
The Design of a Configurable, Extensible and Dynamic
 Notification Service

Roberto S. Silva Filho 1

Cleidson R. B. de Souza 1,2 David F. Redmiles 1

1 School of Information and Computer Science
University of California, Irvine

Irvine, CA, USA
+1 949 824-4121

2 Informatics Department
Federal University of Pará

Belém, PA, Brazil
+55 91 211-1405

{rsilvafi, cdesouza, redmiles}@ics.uci.edu

ABSTRACT
Publish/subscribe infrastructures, specifically notification servers,
are used in a large spectrum of distributed applications as their
basic communication and integration infrastructure. With their
recent popularization, notification servers are being developed to
support specific application domains. At the same time, general-
purpose notification servers provide a large set of functionality for
a broad set of applications. With so many options, developers face
the dilemma of choosing between application-specific or general-
purpose notification servers. In both cases, however, the set of
features provided by the servers are usually neither extensible nor
configurable, making their customization to specific application
domains a difficult task. In this work, a more flexible approach is
proposed – a customizable, extensible and dynamic architecture
for notification services – which allows the customization of the
notification service to different application domains. The extensi-
bility model is presented according to the design framework pro-
posed by Rosemblum and Wolf. A preliminary implementation of
the prototype is also discussed, as well as configuration examples.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain Specific Architec-
tures; D.2.12 [Interoperability]: Distributed Objects; H.4.3
[Communications Applications]: Information Browsers;

General Terms
Design

Keywords
Notification servers, event-based middleware, dynamic architec-
ture, pluggable architecture.

1. INTRODUCTION
Over the last few years, a large number of publish/subscribe ser-
vices, especially in the form of notification servers, have been

used as the basic infrastructure for the implementation of many
distributed applications such as user and software monitoring [1],
groupware applications [2], awareness tools [3], workflow man-
agement systems and mobile applications [4]. Hence, due to its
increased popularity, event notification services need to cope with
new requirements, coming from different application domains. In
fact, a broad spectrum of research and commercial tools are avail-
able nowadays. At one extreme, “one-size-fits-all” approaches,
such as adopted by CORBA Notification Service (CORBA-NS)
[5] or READY [6] strives to address new applications require-
ments by providing a very comprehensive set of features, able to
support a broad set of applications. At the other extreme, special-
ized notification servers tailored to application-specific require-
ments provide novel but specific functionalities. Examples of such
specialized systems include Khronica [7] and CASSIUS [8] which
are specially designed to support groupware and awareness appli-
cations; or even Yeast [9] and GEM [10] which are specialized in
advanced event processing for local networks applications, and
distributed applications monitoring respectively. Finally, servers
such as Siena [11] and Elvin [12], even though designed with
special domains in mind, strive for a balance between specificity
and expressiveness of the subscription language they support.

Therefore, in the development of distributed applications, devel-
opers face the dilemma of specialization versus generalization: to
use a generalized infrastructure, that can support and integrate
different applications, but may not provide all the necessary func-
tionality for specific application domains; or to use one event-
based infrastructure for each application domain, having “the right
tool for the right problem”, but loosing the uniformity and integra-
tion of a single solution. For example, in the development of
awareness tools, one can use either a comprehensive solution such
as CORBA Notification Service (CORBA-NS) that provides a
large set of features and services, or a domain specific solution
such as CASSIUS, that provides services for awareness applica-
tions. That’s important to note that infrastructures as CORBA-NS,
even though are very comprehensive in its set of features, do not
provide direct support for all the requirements of awareness appli-
cations. It does not allow, for example, the browsing and discov-
ery of the event source hierarchy. CASSIUS, on the other hand,
provides this feature and allows the easy discovery of information
sources and the subscription for events from different source
components. If CORBA-NS were used in an awareness applica-
tion demanding this feature, this service would need to be imple-
mented in the application itself.

