Rational Unified Process

30

Resilient Component-Based Architectures

� Resilient

� Meets current and future requirements

� Improves extensibility

� Enables reuse

� Encapsulates system dependencies

� Component-based

� Reuse or customize components

� Select from commercially available components

� Evolve existing software incrementally

Architecture is a part of design. It is about making decisions on how the
system will be built. But it is not all of the design. It stops at the major
abstractions, or in other words, the elements that have some pervasive
and long-lasting effect on the system’s performance and ability to
evolve.

A software system’s architecture is perhaps the most important aspect
that can be used to control the iterative and incremental development of
a system throughout its lifecycle.

The most important property of an architecture is resilience—flexibility in
the face of change. To achieve it, architects must anticipate evolution in
both the problem domain and implementation technologies to produce a
design that can gracefully accommodate such changes. Key techniques
are abstraction, encapsulation, and object-oriented analysis and design.
The result is that applications are fundamentally more maintainable and
extensible.

Rational Unified Process

31

Practice 4: Model Visually (UML)

Best Practices
Process Made Practical

Develop Iteratively

Manage Requirements

Use Component
Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

A model is a simplification of reality that provides a complete
description of a system from a particular perspective. We build models
so that we can better understand the system we are modeling. We build
models of complex systems because we cannot comprehend any such
system in its entirety.

Rational Unified Process

32

Why Model Visually?

� Capture structure and behavior.

� Show how system elements fit together.

� Keep design and implementation consistent.

� Hide or expose details as appropriate.

� Promote unambiguous communication.

Activity
Diagrams

Models

Static
Diagrams

Sequence
Diagrams

Collaboration
Diagrams

Statechart
Diagrams

Deployment
Diagrams

Component
Diagrams

Object
Diagrams

Class
DiagramsUse-Case

Diagrams

Dynamic
Diagrams

UML provides one
language for all
practitioners.

Modeling is important because it helps the development team visualize,
specify, construct, and document the structure and behavior of a
system’s architecture. Using a standard modeling language, such as the
Unified Modeling Language (UML), different members of the
development team can communicate their decisions unambiguously to
one another.
Using visual modeling tools facilitates the management of these models,
letting you hide or expose details as necessary. Visual modeling also
helps you maintain consistency among a system’s artifacts—its
requirements, designs, and implementations. In short, visual modeling
helps improve a team’s ability to manage software complexity.

Rational Unified Process

33

Use Higher-Level Tools and Languages

� Leverage higher-level tools, frameworks, and languages:

� Standard languages such as UML and EGL facilitate collaboration
around high-level constructs while hiding unnecessary details.

� Design and construction tools can automate moving from high-level
constructs to working code.

� Portfolio management tools allow you to manage financial and other
aspects of multiple projects as one entity versus as a set of separate
entities.

High-level tools capture key information graphically, which is a powerful and attractive

way to present this information.

UML: Unified Modeling Language

EGL: Enterprise Generation Language

Rational Unified Process

34

Common Language for Process and Design

� The UML is a common language for
� Visualizing

� Specifying

� Constructing

� Documenting

� RUP is a common language for
� Process

� Roles

� Activities

� Workflows

� Iterations

To increase comprehension, use a common language like the
Unified Modeling Language to express models. The UML has
been adopted as an industry standard. It is platform-
independent. It defines a graphical language for presenting
models and defines the semantics for each graphical element.

Rational Unified Process

35

Visual Modeling Using UML Diagrams

Actor A

Use Case 1

Use Case 2

Actor B

user : Clerk

mainWnd : MainWnd

fileMgr : FileMgr

repository : Repository
document : Document

gFile : GrpFile

9: sortByName ()

L1: Doc view request ()

2: fetchDoc()

5: readDoc ()

7: readFile ()

3: create ()

6: fillDocument ()

4: create ()

8: fillFile ()

Window95

¹®¼-°ü¸®
Å¬¶óÀÌ¾ðÆ®.EXE

Windows

NT

¹®¼-°ü¸® ¿£Áø.EXE

Windows
NT

Windows95

Solaris

ÀÀ¿ë¼-¹ö.EXE

Alpha
UNIX

IBM

Mainframe

µ¥ÀÌÅ º̧£ÀÌ½º¼-¹ö

Windows95

¹®¼-°ü¸® ¾ÖÇÃ¸́Document

FileManager

GraphicFile

File

Repository DocumentList

FileList

user

mainWnd fileMgr :
FileMgr

repositorydocument :
Document

gFile

1: Doc view request ()

2: fetchDoc()

3: create ()

4: create ()

5: readDoc ()

6: fillDocument ()

7: readFile ()

8: fillFile ()

9: sortByName ()

Æ¯ Á¤¹®¼-¿¡ ´ëÇÑ º̧±â ¦̧
»ç¿ëÀÚ°¡ ¿äÃ»ÇÑ´Ù.

È-ÀÏ°ü¸®ÀÚ´Â ÀÐ¾î¿Â
¹®¼-ÀÇ Á¤º̧ ¦̧ ÇØ ḉ ¹®¼-

°́ Ã¼¿¡ ¼³Á¤À» ¿äÃ»ÇÑ´Ù.

