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ABSTRACT

Event Notification Services inform about the occurrences
of events that are of special interest for their users. Up-
coming systems for event notification cover multiple appli-
cations and integrate event data from different sources. A
main challenge is the evaluation of user profiles under var-
ious and changing application requirements. Of particular
interest are (1) the profile evaluation using differing seman-
tics and (2) high filter performance under changing system
load. This paper introduces the design and implementation
of A-mediAS — an adaptive event notification system. We
present a case study of a remote monitoring application,
which shows the effective adaptation of the evaluation se-
mantics in A-mediAS. We describe different event filtering
strategies and show their adaptation to varying event and
profile distributions. Finally, we analyze the filter perfor-
mance for different workload scenarios.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems
and Software

Keywords

adaptation, integration, publish/subscribe

1. INTRODUCTION

An Event Notification Service (ENS) informs its users
about new events that occurred on providers’ sites. An event
could be, for example, a new temperature value or the oc-
currence of a traffic jam. Each provider may employ several
event sources, e.g., temperature sensors. Users define their
interest in events by means of profiles. A user profile defines
a periodically-evaluated query (similar to a search query).

Recently, new applications have emerged that require the
integration of event information from different sources under
various or changing application requirements. Examples of
such integrating or multi-purpose applications are traveller
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information systems and facility management for commer-
cial buildings. For example, in commercial building man-
agement systems, such diverse objectives as security, surveil-
lance, visitor guidance and maintenance are followed within
a single system. These different objectives require different
event evaluation strategies, for instance, to enable various
profile semantics and to achieve maximal performance under
changing load, i.e., changing event and profile distributions.

Consequently, the new applications call for an ENS that
flexibly supports (1) various and changing applications and
sources, as well as (2) efficient filter algorithms that keep
high performance under changing system load. We call these
two requirements qualitative and quantitative adaptation, re-
spectively. We illustrate the situation and its challenges in
a brief example.

ExampLE 1. Consider the following profile P1 that may
be defined for a facility management system:

P1: Notify the technician when the air conditioning system
has a malfunction.

The challenge of quantitative adaptivity is evident: when the
ENS additionally covers a second air conditioning system,
the system load rises and the event distributions change.

FEvents and profiles also undergo application-specific vari-
ations: the security service observes the building at night,
while for the operator protection services (for employee se-
curity) low-activity periods at nights alternate with periods
of high event frequency during the days. Thus, the overall
distribution of events and profiles changes in the ENS.

For qualitative adaptation, depending on the available sen-
sor types and the application context, the profile has to be
evaluated differently: Notifications may be sent on every
failure message or only once. Also, the profile may have
a different filter priority. Sensors in a new building with
different characteristics may be added to the system. The
applications for laboratory safety and employee security may
require different profile evaluation on the same data.

If the system does not flexibly adapt to event sources and
applications, the users are forced to redefine their profiles
for every new event source (which could easily be hundreds
of sources) and for every possible usage of the building.

In this paper, we present an integrating event notification
service that adapts to different application requirements in
a number of ways: (1) The handling of composite events
can be adapted to the needs of the service applications and
clients. (2) The service flexibly reacts to application-dependent
message delays. (3) In order to gain maximal performance,



the filter process for primitive events adapts to changing
value distributions in events and user interests. (4) Several
methods for the filtering of composite events are supported
— which of them is employed depends on the profile distri-
bution. The advantages of our system have been proven by
a prototypical implementation.

This paper is structured as follows: Section 2 briefly in-
troduces necessary background information. Section 3 fo-
cuses on semantical and correctness issues (qualitative adap-
tation), while Section 4 addresses performance of filter algo-
rithms (quantitative adaptation). The A-mediAS architec-
ture is described briefly in Section 5. We present case stud-
ies and selected results of the system’s performance analysis
(Section 6). The paper concludes with a brief discussion of
related work and directions for future work in this domain.

2. BACKGROUND

This section first extends our example from the field of
computer-aided facility management (CAFM). Then, the
basic event-related concepts are introduced.

2.1 Scenario

Remote monitoring and control in commercial buildings
are an important domain for adaptive ENS. A surveillance
system for several buildings monitors lighting, heating, air
condition, sun protection, and visitor movements. Various
sensors are located in the monitored buildings: Some send
status information on a regular basis to the system. Other
sensors send only critical events, i.e., if the status values
cross a predefined threshold. A third group passively collects
data and is to be observed by the system (polled). Sensors
may also have different reaction times and granularities.