Another problem of the currently available event-based infrastruc-
tures is the poor support for selection and customization of the
services to be provided, which is important for applications that
run on resource-limited devices such as the ones common to mo-
bile applications. If a notification service as CORBA-NS is used
for such applications, the whole set of features provided by this
server would have to be available for use, whether the application
requires it or not. Moreover, current event-based infrastructures
lack mechanisms to support the extension of their functionality.
The only extension mechanism is usually the (understanding and)
change of their source code, or the implementation of the service
by the application itself. Additionally, due to restrictions in their
event or subscription models, the addition of new functionality
may constitute a very difficult task [13].

In this work, we describe the design and implementation of an
extensible and pluggable architecture for notification services that
provides an alternative to the generalized versus specialized di-
lemma. It provides extensible event, notification, subscription and
resource models (see [14] for a detailed description of these mod-
els), which at the same time supports the specialization, extension,
and customization of the event notification service toward the
needs of different applications. In order to provide this flexibility,
we use the following main design strategies: a publish/subscribe
core; the combination of this core with plug-ins; the ability to add
consumer and producer side plug-ins and services, with the ability
to customize their location; the adoption of extensible subscrip-
tion and event languages. These strategies provide a basic archi-
tecture that can be customized and extended to support functional-
ity demanded by current or new application domains. It is also
dynamic, allowing the addition and removal of services at run-
time.

The paper is organized in the following way: the next section
presents, in more detail, the diverse requirements of different ap-
plication domains; section 3 discusses the analytical design frame-
work used to understand the extensibility requirements of event
notification servers; in section 4 we present the design of our ar-
chitecture; in section 5, we discuss the extensibility of the system;
in section 6 we demonstrate the extensibility and configurability
of the architecture, presenting two examples; In section 7 we dis-
cuss some related work; and finally, in section 8 we present some
conclusions and future work.

2. APPLICATION DOMAINS
In order to understand the extensibility requirement, it is impor-
tant to understand the diverse set of requirements from each appli-
cation domain. In this section, we motivate this aspect, presenting
the requirements for three application domains as follows: appli-
cation and usability monitoring, awareness applications and mo-
bility. Different application domains require specific features from
the publish/subscribe infrastructure. We classify these features in
functional and non-functional requirements.

For example, event-based application and usability monitoring
infrastructures such as EDEM [1] and EBBA [15], provide a
common set of features such as event sequence detection; event
abstraction – ability to compose new events based on a pattern of
events; content-based filtering – ability to define subscriptions
based on the event attributes and types; browsing of information
sources and their events; and event persistency. All these features
are functional requirements.

Awareness applications usually require event persistency and
typing of events, event validity (time-to-live), event sequence
detection, and different notification delivery mechanisms. More-
over, a special feature in this case is the possibility to browse, and
later subscribe to the event types that are published by each event
source. This service, called event browsing, provides information
about the publishers and their event types currently supported by
the server. Example of systems that provide this services are
Khronika [7] and CASSIUS [8].

Mobility is another domain with specific requirements. In order to
be able to support mobile applications, a notification server needs
to provide: simultaneous push and pull interaction policies (for
publishers and subscribers); and event persistency (to cope with
pull policies and disconnection), all functional requirements. Non-
functional requirements such as roaming (ability to change the
local address due to migration) and security (cryptography and
authentication) are also required. Mobility itself can be considered
a non-functional requirement for comprising a set of policies and
functionalities that together provide this characteristic to the sys-
tem. JEDI is an example of notification server that provides some
of these features [4].

3. ANALYTICAL DESIGN FRAMEWORK
In order to approach the design of notification servers, Rosenblum
and Wolf [14] propose a framework that captures the most rele-
vant design dimensions (or models) of those systems. In this
framework, the object model describes the components that re-
ceive notifications (subscribers) and generate events (publishers);
The event model describes the representation and characteristics
of the events; the notification model is concerned with the way the
events are delivered to the subscribers; the observation model
describes the mechanisms used to express interest in occurrences
of events; the timing model is concerned with the casual and tem-
poral relations between the events; the resource model defines
where in the distributed system architecture, the observation and
notification computations are located, as well as how they are
allocated and accounted; finally, the naming model is concerned
with the location of objects, events and subscriptions in the
model.