È-̧ é °́ Ã¼´Â ÀÐ¾îµéÀÎ
°́ Ã¼µé¿¡ ´ëÇØ ÀÌ¸§º°·Î
Á¤·ÄÀ» ½ÃÄÑ È-̧ é¿¡
º̧ ¿©ÁØ´Ù.

Forward and
Reverse
Engineering

Target

System

Openning

Writing

Reading
Closing

add file [numberOffile==MAX] /
flag OFF

add file

close file

close fileUse Case 3

Use-Case
Diagram

Class Diagram

Collaboration
Diagram

Sequence
Diagram

Component
Diagram

Statechart
Diagram

GrpFile

read()
open()
create()
fillFile()

rep

Repository

name : char * = 0

readDoc()
readFile()

(from Persistence)

FileMgr

fetchDoc()
sortByName()

DocumentList

add()
delete()

Document

name : int
docid : int
numField : int

get()
open()
close()
read()
sortFileList()
create()
fillDocument()

fList

1

FileList

add()
delete()

1

File

read()

read() fill the
code..

Deployment
Diagram

Visual modeling with the UML makes an application’s architecture
tangible, permitting us to assess it in multiple dimensions. How portable
is it? Can it exploit expected advances in parallel processing? How
might we modify it to support a family of applications? We’ve discussed
the importance of architectural resilience and quality. The UML enables
us to evaluate these key characteristics during early iterations—at a
point when design defects can be corrected before threatening project
success.

Advances in forward and reverse engineering techniques permit
changes to an application’s model to be automatically reflected in its
source code, and changes to its source code to be automatically
reflected in its model. This is critical when using an iterative process,
where we expect such changes with each iteration.

Rational Unified Process

36

IBM Rational Software Architect

IBM Rational Software Architect

IBM Rational Application
Developer for WebSphere

IBM Rational Web Developer

IBM Rational Software Modeler

For software architects and senior developers developing

applications for the Java platform or in C++. Rational Software

Architect unifies UML modeling, Java structural analysis, Web

Services, Java/J2EE, Data, XML, Web development, and process

guidance.

Rational Application Developer is for web, Java, and J2EE

developers and development teams building web applications, web

services, Java applications, J2EE applications, and portal

applications.

For corporate and web developers building dynamic web

applications, web services, or java applications. Rational Web

Developer is an easy-to-use IDE for visually constructing, testing,
and deploying applications. Leverages JSF and EGL rapid tooling.

Rational Software Modeler is a visual modeling and design tool

that leverages UML to document and communicate the different

views required to support analysis and design.

All built on Eclipse 3.0

RSA - For software architects and senior developers developing applications for the Java platform or in C++, Software
Architect is a design and construction tool for developing well architected applications, including applications on a Service
Oriented Architecture. Software Architect unifies UML modeling, Java structural analysis, Web Services, Java/J2EE,
Data, XML, Web development, and process guidance.

RAD – For web, Java, and J2EE developers and development teams building web applications, web services, Java
applications, J2EE applications, and portal applications. Application Developer is a comprehensive IDE for visually
designing, constructing, testing, profiling, and deploying applications. Application Developer improves application design
and performance while increasing individual and team productivity.

RWD – For corporate and web developers building dynamic web applications, web services, or java applications. Web
Developer is an easy-to-use IDE for visually constructing, testing, and deploying applications. Leverages JSF and EGL
rapid tooling.

RSM - For architects, system analysts, and designers that need to ensure that their specifications, architecture, and
designs are clearly defined and communicated with their stakeholders. Software Modeler is a visual modeling and design
tool that leverages UML to document and communicate

Rational Unified Process

37

IBM Rational Software
Architect

ClearCase LT

RUP Configuration for SW Architects

IBM Rational Software Architect Overview

Application Developer

C/C++ Development Tools

Software Modeler

UML Language Transforms

Java Structural Analysis

“WSAD v6”

• JSF, SDO, Struts
• Java GUI editor
• Web diagram editor
• Site designer
• Web Services development tools
• Database editing tools
• EGL
• EJB development tools
• UML code editors for EJB, Java, and

Data
• Static Analysis
• Runtime Analysis
• Component test automation
• Portal/Portlet development tools

“Modeler”

• UML 2.0 Diagrams for
Class, Communication,
Component, Composite
Structure, Deployment,
Activity, Sequence, State,
and Use Case

• OCL Support
• Automatic diagram

generation
• Pattern content
• Pattern/Transform

authoring framework and
services

• Extensive open API
• Java-based “scripting” for

extensibility
• HTML and XML based

data extraction and
reporting

• Extensive printing
• RAS tools

• C/C++ editors and build management
• Compiler and debugger integration
• UML code editors

• Sample UML-to-code transforms for
EJB, Java, and C++

• Selective language to UML harvesting

“Application Analyzer”

• Automatic anti-pattern and
pattern detection

• Architectural discovery,
analysis, metrics, and
stability reporting

• Implementation level
architectural rules

Rational Unified Process

38

Practice 5: Continuously Verify Quality

Best Practices
Process Made Practical

Develop Iteratively

Manage Requirements

Use Component
Architectures

Model Visually (UML)

Continuously
Verify Quality

Manage Change

Quality, as used within RUP, is defined as "The characteristic of having
demonstrated the achievement of producing a product which meets or
exceeds agreed-upon requirements, as measured by agreed-upon
measures and criteria, and is produced by an agreed upon process."
Given this definition, achieving quality is not simply "meeting
requirements" or producing a product that meets user needs and
expectations. Quality also includes identifying the measures and criteria
(to demonstrate the achievement of quality), and the implementation of
a process to ensure that the resulting product has achieved the desired
degree of quality (and can be repeated and managed).