Several different applications may use the data from the
event notification service: access management, security, main-
tenance, energy management, laboratory safety, and bud-
get management (for an extensive requirements analysis see
[12]). Each of these applications may use the data in differ-
ent ways. In multi-purpose buildings, the applications may
change frequently. For example, depending on the actual us-
age of multi-purpose buildings and rooms, the surveillance
system of a building covers certain profiles and events: for
festive arrangements, the guests’ security has to be ensured
while for cultural exhibitions, strict environmental condi-
tions have to be maintained for the presented pieces of art.

We now extend our example profile from Section 1:

P2: Notify the technician if in a certain room the temper-
ature Tises above 35°C within a time interval of 1 week
length after a failure in the air conditioning system.

Depending on the sensor type and the application, the
technician has to be notified, e.g., about every occurrence
of that event or just the first one. Similarly, also for each of
the contributing events (high temperature and system fail-
ure), different evaluation methods may have to be applied.
Additionally, the notification of the technician depends on
the usage of that room: whether it is used as a chemical
laboratory or for a conference. In the former case, a quick
reaction is required and all critical occurrences have to be
logged. In the latter case, the air conditioning has to be
adjusted.

As pointed out in [2], applications for cooperative build-
ings have to offer scalability in quality as well as in quantity.
The A-mediAS system fulfils these requirements by provid-

ing adaptive profile support plus efficient event filtering un-
der different and changing application characteristics.

2.2 Basic Concepts

The central concepts for ENS are events and profiles.

DEFINITION 1 (EVENT). An event is the occurrence of
a state transition of an object at a certain point in time.

The stream of incoming events at an ENS is called history,
or trace of events. We distinguish event instances from event
classes. An event instance relates to the actual occurrence
of an event while event class is a set of event instances that
share certain properties. We simply use the term event
whenever the distinction is clear from the context. Even
though instances of the same event class share some proper-
ties (e.g., temperature of a sensor), they may differ in oth-
ers (e.g., location). Events (instances) are denoted by lower
Latin e with indices, i.e., e, es,..., while event classes are
denoted by an upper Latin E with indices, i.e., E1, Eo,. ...
The fact that an event e; is an instance of an event class E;
is denoted membership, i.e., e; € Ej.

We consider primitive events and composite events. Prim-
itive events refer to single occurrences of state transitions.
Composite events are formed by temporal combinations of
event instances. For example, the sequence of two events
(high temperature after system failure) is a composite event.

The definition of composite events requires temporal op-
erators, e.g., sequence (E1; E»): and conjunction (E1, E2):.
For example, a sequence (E1; E2)¢ occurs when first e1 € E4
and then es € FE> occurs. The parameter ¢ defines in the
profile the maximal temporal distance between the events.
The occurrence time t(e3) of event instance es := (e1;e2) is
equal to the time of es, i.e., t(es) := t(e2).

DEFINITION 2 (USER PROFILE). A profile is a query that
is periodically evaluated against incoming events.

Note that user profiles describe event classes. Duplicates
of events are event instances that belong to the same event
class. We distinguish two aspects of duplicate handling:

1. Event instance selection defines for each event, whether
the user is interested in all, the first, last, or n*" event
instance in a sequence of duplicate events.

2. Event instance consumption defines for each composite
event, whether the event instances participate in only
one pair of event instances or in several pairs.

EXAMPLE 2. Consider the profile P2 defined by the tech-
nician. Let us assume that within one week after a sys-
tem failure the temperature reaches three times a tempera-
ture peak. Then, several options are feasible, e.g., only one
notification needs to be sent, because the technician is then
aware of the problem. Or, three notifications have to be sent,
because in each case, direct action is required, e.g., to protect
the presented pieces of art.

Consequently, these parameters have to be considered for
the profile definitions.