In our design, we will consider a specialization of this framework
which is similar to the one adopted by Cugola et al. at [4]. In spe-
cial, in our model, the naming and observation models are com-
bined together in what we describe as subscription model. In this
case, the way resources are identified (naming) is part of the sub-
scription language. A protocol model is defined in order to de-
scribe other kinds of interaction with the service other than the
basic publish and subscribe messages, allowing the server to sup-
port new interaction protocols.

4. DESIGN
In order to support the whole spectrum of functional and non-
functional requirements listed in section 2, with the flexibility to
select the subset of features needed by each application domain,
our event notification architecture must be configurable and ex-
tensible. This section describes our approach to provide such
flexibility. One of the main challenges in our design was to spec-
ify an infrastructure that allows the addition of new event process-
ing functions (functional requirements) such as event filtering,
sequence detection and abstraction, while allowing the incorpora-

tion of generalized (non-functional) aspects such as support for
security and mobility.

The extensibility needs to embrace all the design dimensions pre-
sented in the design framework. The basic elements used in such
extensibility are the representation of events, subscriptions and
messages in an extensible language (XML); the use of smart pars-
ers and the dynamic instantiation of plug-ins to attend the re-
quirements of each subscription. This section will describe in
more detail the extension mechanisms for each one of those mod-
els.

4.1 Architecture overview
The high-level architecture of the system is presented in Figure 1.
In this architecture, a publish/subscribe core allows the extension
of the notification, event and subscription models. One of the key
elements to this extension is the use of plug-ins. The subscription
query and notification mechanism are performed using a dynamic
combination of plug-ins with a simple publish/subscribe core.

Consumer Stub

Producer Stub

Server API

Protocol and Notification plug-ins

Publish/
Subscribe

Core

Input Queue

Delivery Queue

Architect
Manager

Protocol Manager

M
sgs

Subsc

N
otif

Events

Figure 1: The high-level architecture of the extensible and

configurable notification server.

The architect manager orchestrates the addition and removal of
plug-ins, and the allocation of components throughout the system,
providing runtime change capabilities to the resource model. The
protocol manager provides an extension point to handle not only
the publish/subscribe messages, but also every other communica-
tion as, for example, those related to the security (authentication)
and mobility (roaming) protocols. Each protocol is provided by a
specific plug-in added to this component.

Non-functional requirements are addressed by the combination of
those mechanisms in configurations that are instantiated by the
architect manager. Each one of those approaches and main com-
ponent of the architecture is described in more detail as follows.

4.2 The publish/subscribe core
The publish/subscribe core, described in Figure 2, is defined by a
set of sub-components that make possible the handling of differ-
ent subscriptions, using the available plug-ins.

Subscription Parser. Subscriptions are defined as messages ac-
cording to an extensible XML schema (or grammar), which allows

the definition of queries and event notification options. The sub-
scription parser validates and extracts the subscription queries and
delivery options from subscription messages, forwarding this in-
formation to the subscription and notification managers respec-
tively as depicted by arrows (1), (2) and (3) in Figure 2.

Subscription Manager. The subscription manager component is
responsible for handling the subscription queries provided by
information consumers. It performs the interpretation of these
requests assembling subscription trees that will execute the appro-
priate query using different plug-in instances, created with the
help of the plug-in manager component (4) and (5).

Delivery
options

Delivery
filter

instances

Adapter

Event
dispatcher

Subscription
manager

Plugin
manager

Plugin F
actories

Subscription tree:
plugin instances

Subscripton
queries

Request
creation

Input Bufer

Get notified by
root instances

Notifications

creates

New plugins
registration

Outputt Bufer

Notification
Manager

Subscription
parser

Subscripton
messages

Events

(1)

(2) (3)

(4)

(5)

creates

(6)

(7)

(10)

(8)

(9)

(11) Notificaitons

Figure 2 Architecture of the publish/subscribe core.

For example, Figure 3 describes the subscription tree produced by
the parsing of the following expression (note that, in this example,
an algebraic form is used instead of XML for clarity and readabil-
ity):

(A followed by B where
 A.CPUtemp > 150 or
 B.status == “non responding”)
OR (C followed by D)
Notify: Pull

OR

OR

Where

A B A B C D

Event dispatcher

Subscription
manager

result

Pull

Notification
manager

Followed
by

Followed
by

Figure 3 Decomposition of subscriptions by the subscription

and notification managers using plug-ins.