In many organizations, software testing accounts for 30 percent to 50
percent of software development costs. Yet most people believe that
software is not well-tested before it is delivered. This contradiction is
rooted in two clear facts. First, testing software is enormously difficult.
The different ways a particular program can behave are almost infinite.
Second, testing is typically done without a clear methodology and
without the required automation or tool support. While the complexity of
software makes complete testing an impossible goal, a well-conceived
methodology and use of state-of-the-art tools can greatly improve the
productivity and effectiveness of the software testing.

Rational Unified Process

39

Continuously Verify Your Software’s Quality

Cost

TransitionConstructionElaborationInception

Software problems are
100 to 1000 times more costly

to find and repair after deployment

� Cost to Repair Software

� Cost of Lost Opportunities

� Cost of Lost Customers

This principle is driven by a fundamental and well-known property of
software development: it’s a lot less expensive to correct defects during
development than to correct them after deployment.

• Tests for key scenarios ensure that all requirements are properly
implemented

• Poor application performance hurts as much as poor reliability
• Verify software reliability—memory leaks, bottlenecks
• Test every iteration—automate test!

Many people remember
Barry Boehm’s
groundbreaking work in
Software Economics where
he quantified the relative
expense to fix a bug at
different times in the
development lifecycle. Be
cautious, however, since his
work was based on the
waterfall model, not an
iterative development model.

The iterative model
fundamentally changes how
and when we test.

Rational Unified Process

40

Testing Dimensions of Quality

Reliability

� Test the application
behaves consistently and
predictably.

Performance

� Test online response
under average and peak
loading

Functionality

� Test the accurate
workings of each
usage scenario

Usability

� Test application from the
perspective of
convenience to end-user.

Supportability

� Test the ability to maintain
and support application
under production use

Functional testing verifies that a system executes the required use-
case scenarios as intended. Functional tests may include the testing of
features, usage scenarios and security.

Usability testing evaluates the application from the user’s perspective.
Usability tests focus on human factors, aesthetics, consistency in the
user interface, online and context-sensitive help, wizards and agents,
user documentation, and training materials.

Reliability testing verifies that the application performs reliably and is
not prone to failures during execution (crashes, hangs, memory leaks).
Effective reliability testing requires specialized tools. Reliability tests
include integrity, structure, stress, contention and volume tests.

Performance testing checks that the target system works functionally
and reliably under production load. Performance tests include
benchmark tests, load tests, and performance profile tests.

Supportability testing verifies that the application can be deployed as
intended. Supportability tests include installation and configuration tests.

Rational Unified Process

41

UML Model
and

Implementation

Tests

Iteration 1Iteration 1

Test Suite 1Test Suite 1

Iteration 2Iteration 2

Test Suite 2Test Suite 2

Iteration 4Iteration 4

Test Suite 4Test Suite 4

Iteration 3Iteration 3

Test Suite 3Test Suite 3

Test Each Iteration

In each iteration, automated tests are created that test the requirements
addressed in that iteration. As new requirements are added in
subsequent iterations, new tests are generated and run. At times, a
requirement may be changed in a later iteration. In that case, the tests
associated with the changed requirement may be modified or simply
regenerated by an automated tool.

Rational Unified Process

42

Incrementally Build Test Automation

� Incrementally build test automation to:

� Detect defects early

� Minimize up-front investments

� Generating test code directly from the
design models:

� Saves time

� Provides incentives for early testing

� Increases the quality of testing by minimizing the
number of bugs in the test software

Making the right design decisions can greatly improve our ability to
automate testing.

Automated testing has been a key area of focus for, among others, the
agile community. The aim is to automate testing of all code and tests are
written before the code is written (test-first design).

Rational Unified Process

43

Mature processes & integrated tools

A clear testing strategy & efficient

testing processes can result in

spending 50% less on testing

costs and 20% improvement

in development productivity!

Rework

Rework

Requirements

4.5 Months

Design

6.6 Months

Code

8.8 Months

Test

9.4 Months

CMM

Level 1

Requirements

4.0 Months

Design

6.0 Months

Code

6.8 Months

Test

3.75 Months

CMM

Level 3

Early, iterative testing delivers

80% less defects to production,

resulting in significantly less

rework and

45% more overall productivity!

Note: CMM Level 1 organizations spend 30%+ of project dollars on testing.
CMM Level 3 organizations spend 15%.

SEI (Software Engineering Institute) claims that CMMi level 3 projects will show
around 20% productivity increase. This requires institutionalization of common
processes, methods and tools across an organization with a common line of
business, plus objective metrics, plus maturity in best practices gets an organization
to improving return on investment from project to project.

This benefit is mostly visible during the testing activities : defining a clear testing
strategy and implementing an efficient testing process can drive to a 50% decrease
of the global testing costs.

More, with earlier and smarter tests, the applications are delivered with 80% bug
less, reducing the rework (working on residual bugs) and the overall productivity is
increased by 45%.