3. ADAPTIVE EVENT COMPOSITION

We discuss strategies for adapting event composition to
changing application requirements (qualitative adaptation).
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Figure 1: Illustration of Example 3

3.1 Event Composition Problem

To support a flexible filtering of composite events in A-
mediAS, we implemented a parameterized algebra [10]. Se-
lected aspects of a profile query can easily be changed with-
out having to change the complete query definition. The
algebra consists of temporal operators enriched by the pa-
rameters introduced above. An additional parameter is the
event evaluation time: final vs continuous. Final evaluation
waits for the end of a composite profile’s maximal temporal
distance t. Continuous evaluation is carried out continu-
ously until ¢ is reached.

For each primitive profile within a composite profile, the
event instance selection parameter is set. For each compos-
ite profile, the instance consumption parameter is set. For
example, the composite profile as defined before could be
defined using the parameters EIS for event instance selec-
tion, EIC for event instance consumption and EET for the
event evaluation time (the context of the evaluation):

: S=all S=all Cc=
profile(Efii =" Eicnp "1 week) EET=fimat)

In other systems, a rigid filter behavior is defined implicitly
either by some (often inconsistent) language constructs or by
the filter implementation. Our parameterized algebra flexi-
bly allows for changes of profiles depending on the context.
Thus, as we shall see, our system can support integrating
event-based applications and changing event sources with-
out the need to redefine user profiles.

A direct approach to event filtering evaluates the user pro-
files as they have been defined by the clients. Using this
approach, clients are notified about events that match the
same profile query. However, these events may carry differ-
ent semantics, which may lead to false notifications.

ExAMPLE 3. Consider a client that is interested in the
event, that the temperature in a room rises above 35°C.
Events are provided by two different sources A and B cover-
ing the buildings A an B, respectively. Source A employs a
survetllance sensor that sends the current temperature values
every 30 seconds, source B employs a warning system that
alerts the system in case of critical temperature changes.

In order to be notified only about critical changes, the
client would have to define separate profiles for each source:
In the profile for source A, only the first event in a series
of duplicate events is necessary. In the profile for source B,
all events are of interest. Defining only the first profile leads
to missed events from building B, defining only the second
profile leads to false alarm in building A.

A different handling of profiles for each source and applica-
tion context is needed. The solution that comes first into
mind are wrappers for events sources. For our context,
wrappers may be used for ENS that have a fixed profile
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Figure 2: System players and their profile types

evaluation strategy. For systems with changing application
characteristics as considered here, new wrappers would have
to be provided for each source and application.

We propose the employment of three profile types: user
profiles are introduced before, source profiles to describe the
available event types, and application profiles to capture the
applications’ characteristics, see Figure 2. Now, for each sys-
tem context (available sources and applications), a specific
profile evaluation strategy may be applied.

3.2 Adaptive Event Composition

In this subsection, we analyze the system players that
may influence the event composition: For a given compos-
ite profile, the appropriate parameter values for EIS, EIC,
and EET depend on the characteristics of the event sources,
the user preferences defined in the profiles, and the ENS
application scenario.

Information about the nature of the observed events that
are provided by a given event source (e.g., a temperature
sensor) may be defined in a source profile, see Figure 2.

DEFINITION 3 (SOURCE PROFILE). A source profile de-
scribes the event types available at a particular source. Ad-
ditional information may refer to the characteristics of the
event observation, such as observation method and frequency.

For each event source, a source profile has to exist at the
ENS. These profiles prevent user profiles regarding events
that are not covered by the service. To prevent that a
user has to define multiple user profiles that have to be up-
dated whenever a new source joins the service (to cover each
source), a translation between client profiles and source pro-
files is needed. This translation could be controlled by an
application expert, e.g., in defining translation rules. This
is especially useful for the inclusion of new sources with
different characteristics. Additionally, the translation may
cover application-specific aspects, e.g., tolerances, accuracy
bounds, and typical composition parameters.

We introduce the concept of application profiles to store
information about the filter semantics required by applica-
tions. We use concepts known from query transformation
in database systems (see, e.g., [11]). For example, an appli-
cation profile contains the transformation rules to translate
profiles that have been defined for a specific source charac-
teristic into profiles for other source characteristics.

DEFINITION 4  (APPLICATION PROFILE). An application
profile is a set of query transformation rules for translating
queries according to source profiles into new queries.

This transformation of user profile queries changes the event
streams directed to the users. The queries are translated



such that for different source profiles, a query with equiv-
alent semantics is created for each of the available sources.
Using our parameterized algebra, most transformation rules
only require the application of new parameter values.