As depicted in Figure 3, the subscription evaluation tree is com-
posed of nodes, which are plug-in instances that communicate
using the simple publish/subscribe design pattern [16]. In this
tree, each level subscribes to its children nodes’ results. A sub-
scription like “A.CPUtemp > 150 or B.status ==
‘non responding’”, for example, is evaluated by an OR

plug-in instance that subscribes to events of type A and B. Once
the tree is assembled and configured, the subscription manager
subscribes itself to the results of each tree root plug-in (7). These
results can be Boolean events, showing the occurrence or not of
the subscription, a new event produced due to the evaluation of an
expression, or a set of events that matched the specific filter.

This approach also allows the subscription manager to perform
optimizations such as the reuse of sub-expression parts between
two or more subscriptions. For example, in an expression such as:
“(A followed by B or C)” and another expression “(D
followed by B or C)”, the ‘OR’ part of is common to both
subscriptions. Since the evaluation uses the publish/subscribe
model as described in Figure 3, subscription trees can be easily
rearranged to share the same ‘OR plug-in’ output event.

Notification Manager. Similarly to the subscription manager, the
notification manager is responsible for parsing the notification
options and allocating the appropriate plug-ins for the delivery of
notification (4) and (6). For example, in Figure 3, pull notification
is selected, which will be handled by the appropriate pull delivery
plug-in.

Plug-in Manager. In order to assembly subscription and notifica-
tion evaluation trees, both the subscription and notification man-
agers use the plug-ins registered in the plug-in manager. Each
plug-in is created by a registered factory [16], which is indexed by
one or more operators (XML tags) that the plug-in is able to
evaluate. For example, a ‘<FOLLOWED BY>’ plug-in processes
the ordered event sequences, being indexed by that special XML
tag.

Event Dispatcher. A simple event dispatcher provides the basic
event routing mechanism and dictates the event model of the noti-
fication server. If a content-based dispatcher is provided, and the
event model is tuple-based, all the components will share this
basic functionality and the event language will be built on this
basic foundation. In case an off-the-shelf event dispatcher is used,
an adapter provides a standardized and simple publish/subscribe
API that hides the idiosyncrasies of the selected component, in-
cluding its event and subscription models.

4.3 Protocol Manager
Non-functional services such as security and mobility usually
demand other forms of interaction with the server, other than the
basic publish or subscribe commands. For example, security usu-
ally requires an authentication protocol whereas mobility may
require the extension of the server protocol with move-in/move-
out commands [4]. The ability to support these and other addi-
tional services requires a mechanism to provide new interaction
mechanisms to the server. The protocol manager works as a mes-
sage router, allowing the registration of plug-ins to handle each
protocol. This component deals with aspects related to the proto-
col model defined in section 3.

4.4 Architect manager
The architect manager is the component responsible for the con-
figuration of the diverse services and plug-ins in the architecture.
It reads an XML specification with the topological arrangement of
the components, and the list of available plug-ins, performing
their proper installation in the system.

Runtime changes in the plug-in factories and the components of
the system are also managed by this component. The addition of
new plug-ins consists on the registration of their factories in the
plug-in manager. This process may require the interruption of the
event flow. For such the input and delivery queues can be tempo-
rarily paused, while the new service is inserted in its appropriate
place.

5. EXTENSIBILITY
In order to be extensible, the architecture needs to support varia-
tions and extensions to the different models described in section
3. This is usually provided by a combination of language exten-
sions and plug-ins and configuration of components. This section
discusses the strategies used to extend each one of the models.

5.1 The Event model
Events can be represented in many different ways. The most popu-
lar forms are tuples, records and objects [4]. The event model
used by the system impacts on the possible extensions the system
will be able to have. For example, type checking is a feature avail-
able in record or object-based models, but not in tuple-based sys-
tems. Hence, the choice of one of these models is dependent on
the requirements the system will be customized to attend.