That’s why the testing strategy must be the concern of all the organization, at all
levels.

Rational Unified Process

44

IBM Rational Functional Tester

Linux-based test authoring

ClearCase LT

IBM Rational Functional Tester Overview

Manual Tester

Eclipse Java Development Tools

Wizard and table-assisted
data-driven tests

Tests Java, .NET, Web and
terminal emulator-based apps

Java and VB.NET-based
test scripts

Test Script Language

• User has choice of two test script
languages – Java and VB.NET

• Use of Java implies editing and
debugging in Eclipse/RAD/RSA-
based editor

• Use of VB.NET implies usage of
Microsoft VS.NET-based
editor/debugger

• Identical capabilities in both editors

GUI Technologies

• Automates regression testing
of Java, .NET, Web and
terminal emulator-based
applications

Data-driven Testing

• Simplified data-driven testing
enabled by wizards and Excel-
like data tables

Improved Linux support

• Users can author and modify test
scripts on Linux (no script recorder)

• Scripts can also be executed on
Linux

Eclipse availability
• When using Java scripting,

runs inside Eclipse/RSA/RAD
shell

• Full Eclipse JDT features are
accessible

• Accessible to developers from
within their IDE

Manual Tester in the box

• Customers receive one Manual
Tester license per Functional Tester
license

• Improve return on manual testing
efforts while adopting automated test
methods

ClearCaseLT in the box
• Supports parallel development

of manual tests
• Enables remote test access for

distributed teams

Automated
functional

regression testing

Rational Unified Process

45

IBM Rational Manual Tester

ClearCase LT

Test Import / Results Export

IBM Rational Manual Tester Overview

Data entry & validation assistance

Custom test fields

Test step reuse library

Rich test editor

Customizable

• Add new data fields to
individual test steps

• Apply internally-defined
naming conventions

Tool Assistance
• Automated data entry
• Automated data

comparison and results
storage

• Reduces opportunity for
manual error during test
execution

Import/Export

• Imports manual test source
files from Microsoft Word,
Microsoft Excel and Rational
TestManager

• Exports test results to CSV
format for additional analysis

Manual test
authoring and

execution

ClearCaseLT in the box

• Supports parallel development of
manual tests

• Enables remote test access for
distributed teams

Rich Text Editor

• Modify test font, size,
color; attach images and
files

• Supports creation of both
test steps and verification
points

• Ensures clarity of test step
direction and consistency
of test execution

Reuse Library
• Library for common test

procedures
• Drag-and-drop construction of

new tests
• Automatic global update when

modifying any one instance of
linked content

Rational Unified Process

46

IBM Rational

Performance Tester

Graphical test scheduler and
user profiler

ClearCase LT

IBM Rational Performance Tester Overview

Eclipse Java Development Tools

High scalability hyper-threaded
execution architecture

Visual
test construction and editing

HTTP/S load testing

Visual Test Editor
• Test viewer requires no coding for test

modification and execution
• Automated identification and variation

of dynamic data
• Insertion of Java code is supported for

advanced customization needs

New load testing

technology

• New load test recorder
and execution engine

• Supports HTTP/S;
additional protocol
support (e.g. ERP)
planned for late
2004/early 2005

Windows and Linux
load generation support

High scalability
• High scalability, low

footprint due to hyper-
threaded architecture

• Significant improvement
over Robot technology

Test scheduler
• Graphical user profiling and

transaction modeling
• Eases modeling of user populations

Platform Support

• Multiple platform support for
load generation Eclipse-based

• Runs inside Eclipse/RSA/RAD shell
• Accessible to developers from within

their IDE

Load and
performance testing

ClearCaseLT in the box

• Supports parallel development
of manual tests

• Enables remote test access for
distributed teams

Rational Unified Process

47

Practice 6: Manage Change

Best Practices
Process Made Practical

Develop Iteratively

Manage Requirements

Use Component
Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

As we indicated earlier, we cannot stop change from being introduced
into our project. However, we must control how and when changes are
introduced into project artifacts, and who introduces the changes. We
also must synchronize change across development teams and
locations.

Unified Change Management (UCM) is Rational Software's approach to
managing change in software system development, from requirements
to release.

Rational Unified Process

48

Embrace and Manage Change

� Today’s applications are too complex for
requirements, design, implementation, and
testing to align perfectly the first time through.

� Most effective application development methods
embrace the inevitability of change.

� The iterative approach provides us with the
opportunity to implement those changes
incrementally.

Change needs to be managed by having the processes and tools in
place to avoid hindering creativity.

Rational Unified Process

49

The Configuration and Change Management (CCM) Cube

The CCM cube summarizes the interdependence of these functions.
The three aspects are closely connected.

Rational Unified Process

50

Change requests come from
many sources throughout the

product lifecycle.