One approach is to define each user profile with an explicit
reference to a certain source type. Then an application pro-
file defines Ny x (N; — 1) transformation rules for translat-
ing the queries for each source accordingly (Vs refers to the
number of distinct source profiles).

We follow another approach that is more appropriate for
realistic application contexts: For each application, a typical
(default) source type is defined by the application expert. It
is assumed that all user profiles are defined relative to that
default source type. Based on this default source type for
the profiles, (N, — 1) transformation rules are defined in the
application profile. In both cases, the transformation rules
depend on the application context, such that an automatic
creation of the rules based on the source profiles is only
feasible for selected and simple characteristics.

The application of the event instance selection parameter
EIS depends on user preferences, available source types,
and the application. The application of the parameters for
event instance consumption and evaluation time depend on
user preferences and system restrictions only. Due to limited
system resources, the buffer of event instances that await
matching composite partners may have to be restricted or
their evaluation may be postponed.

The principle of profile transformation can also be used
to cooperate with other ENS in a network of services. Our
integrating service may use other ENS as intelligent event
sources by forwarding user profiles to these services. The
event operators supported by these services may differ from
our service. Therefore, the profiles have to be translated.
Similarly, the notifications sent by these services have to be
processed, e.g., the notifications announcing two conjunctive
events have to be filtered such that only valid sequences re-
main. We implemented this version in a separate prototype.

3.3 Influencing Composition Accuracy

Accuracy of event timestamps depends on observation
methods and the time system of the event sources [6]. There-
fore, sources have to provide information about the used
observation and timestamping methods within the source
profile. Based on the accuracy requirements defined in user
profiles, the ENS has to calculate the accuracy of compos-
ite event information. For different applications, different
accuracy restrictions may hold. Therefore, the handling of
composition accuracy has be be controlled by the applica-
tion profile. Notification about composite events that exceed
the tolerance range defined in the user profile may have to
be discarded or they have to be accompanied by a warning.

4. ADAPTIVE EVENT FILTERING

In this section, we discuss strategies for adapting the event
filter process to the value distributions of events and profiles
to gain maximal performance (quantitative adaptation).

4.1 The Filter Algorithms

Tree-based algorithms provide best performance for prim-
itive event filtering in ENS. All profiles are combined into
a profile tree, each level of the tree corresponds to one at-
tribute, each tree-branch to an attribute-value. Depending

on the distributions of events and profiles, the tree may be
reordered to achieve even more efficient filtering. We intro-
duced selectivity measures for the tree-reordering. Value-

dependent measures control the reordering of the tree-branches,

i.e., the order in which the different attribute-values in the
tree are tested. Attribute dependent measures control the
reordering of the tree-levels. The distribution-based ap-
proach improves the average case performance of tree-based
algorithms, for details see [8].

For the filtering of composite events, current systems re-
quire a second filtering step after the identification of the
primitive components. These two-step algorithms perform
unnecessary filter operations. We propose a single-step method
for the filtering of composite events. Our algorithm takes ad-
vantage of the idea of partial evaluation: only those profiles
are evaluated that may directly contribute to a composite
profile. Using our method, the filter response times for com-
posite events are significantly reduced. Additionally, the
overall performance of the event filtering is improved. De-
pending on the distribution of composite profiles in the set
of all profiles, the appropriate filtering method for composite
events is selected by the ENS, for details see [7].

4.2 Measuring the Distributions

If the system load does not change over time, i.e., the ap-
plication’s profile and event distributions remain relatively
stable, these application characteristics can be used to di-
rectly adjust the system for best performance.

If the system load changes over time, the distributions of
events and profiles have to be observed. For the profiles,
this is a relatively simple task, since the required informa-
tion is directly available at the system side. In a distributed
system, for each of the broker nodes, the distribution of the
profile values within each attribute domain have to be ana-
lyzed. For a detailed profile analysis, a profile history may
have to be maintained. For the events, the distribution of
event values within the attribute domains have to be ob-
served by collecting and evaluating the event information in
a persistent history of events.

4.3 Adapting the Algorithms

Different filtering variants should be used when (a) the
application changes, (b) a different use case is temporarily
applied, or (c) the system load (events and profiles) changes.
While the first two cases are relatively easy to manage, the
third one requires detailed consideration: Performance costs
are influenced by methods for event persistency, distribution
measurement and handling of the algorithm adaptation.