The event model is a native property of the event dispatcher and
should be matched by a subscription language and a special plug-
in to handle it. For example, if Siena [11] is used as the event
dispatcher, the event model of the system will be tuple-based. The
Siena subscription, which is content-based, will need to be de-
scribed according to an XML schema, as well as the Siena event.
A special plug-in, registered with the plug-in manager to handle
the tags in this language, matching it with the provided event, will
also have to be provided.

In order to extend or customize the event model, the event lan-
guage and the event dispatcher adapter have to be customized. For
example, a tuple-based publish/subscribe core can provide types.
In this case, types are special attributes in the tuple-based event,
and should be enforced (type checking) and managed (type decla-
ration) by the adapter.

5.2 The subscription model
In order to be able to handle different functionalities, the subscrip-
tion language of the server is extensible. It is described according
to an XML schema that defines a set of basic tags that can be
extended to provide new functionality. For example, support for
out of order event detection can be expressed by the addition of a
new element in the language: “(A or-sequence B)” which is
mapped to a special tag which use is illustrated as follows:

<OR-SEQUENCE>
 <EVENT> A </EVENT>
 <EVENT> B </EVENT>
</OR-SEQUENCE>

The occurrence of this new tag in a subscription, will instruct the
subscription manager to look-up the ‘<OR-SEQUENCE>’ tag in
the plug-in manager. The correspondent plug-in for this tag is
instantiated and the whole expression between <OR-
SEQUENCE> and </OR-SEQUENCE> is passed to this plug-in,
which implements the subscription command. Plug-ins may need
results from other plug-ins, which issues in the subscription
evaluation tree in Figure 3.

In case a tag is not registered, indicating that its corresponding
plug-in factory is not installed, the plug-in manager may redirect
the request to a generic plug-in that can search the plug-in im-
plementation repository, or the Web, for that specific factory im-
plementation. If available, the service is downloaded and installed
at runtime, allowing the plug-in instance to successfully build an
expression evaluation tree. In case of failure, the subscription
process is not completed, and an error control event is produced.

An example of an event processing language and service, with a
configuration focusing on the support for awareness application,
is discussed in [17].

5.3 The notification model
Extensions to this model are defined in the same way as the sub-
scription model. For each new notification language extension, an
XML schema is provided, together with a plug-in to interpret that
extension tags. Once the plug-in is installed, the notification man-
ager can now use it in a publish/subscribe evaluation tree. Exam-
ple of notification plug-ins includes push or pull delivery and
event persistency.

5.4 The protocol model
A protocol language is described as a set of primitive messages
defined in XML. For each protocol, a plug-in is defined to orches-
trate and handle the use of this set of messages. In an authentica-
tion protocol extension, for example, an authenticator plug-in will
be responsible for the validation of the system users, the manage-
ment of the authorized users database, and the denial or conces-
sion of access to each user to the set of events and subscriptions of
the system.

5.5 The resource model
Some application domains may require the execution of part of
the subscription activities in the producer or consumer sides. This
approach usually results in the distribution of processing and the
reduction of messages exchanges with the central service, which is
important in mobile, software monitoring or general large-scale
applications, for example. Our model copes with these require-
ments by permitting the optional partial execution of subscriptions
in both the producer and consumer processes.

Consumer and producer stubs mediate the interaction of the appli-
cation with the notification service. Publishers interact with their
stubs in order to send events, whereas consumers provide sub-
scriptions and implement a listener interface defined in the con-
sumer stubs.

5.5.1 Publisher and Consumer plug-ins and filters
Figure 4 shows an example of a subscriber stub internal architec-
ture that can be extended using plug-ins and notification filters.
The use of a local subscription manager component allows the
evaluation of subscriptions in the consumer address space. The
purpose of this evaluation at the client-side permits, for example,
that only well-formed subscriptions get to the server. This is
helped by local instances of the plug-in manager and the subscrip-
tion manager components.