Change Request Management Concepts

Help Desk
User input

Coders input
Testers input

Customer and
User input

Marketing

New
Feature

New
Requirement

Bug

Approved
Decision
Process
Change

Control Board
(CCB)

Single Channel
for Approval

Change
Request (CR)

Reqt

Design

Code

Test

Maint

Weinberg, ‘95

Change Request Management (CRM) addresses the organizational
infrastructure required to assess the cost and schedule impact of a
requested change to the existing product. CRM addresses the workings
of a Change Review Team or Change Control Board.
Configuration Status Accounting (Measurement) is used to describe
the “state” of the product based on the type, number, rate, and severity
of defects found and fixed during the course of product development.
Metrics derived under this aspect, either through audits or raw data, are
useful in determining the overall completeness of the project.
Configuration Management (CM) describes the product structure and
identifies its constituent configuration items that are treated as single
versionable entities in the configuration management process. CM deals
with defining configurations, building and labeling, and collecting
versioned artifacts into constituent sets and maintaining traceability
between these versions.
Change Tracking describes what is done to components for what
reason and at what time. It serves as the history and rationale of
changes. It is quite separate from assessing the impact of proposed
changes as described under Change Request Management.
Version Selection is to ensure that the right versions of configuration
items are selected for change or implementation. Version selection
relies on a solid foundation of “configuration identification.”
Software Manufacture covers the need to automate the steps to
compile, test, and package software for distribution.

Rational Unified Process

51

Build 3Build 3

Build 2Build 2
Build 1Build 1

Testers

Developers Integrator

Eliminate Errors: Automate Change Management

Analyst Project Manager

Bug 98Bug 98

Add promotion Add promotion
calculationcalculation

Bug 179Bug 179

New GUI New GUI
buttonbutton

New platformNew platform

New web designNew web design

Bug 849Bug 849

Bug 527Bug 527

Bug 251Bug 251

New customer New customer
transactiontransaction

Bug 348Bug 348

Why did the Why did the
build break?build break?

Of course I Of course I
didn’t forgetdidn’t forget
a file...a file...

Did requirementDid requirement
462 make it into462 make it into
this release ?this release ?

How many How many
severity 1 bugs severity 1 bugs
are left?are left?

Is bug 873 fixed in Is bug 873 fixed in
this build?this build?

“What’s the big deal with change?

The software team usually experiences it as a blizzard of requests -- to
make enhancements, fix bugs, you name it.

“If you think about how artifacts move through the software
development process, you see that each member of the team
experiences all these changes differently.

Project managers try to assess the project status and analysts want to
know what features are arriving in builds.

Developers change a huge collection of different files, and they have to
assure they have them all checked in for the builds.

The integrator, or build manager has to figure out why builds break and
testers who receive new builds on a regular basis need to know what’s
new and needs testing.”

With an automated change management application, the entire team cab
become more aware of changes for a given iteration and the team cab

Rational Unified Process

52

UCM Tools: ClearCase and ClearQuest

� You work in isolation
without being affected
by others' changes

� You can track,
manage, and report
activities

� You can relate the changes you make
to artifacts to the change requests

� You can quickly access the right
versions of artifacts

� You can work in a parallel or serial
development environment

Rational ClearCase is a robust software artifact management tool that
provides automated parallel development.

Rational ClearQuest is a flexible, customizable defect and change-
tracking application.

ClearCase UCM can be used independently of ClearQuest. You will
have artifact management, but no defect and change-tracking
capabilities.

Rational Unified Process

53

Trace Symptoms to Root Causes

Needs not met

Requirements churn

Modules don’t fit

Hard to maintain

Late discovery

Poor quality

Poor performance

Colliding developers

Build-and-release

Insufficient requirements

Ambiguous communications

Brittle architectures

Overwhelming complexity

Undetected inconsistencies

Poor testing

Subjective assessment

Waterfall development

Uncontrolled change

Insufficient automation

Symptoms Root Causes Best Practices

Ambiguous communications

Undetected inconsistencies

Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

Model Visually (UML)

Continuously Verify Quality

Modules don’t fit

Treat these root causes, and you’ll eliminate the symptoms. Eliminate
the symptoms, and you’ll be in a much better position to develop quality
software in a repeatable and predictable fashion.

Best practices are a set of commercially proven approaches to software
development, which, when used in combination, strike at the root
causes of software development problems. These are so-called “best
practices,” not so much because we can precisely quantify their value,
but rather because they are observed to be commonly used in the
industry by successful organizations.

The best practices are harvested from thousands of customers on
thousands of projects and from industry experts.

Rational Unified Process

54

Best Practices Reinforce Each Other

Validates architectural
decisions early on

Addresses complexity of
design/implementation incrementally

Measures quality early and often

Evolves baselines incrementally

Ensures users involved
as requirements evolve

Best Practices

Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

In the case of our six Best Practices, the whole is much greater than the
sum of the parts. Each of the Best Practices reinforces and, in some
cases, enables the others. The slide shows just one example: how
iterative development leverages the other five Best Practices. However,
each of the other five practices also enhances iterative development.
For example, iterative development done without adequate
requirements management can easily fail to converge on a solution.
Requirements change at will, users can’t agree, and the iterations can
go on forever. When requirements are managed, this is less likely to
happen. Changes to requirements are visible, and the impact on the
development process is assessed before they are accepted.
Convergence on a stable set of requirements is assured. Similarly, each
pair of Best Practices provides mutual support. Hence, although it is
possible to use one Best Practice without the others, it is not
recommended, since the resulting benefits will be significantly
decreased.