How shall we determine the current event distribution at
runtime? Events and profiles can either be stored as a his-
tory and analyzed later, or they are directly evaluated. The
first case provides more flexibility in the evaluation but re-
quires access to persistent storage devices. An option is the
storing of a number of events in main memory with regu-
lar access to persistent storage during times of low system
load. In the second case, the distribution parameters are
computed directly, causing minor performance overhead.

For both cases, the distributions are not to be computed
over the complete system runtime but for selected intervals.
The length of the interval determines the topicality of the
computed values but carries the danger of over- or underval-
uation of load changes. The length of the interval is defined
by the application administrator or based on a application
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Figure 3: Architecture of an A-mediAS server

profile for the change-frequency of events and profiles.

In order to prevent a jitter in an auto-adaptive system, the
evaluation interval has do be defined long enough. Addition-
ally, a hysteresis can be defined: changes in the algorithms
are only realized after the new conditions hold for at least
the length of the hysteresis value or the changes are larger
than a predefined hysteresis value.

5. A-MEDIAS IMPLEMENTATION

A-mediAS is implemented as distributed service consist-
ing of a number of event servers. Here, we omit the de-
scription and evaluation details for the service’s distribution.
Each of the event servers follows the A-mediAS architecture
as presented in Figure 3. We enhanced the basic ENS archi-
tecture [9] by an adaptation component. The components of
the architecture include interfaces for providers, users, and
application experts to define their profiles, which are stored
in the the profile pool.

The event processing is driven by the observer: Whenever
an event is observed, a time stamp is created and a message
is forwarded to the filter engine. The information about the
event is additionally logged by the analyzer. The core of
the system is the interplay of analyzer component and filter
engine. The algorithms used in the filter engine are con-
trolled by the analyzer output. The analyzer has access to
event and profile information: It logs the event history and
has access to the profile tree. Based on this information,
the analyzer computes the distributions of events and pro-
files. Currently, this information is only made available for
the system administrator. The administrator then triggers
any changes of the filter strategy at the analyzer component.
The analyzer controls necessary reordering of the filter tree
for primitive event filtering as well as changed strategies for
composite event evaluation. Once the matching profiles have
been identified, a notification is sent to the profile’s user.

6. A-MEDIAS EVALUATION

In this section, we discuss the performance of different
filter algorithms in an A-mediAS server. In case studies, we
exemplarily show the influence of adaptive system behavior.

6.1 Experimental Environment

We implemented the algorithms in A-mediAS using Java.
The distributed servers are connected by an acyclic overlay

Parameter Range Description
N, 5,000 - 55,000 | Number of profiles
N, 5,000 - 55,000 | Number of events
N, 1-5 Number of attributes
P, PD0-PD4 Profile distributions
P, EDO0-ED5 Event distributions

Table 1: Workload Parameters

network. Here, we concentrate on experiments regarding
a single server. The experiments were performed on a PC
(Win2000) with 512MB main memory. The events and pro-
files where created using our event and profile generator for
automatic creation of test cases. The tool randomly gener-
ates events and profiles based on predefined distributions of
attribute values. In the experiments, each user profile con-
tains one predicate on each of the attributes defined for the
respective event type. We created different workloads by
changing the workload parameters of the event and profile
generator.

We measured the performance of the server as the filter
time to find all matching profiles for each of the incoming
events. For the filter time per event, the mean value of the
filter time for a number of events N, is used. The costs of
creating the events and profiles as well as the profile repre-
sentation are not included in the filter time.

A list of workload parameters is given in Table 1. If not ex-
plicitly stated differently, a uniform distribution of attribute
values is applied (ED0O and PDO0). For the profile distri-
butions, the profile attributes cover the given percentages
(dense uniform distribution, starting at the lower end of the
attribute domain) of each of the five attribute domains as
shown in Table 2, top. For the event distributions, in each
attribute the values cover the given percentages of attribute
domains. All attributes have the same distribution. Each
attribute value distribution holds the characteristics (dense
uniform distribution, starting at the lower end of the at-
tribute domain) as shown in Table 2, bottom.