Note that similar to the event dispatcher core, this consumer
stub uses the simpler listener design pattern to assembly subscrip-
tion evaluation trees locally. Simple events are received from the
notification server. Functions as AND’s, OR’s or sequence detec-

tion, for example, are executed locally based on these events.
Again, this is an optional feature that our architecture supports:
the distribution of the event processing in the consumers or pub-
lishers. Of course, a developer might choose not use this feature
and let the server process the subscriptions.

Subscriber API

Plug-in
manager

Notification
Sever

Requests
creation

Plug-in
instances

Plug-in
factories

Application

Subscription manager

Delivery
filter

instance

Notification
Manager

Protocol manager

Protocol plugins

Figure 4 An example of the pluggable consumer stub configu-

ration.

Protocol plug-ins can be defined in order to implement client side
security and mobility services. Another option is the local use of
notification plug-ins. For example, producer-side persistency is
useful in some mobile applications where events can be posted for
delivery during disconnected operation, being sent when the con-
nection to the notification server is reestablished.

Plug-in
manager

Subscription manager

Notification
Sever

Requests
creation

Plug-in
factories

Application

Event
Collector

Plug-in
instances

Publisher API

Protocol manager

Protocol
plug-in

Figure 5 An example of a publisher stub configuration.

In another example, described in Figure 5, a publisher stub is
extended with plug-ins used to collect event sequences and send
higher-level events when the condition being evaluated is satis-
fied. In other words, these are composition or abstraction plug-ins.
This approach requires download and execution of part of the
subscription locally, those parts of the subscription evaluation tree
that uses events produced in the current process. This does not

limit the scope of the subscriptions, since events coming from
other applications can be combined with local events, during ex-
pression evaluations, by allowing plug-in instances to subscribe to
these events in the notification server. For example, for perform-
ance reasons, one can decide to do the evaluation of the following
subscription in the publisher side: “(A and B and C and D
and E)”, where A through D are locally produced events and E
is produced by another application elsewhere.

The use of publisher plug-ins makes sense only when most of the
events being processed come from the local host, as it is the case
of event monitoring performed by systems like EDEM.

5.6 Extensibility summary
Table 1 presents the main design dimensions addressed in the
system design, with their extension mechanism. Examples of fea-
tures that can be added to the system using this approach are also
presented.

Table 1 Adaptation points and features to extend according to the notification service model

Design dimension How to Extend Examples

Subscription (or
event query) model

Extensible subscription language
Provide feature specific event processing plug-ins

Event aggregation
Abstraction
Sequence detection

Event Model Extensible event representation language
Provide an event adapter for each dispatcher used
Provide a plug-in to handle the dispatcher specific event language

Tuple based
Record based (with event typing)
Object based (with event typing)

Notification Model Notification plug-ins (or filters)
Extensible subscription language that allows the definition of notification
policies

Push
Pull (with persistency)

Resource Model Server configuration language and configuration manager that allows the
distribution of event processing to server-side or client-side plug-ins

Centralized
Partially distributed

Protocol Model Extensible protocol language
Protocol plug-ins to handle different protocols

Security protocols
Mobility protocols
Configuration protocols

5.7 Implementation
A prototype of the event-notification server architecture described
in this work is being implemented in Java (Sun J2SDK1.4). The
server side components, including the plug-in infrastructure, were
implemented, as well as a simple version of the architect manager.

In our prototype, many simple content-based publish/subscribe
systems could be used as the event dispatcher component in the
publish/subscribe core. We are currently using Siena as this com-
ponent for its simple tuple-based event model, and its ability to
match content-based subscriptions.

Extensions to the basic Siena functionality as sequence detection
and event rules were implemented using this framework. Other
plug-ins are being developed to provide the functionality of CAS-
SIUS [8] and the EDEM [1] event language in our architecture.

The extension of the core functionality with simple plug-ins is
relatively easy. It requires the implementation of a component
according to the plug-in interface and the extension of the sub-
scription language to include the expressions (with their tags) that
express the new functionality. The plug-in location is then in-
formed to the system through the architect manager. Of course,
more advanced features such as “rule” extension plug-ins, will
require more complex code, than a simple sequence detector.