Rational Unified Process

55

A modern process framework attacks the primary sources of the diseconomy of scale
inherent in the conventional software process. This graphic illustrates the next
generation of software project performance by depicting the development progress
versus time, where progress is defined as percent coded, i.e., demonstrable in its
target form.

The goal of this presentation has been to explain how to move onto the upper
shaded region, with a modern process supported by an advanced, fully integrated
environment and a component-based architecture. Organizations that succeed
should be capable of deploying software products that are constructed largely out
of existing components in substantially reduced time, with substantially less
development resources and substantially improved quality

Today, about 60% of the world’s software organization still operate on conventional
project profiles. About 30% have transitioned to modern project profiles and
perhaps 10% are already achieving improved software economics and
experiencing results similar to the target project profiles.

For more information, see Royce, pages 247-253.

100%

Modern
Project Profile

Project Schedule

Conventional
Project Profile

Development
Progress
(% Coded)

The Impact of Improving Software Economics

Target
Project Profile

Rational Unified Process

56

Software Economics

Where:

�Project Cost = Effort or time

�Complexity = Volume of human-generated artifacts

� Process = Methods, notations, maturity

� Team = Skill set, experience, motivation

� Tools = Software process automation

Project

Cost
= (Complexity) (Process) * (Team) * (Tools)

COCOMO II formula for estimating project cost

Rational Unified Process

57

Lower Cost

� Reducing costs is predominantly achieved
through improved software economics:

� Reduce Complexity

� Improve the Process

� Increase Team Efficiency

� More SDLC Automation

Rational Unified Process

58

Reduce Complexity (Build less stuff)

� Reduce the size of the problem

� Manage scope of the requirements

� Reduce complexity by raising the level of
abstraction

� Create component-based architectures
• Modularity, layers, interfaces

• Reuse framework

� Employ visual modelling (UML)

� Reduce the proportion of hand written code

� Employ more commercial components & reuse other
components

� Automated code generators

Rational Unified Process

59

Improve the Process (Build it more efficiently)

� Reduce scrap and rework

� Controlled iterative & incremental process

� Attack significant risks early

� Continuously assessing, prioritizing, and attacking top
risks

� Build the architecture first

� Employ best practices

� Iterative Development, Manage Requirements,
Component Architectures, Visual Modelling (UML),
Continuous Verification of Quality, Manage Change

� Right-size the process

Rational Unified Process

60

Increase Team Efficiency (Better collaboration)

� Coordination & communication among team

members
� Smaller cross-functional teams

� Team organized based on architecture

� Central location for project artifacts

� UML

� Increase individual proficiency
� Motivation (ownership of plans, reward based on results)

� Teamwork (shared objectives, access to expertise)

� Skills (education & mentoring in technology, best practices &

tools)

� Experience (domain & software development experience)

Rational Unified Process

61

� Reduce error-prone manual tasks

� Utilize tools for the entire lifecycle, including code
generation & round trip engineering

� Increase communication

� Team unifying platform in a common development
environment

� Better project management

� Tools automate assignment of activities, managing change,
monitoring of progress, & measurement of quality

� Automate best practices

� Tools support modern software development best practices

Increase Automation (with tooling)

Rational Unified Process

62

Time-Cost-Quality Tradeoff

Time

Quality

Budget

Scope
ScopeScope

Scope

Rational Unified Process

63

Shorten Development Time

� Iterative Development

� Controlled iterative (assessing early & often give us less scrap & rework)

� Incremental development (Smaller pieces have better economy of scale)

� Risk driven approach

� Manage Requirements

� Managing scope

� Use Component Architectures

� Reuse

� Abstraction (Simplifying the solution)

� Modularity (Resilient to change)

� Model Visually (UML)

� Common communication language

� Raise level of abstraction

� Manage Change

� Configuration Management (Parallel development & workspace management)

� Change Request Management (controlling scope creep)

Controlled Iterative and Incremental gives us two things: 1) With Controlled
Iterative development we assess earlier and often so we get less scrap and
rework. 2) In Incremental Development we end up working on smaller chunks
which are less complex (less dependencies between all the pieces) so
development goes quicker

Rational Unified Process

64

Increase Quality

� Iterative Development

� Controlled iterative (Based on prioritized requirements)

� Demonstration based approach

� Continuous integration

� Manage Requirements

� Requirements best practices

� Traceability (find holes)

� Manage change (ensuing the right changes are made)

� Use Component Architectures

� Modularity (Resilient to change)

� Continuously Verify Quality

� Different types of testing (regression, performance, usability, etc.)

� Testing early, often, and base on priority (Iteratively)

� Manage Change

� Unified Change Management including Configuration Management (build
management) & Change Request Management

� Metrics

Rational Unified Process

65

The Value of RUP Practices

Existing artifacts, practices

Custom Crafted:
Artifacts
Processes
Plans
Methods
Tools
Training

Human Developed Stuff

Old way Rational way
Loads2 �� Much Less

Reduced Complexity

Improved Process

More Efficient Teams

More Automation

Existing starting points

Automated Content
Generation

Project
Tailoring

Business Driven
Development

~ Cost
~ Time

Rational Unified Process

66

Why is Process Important?