P, | Profile Distribution Description
PD1 | 50/40/30/20/10, (small steps)
PD2 | 50/10/40/20/30, (small steps)
PD3 | 10/20/30/40/50, (small steps)
PD4 | 100/80/60/40/20, (wide steps)

P, Event Distribution Description
ED1 | 20% uniformly covered / 80% uncovered
ED2 | 50% uniformly covered / 50% uncovered
ED3 | 100% uniformly covered / 0% uncovered
ED4 | 50% uncovered / 50% uniformly covered
ED5 | 20% uncovered / 80% uniformly covered

Table 2: Distributions of events and profiles

6.2 Application-dependent Event Composition

A simple case study shows how the A-mediAS system
adapts to different application contexts. We consider two
technicians with a composite profile P2. Each of the tech-
nicians is responsible for one air conditioning system. Six
different sources are covered: four temperature sensors and
two air conditioning systems are monitored. The events sent
by these sources are shown in the event histories Figure 4,
top. We consider three application scenarios:



In application 1, the four temperature sensors are in four
separate rooms. Due to an insurance contract, after a sys-
tem failure each technician has to inspect the affected rooms
for at least one week. In application 2, the four temperature
sensors are in four separate rooms. The technician has to
check the affected rooms for at least a week. The rooms have
only to be checked by one technician. In application 3, the
rooms in the buildings have been changed (movable walls)
so that the four sensors refer to the same room. Similar to
application 2, only one technician is responsible at a time.
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Figure 4: Case Study: Adaptation of event compo-
sition to application scenarios

Figure 4 shows the composite events each technician is no-
tified about in each of the three application scenarios. The
arcs refer to the events pairs contributing in each composite
event. From the number of matched events, we see that qual-
itative adaptation additionally influences the system load,
which, in turn, calls for the quantitative adaptation of the
system.

6.3 Primitive Event Filtering

We describe the results of two experiments and a case
study to evaluate the performance of primitive event filter
algorithms. We show the results for selected profile distri-
butions P, and event distributions P..

Figure 5(a) shows the filter time under varying event dis-
tributions. Most events are matched in ED1, least in ED5.
The data support our finding that the optimized filtering
method (one-step algorithm) outperforms the two-step algo-
rithm if unmatched events occur. For ED1, the un-optimized
algorithm is faster than the optimized one because all events
are matched by profiles. For this case, a different optimiza-
tion strategy would have to be used (for details see [8]).

Figure 5(b) displays the response time under varying pro-
file numbers. The optimized tree shows a higher perfor-
mance than filtering using the arbitrary order of the at-
tributes in the event type. The reordering is about 3 to 4
times faster than the original algorithm. This ratio increases
with the event and profile number, respectively.

Figure 6 shows the response time for the following case
study: A system starts with 10,000 profiles; 50,000 events
are filtered. Then, 10,000 more user profiles are defined;
another 50,000 events are filtered. At last, 10,000 addi-
tional profiles are defined, followed by 50,000 events to be
filtered. The profile sets are defined in the following order:
P, = PD1, P, = PD2, and P, = PD3. Every possible
optimization decision is shown: after each added profile set
the profile tree may be reordered or not.
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Figure 5: Performance of primitive profile matching

The optimal filter behavior is shown as thick line. Two
modes may be used: continuous analysis or scheduled anal-
ysis. For the first, the required tree-reordering may be ap-
plied to an offline filter pool which is then exchanged with
the running system. In the scheduled analysis, the filter pool
is optimized based on a scheduled analysis of the filter pool.

We see that under unfavorable conditions, an optimized
tree with additional profiles has lower performance than a
non-optimized tree. This results from profile distributions
that require opposite optimizations: the optimized tree for
one profile set is the worst-case constellation for another one.
A regular tree-optimization shows best performance results.
The results of the case study emphasize the importance of
tree-optimization after appropriate intervals.

6.4 Composite Event Filtering

In this subsection, we present the results of three exper-
iments and a case study to evaluate the performance of
the composite event matching algorithms in A-mediAS. We
studied the influence of the profile number and the construc-
tion of the profile set (i.e., the influence of the proportion of
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composite and primitive profiles in the set).

We present our tests of composite profiles referring to sim-
ple event sequences. Two extreme types of sequences are
used: in a set of n composite profiles, either (1) all second
primitive profiles refer to the same event (N to 1), or (2) all
first profiles refer to the same event (1 to N).