� Consistency

� Enable clear, consistent communication for all team members

� Help team members understand their responsibilities and their
relationship with other team members

� Predictability

� Help identify what resources are needed and when

� “Compare to” baseline for addressing bottlenecks and failure points

� Enables metric development to support future planning and
estimation

� Defines decision points to reduce surprises

� Quality

� Focus on risk reduction

� Roadmap of how value will be delivered to the customer

Rational Unified Process

67

67

Principle: Adapt The Process

It is critical to right-size the development process to the needs of the project.
More is not better, less is not better. The amount of ceremony, precision, and
control present in a project must be tailored according to a variety of factors
including the size and distribution of teams, the amount of externally imposed
constraints, and the phase the project is in.

Benefits
• Lifecycle efficiency
• Open and honest communication of risks

Pattern
1. Right-size the process to project needs.
2. Adapt process ceremony to lifecycle phase and allow formality to evolve

from light to heavy as uncertainties are resolved.
3. Improve the process continuously.
4. Balance plans and estimates with level of uncertainty.

A

The most recognizable "anti-patterns" or behaviors contrary to this

principle that can harm software development projects:

Always see more process and more detailed upfront planning as better:

• Force early estimates and stick to those estimates.

• Develop precise plans and manage project by tracking against a
static plan.

• Always use the same degree of process throughout the lifecycle.

Rational Unified Process

68

68

Right-Size the Process to Project Needs

� More process is not necessarily better:
� Artifacts and detailed documentation
� Models that need to be synchronized
� Formal reviews

� For smaller projects with co-located teams and known
technology, the process should be lightweight.

� As a project grows in size, the process needs to become
more disciplined.

More process, such as usage of more artifacts, production of more
detailed documentation, development and maintenance of more models
that need to be synchronized, and more formal reviews, is not
necessarily better.

Rather, we need to right-size the process to project needs. As a project
grows in size, becomes more distributed, uses more complex
technology, has larger number of stakeholders, and needs to adhere to
more stringent compliance standards, the process needs to become
more disciplined. But, for smaller projects with co-located teams and
known technology, the process should be more lightweight.

Rational Unified Process

69

69

Factors that affect process right-sizing

� Many factors steer how disciplined a process you need, including:

� project size

� team distributions

� complexity of technology

� number of stakeholders

� compliance requirements

� the phase of the project lifecycle.

How much
process is
necessary?

Rational Unified Process

70

70

Ceremony, Plans and Estimates, and Improvements

� Early in a project

� Minimize ceremony in the process to enable more creativity

� Focus on the big-picture in planning and estimating - precision is not
attainable

� Aim at driving out uncertainty

� Later in a project

� Increase ceremony in the process to enable more control

� Increase precision in planning

� Continuously improve the process

� Leverage process experiences after each iteration and at project
end to improve the process

� Encourage all team members to look for opportunities to improve

Rational Unified Process

71

71

Why Tailor RUP?

� All projects are not the same

� Projects evolve

� Home-grown processes take time to develop and
maintain

� You might want tailor your Web site by:

� Reducing it

� Enhancing it with additions

� Modifying its base content

Rational Unified Process

72

72

Tailoring functionality

IBM® Rational® Method Composer 7.0 Product

� IBM Rational Method Composer 7.0

� Method Library with the following plug-ins
� Rational Unified Process
� Base Concepts
� RUP Formal Resources
� RUP Informal Resources
� Business Modeling
� Service-Oriented Architecture
� RUP for J2EE
� Rational Software Architect
� Legacy Evolution
� Rational Application Development

� Published RUP Configurations

� RUP for Large Projects

� RUP for Small Projects

Rational Unified Process

73

A Method FrameworkA framework is based on a common set of principles

What Is a Method Framework?

Distributed
Development

J2EE

JUnit

Contains any number of extension plug-ins
� Adds additional processes or modifies
existing processes
� Adds additional method content

Base

Contains a base of standard content
� Base content (principles, practices, roles,
work products, tasks, …)
� Optionally a base process (lifecycle)

� All pieces within a framework fits together
� Enables rapid assembly of a diverse set of
processes
� A process framework can contain sub
frameworks

Rational Unified Process

74

74

The Rational Method Composer (RMC) Platform

• RUP Web site resources
• My RUP

• Extended Help
• Tool Mentors

• DeveloperWorks®
RUP section

• RMC

• Method configurations
• Processes

• RMC
• Plug-ins
• Selectable components

Rational Unified Process

75

75

Two levels of Tailoring

� Process tailoring can happen at two levels:

� At the organizational level, where a common process is
configured, to be used organization-wide. Organization-
level tailoring takes into consideration application
domain, reuse practices, and core technologies
mastered by the company.

� At the project level, where a process is configured for a
specific project. Project-level tailoring level takes into
consideration the size of the project, the reuse of
company assets, the type of development lifecycle.

Rational Unified Process

76

76

Tailoring Approach

� No matter what level in the organization the process is being
tailored for, the overall approach to tailoring the RUP is the same:

� Identify the scope of the tailoring effort
• Identify method content to be used
• Identify existing method assets that could be used
• Select the content to be tailored (processes, roles, tasks,

work products, guidance, and so on)

� Select the level of tailoring to be performed
• There are different levels at which RUP can be tailored,

each with its own costs and benefits.

� Tailor the process
• Tailor the identified parts of RUP using the selected tailoring

level

Rational Unified Process

77

77

Key Steps for Tailoring RUP

� No matter what level of tailoring you choose, tailoring the RUP
generally involves these key steps:

� Develop the method elements
• Developing new content and refining existing content

� Configure the method content
• Decide what content to include and what content to exclude

� Develop the process for the configuration
• Select a type of development lifecycle (for example, waterfall

versus iterative) and define a process that fits the exact needs of
the organization or project.

� Make the process available
• Publish the configuration as a process website, and export the

process to a project planning tool.

Tailoring the process is just one part of implementing a process for a
project. When the process has been tailored, the project manager
instantiates and executes it for the given project.

An "Instantiated" process is an enactable project, iteration, or activity
plan (it includes actual activities and work products for an actual project).
Such instantiation is done as part of project planning.

Rational Unified Process

78

78

Levels of Tailoring Available for RUP

� Level 1
� Document the tailored process in an external document that refers

to an underlying process, as well as customized method assets.
� Level 2

� Personalize an existing process Web site using My RUP and
external documents.

� Level 3
� Configure a process Web site from existing method content using

Rational Method Composer.
� Level 4

� Add Guidance to the existing method framework using Rational
Method Composer

� Level 5
� Develop a new Delivery Process using Rational Method Composer

� Level 6
� Extend the existing method framework with new method content

using Rational Method Composer

Here are some considerations for the levels of tailoring:
Level 1 - This level is beneficial if the process you need to tailor cannot
be modified for some reason (for example, it is tightly controlled for
auditing purposes) or you do not have access to Rational Method
Composer. Tailoring at this level only affects the presentation of the
Web site, not its underlying content.
Level 2 - This level is intended for use by individuals on a personal copy
of the process Web site, and is generally not the recommended
approach for tailoring the process for an entire project or organization.
However, personalization might be a good compromise in those cases
where you want to do some minor refinement of the presentation of the
Web site and you do not have access to Rational Method Composer.
Tailoring at this level only affects the presentation of the Web site, not its
underlying content.
Level 3 - This level is sometimes referred to as Method Configuration
development.
Level 4 - This level is sometimes referred to as "thin" Method Plug-ins
development. Thin plug-ins only add Guidance (for example, Concepts,
Guidelines, Templates, Examples, Tool Mentors). Thin plug-ins are a
mechanism that organizations can use to package their organizational
assets, such as work product templates, guidelines, examples and other
reusable assets for consumption in the individual project. The creation of
thin plug-ins is done at very low cost and, as such, is highly applicable to
any sized organization and can usually be justified within the budget of
one single project. In addition, the creation of thin plug-ins does not
affect the processes (Capability Patterns and Delivery Processes)
included in a configuration, because no roles, tasks, or work products
are added or refined.
Level 5 - This level is sometimes referred to as Delivery Process
development.
Level 6 - This level is sometimes referred to as "structural" plug-in
development. A structural plug-in is a plug-in that extends the RUP by
adding or refining Roles, Tasks, and/or Work Products.

Rational Unified Process

79

79

What Does It Mean To Implement RUP?

� Implementing RUP means improving selected parts of
your existing process.

� Process improvements are selected by considering (for
example):
� Current pains and problems, for example, delayed projects
� Mandates, for example, Reach CMMI Level 2
� Certification requirements, for example, ISO 9000
� Efficiency improvements necessary to compete, for example,

incomplete testing due to schedule compression

Your Process

Process
Improvements

Rational Unified Process

80

80

Factors in Planning Process Improvement

Software-
Development
Organization

New
Process

New
Tools

New
Technology

You rarely introduce a new process such as RUP without facing several
other new factors:

New Technology

• Programming language (Java, C++, VisualBasic)
• Component-based development
• Internet
• Client-Server Architectures
• Graphical User Interfaces

New Tools

• Requirements Management
• Modeling
• Programming
• Configuration Management
• Test

New Process and Best Practices

• Iterative Development
• Component-Based Architecture
• Manage Requirements
• Guidelines, and so on

Process, tools, and technology are not separate issues. An organization
needs to implement process, technology, and tools together.

Rational Unified Process

81

81

Practices for Process Improvement

� RUP guidance for process improvement:
� See the content of the Environment discipline

� Practices recommended in the Concept: Environment
Practices

� Assess the Project and the Organization
� Implement Process and Tools Incrementally
� Manage and Plan
� Use Mentors
� Distribute Process Ownership
� Think Return-On-Investment
� Keep People Informed and Involved
� Educate People

• Assess the Project and the Organization: Assess the current state
of the project and the organization to better understand what parts of
the environment you should improve.

• Implement Process and Tools Incrementally: By implementing the
environment incrementally, it is possible to focus on a subset of the
environment, which increases the probability of success.

• Manage and Plan: Manage and plan the environment tasks just as
you would with all other tasks in the software development project.

• Use Mentors: Use mentors to introduce a new process in a project.
• Distribute Process Ownership: Distribute the ownership for the

process among the people on the project because they are more likely
to adopt and learn the new process faster.

• Think Return-On-Investment: Focus on those things that will pay
back more than the investment.

• Keep People Informed and Involved: The greatest threat to any
change in an organization is peoples' attitudes towards the change.

• Educate People: They need to understand both the new process and
how to use the new tools.

Rational Unified Process

82