For each test, we evaluated four variants: two-step and
single-step algorithm used for single or multiple matches.
In single matches, each profile is matched only once and
then removed. This simulates the removal of profiles after a
certain lifespan. In multiple matches the profile persists.

The filter time per event for varying number of profiles
(1 to N) is displayed in Figure 7(a). In both cases of single
and multiple matches, our one-step method shows higher
performance than the performance of the two-step method.

The Figures 7(b) and 7(c) display the filter times per event
under changing profile sets. Starting with 30,000 composite
profiles, we successively added primitive profiles. In a sec-
ond phase we successively removed composite profiles until
30,000 primitive profiles are reached. Note that the profile
number is changing in the profile sets. We show the results
for both, (1 to N) and (N to 1) types of profiles.

For single matches, the single-step method outperforms
the two-step method in all tests. For multiple matches on
to (1 to N)-type composite profiles, the single-step method is
slower than the two-step method if the number of composite
profiles exceeds the number of primitive profiles. The reason
for the behavior is that under this conditions the profiles
do not overlap. The more profiles that have to be newly
inserted into the tree the slower the matching time. For
profile sets with high overlap, the single step method shows
better performance — for profile sets with only (1 to N) type
profiles without overlap, the two-step method has to be used.

Figure 8 shows the results of our case study regarding
composite events. We measured performance under chang-
ing user profiles using a blend of different profile types:
10,000 profiles with (1 to N) type are inserted, then 10,000
profiles with (N to 1) type, and finally, 10,000 primitive
profiles. After each update, 50,000 events are submitted to
the system. All possible optimization steps are shown. In
contrast to the tree reordering, the optimization of compos-
ite profile filtering applied at one time does not influence
the performance at a later time. The reason is that not the
complete profile pool structure is changed but only the parts
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Figure 8: Case Study: Adaptation of composite
event filtering to profile set [N to 1/ 1 to N / prim-
itive]

as thick line. Again, two modes may be used: the continu-
ous analysis of the profile set with immediate adaptation or
analysis and adaptation after n profiles have been changed.
Both versions are shown in the figure. The results of the case
study emphasize the importance of adaptive profile filtering
for primitive as well as for composite events.

7. RELATED WORK

Siena [4] and Elvin [13] use source profiles to reject events
no user is subscribed to and to prevent profiles without
matching event types. The HiFi [1] is based on a reusable
semi-complete framework that may be easily reorganized for
different applications. Different to our approach, the HiFi
system focuses on a flexible software development process.

Adaptation is a well known concept in software develop-
ment for interface conversion [5]. Two design patters are
used: adapter and proxy. An adapter converts between
different types and leaves the semantics unchanged, while
a proxy modifies the semantics of a call without changing
its type. Automatic selection of adaptors gains increasing
attention in mobile computation and ad-hoc networks [14].

User adaptivity methods build user profiles based on the
user action (see, e.g., [3]). Such methods could be included
in an ENS; but are not in the focus of our work.

8. SUMMARY

Event Notification Services play a major role in many
recent applications — upcoming systems cover multiple ap-
plications and integrate event data from different sources.
These systems call for ENS that qualitatively and quanti-
tatively adapt to changing sources and different application
requirements. Otherwise, the users would have to define
profiles for changing application and source anew; the filter
performance would not achieve the best possible results.

In this paper, we presented the design of our adaptive
event notification system A-mediAS. We discussed the im-
plementation concepts and set special focus on adaptivity.
The A-mediAS system adapts to changing application con-
text and new sources by translating the user queries accord-
ing to an application profile. We have demonstrated this
adaptive system behavior in a case study.

The system adapts to changing system loads of events and

profiles by selecting the optimal filter algorithms for both
primitive and composite events. We extensively evaluated
the system performance under changing workload. Case
studies for primitive and composite events have shown the
adaptive filter behavior.

A-mediAS is designed to be used for mixed applications
such as the management of commercial buildings as intro-
duced here. Currently, we are analyzing the A-mediAS sys-
tem in the context of Commercial Big Buidings (CBB), in
cooperation with Lichtvision GmbH, a Berlin-based com-
pany for facility management. Adaptive systems, such as
A-mediAS, can also be used for mobile systems, where the
available data sources change over time and the client can
only process a limited amount of data.
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