In parallel to the design and implementation of the system, we are
also focusing in the subscription language to be used in our event-
notification service. A language to address the specific problems
of CSCW applications was proposed in [17]. A low-level repre-
sentation of this language, using XML, is being developed.

6. EXAMPLE CONFIGURATIONS
In this section we present two examples of configurations of our
architecture supporting representative application domains that
use event-notification services, namely application and usability
monitoring and awareness. These configurations were created to
support features provided by notification servers used in these
domains. A configuration of the architecture is a particular dispo-
sition of its components in order to attain a specific set of re-
quirements or features. By presenting these configurations, we
show that the elements of our architecture can be easily custom-
ized to implement application-specific notification servers.

6.1 Application and usability monitoring
In this application domain, software components and GUI design
are monitored in order to detect design flaws and misassumptions
with actual prototypes of the system being analyzed. In this con-
text, an event-notification server needs to support the following
subset of features: event sequence detection; event abstraction;
content-based filtering; browsing of information sources and their
events; and event persistency as a support for pull delivery of
notifications. These features are provided by event monitoring
applications as EDEM [1] and EBBA [15].

In this example, the publish/subscribe core of our architecture
already provides content-based filtering. Sequence detection and
event abstraction are implemented as plug-ins used by the sub-
scription manager to extend the subscription model. In the EDEM
approach, as discussed in section 5.5.1, the plug-ins are installed
in the publisher stub; whereas in the EBBA approach, they are

installed in the consumer stub. Our architecture supports both
cases, since it allows plug-ins in both producer and consumer
stubs. Furthermore, it supports the dynamic change from one ap-
proach to the other.

Event types are assured and implemented as an extension to the
tuple-based model of the core. This is implemented in the event
dispatcher adapter, and as an extension to the dispatcher language,
provided by the event dispatcher plug-in. Persistency and pull
delivery are plug-ins used by the notification manager. The
browsing of information sources and their events is performed by
plug-ins used by the protocol manager.

6.2 Awareness applications
Notification servers such as Khronika [7] and CASSIUS [8] are
specially designed to support the development of awareness appli-
cations. These servers provide event persistency and typing, event
validity (time-to-live), event sequence detection, and different
notification delivery mechanisms. Moreover, a special feature
provided by CASSIUS is the ability to browse, and later subscribe
to the event types that are published by each event source. This
service, called event browsing provides information about the
publishers and their event types currently supported by the server.

Event typing is provided by the event dispatcher adapter, which
may extend the event model of the publish/subscribe core to pro-
vide this facility. Type checking is also provided by this compo-
nent. The other features are provided by a set of plug-ins. Event
browsing comprises the ability to advertise event sources types
(like in Siena), organize this information in a database and pro-
vide this information to event consumers. This functionality is
provided by protocol plug-ins. On the publisher side, another
event browsing protocol plug-in is installed, forwarding queries
about the event hierarchy to the server. Similarly to mobile appli-
cations, delivery policies and persistency are implemented as noti-
fication plug-ins. Content-based filtering is already addressed in
the publish/subscribe core, but sequence detection is provided as a
subscription query plug-in.

7. RELATED WORK
The general idea of extensible and configurable software architec-
tures is not new, being a research topic in different computer sci-
ence fields. This section explores some of the previous work that
inspired our approach.

7.1 Pluggable and programmable routers
The Click Modular Router [18] defines a basic architecture for the
definition of flexible and modular Internet routers. In this archi-
tecture, software modules can be arranged according to an IP
routing workflow, allowing the expression of different policies
and configurations that coordinate the proper routing of IP pack-
ages. Promile [19] is another system that extends the Click Modu-
lar Router configurable architecture, adding to it the runtime
change capability. It uses a graph (workflow), described in XML,
to specify the interconnection between modules. Modules work as
filters and policy enforcers that are inserted in the main event
stream of the router in a pipe and filter architecture style. A spe-
cial process called the graph manager controls the dynamic
change (insertion and removal) of these components in the pack-
age flow of the router.

Even though the problem of routing Internet packages does not
provide the full content-based filtering of a publish/subscribe
model, it provide good insights on how to provide dynamic
change using a modular architecture, as well as the service priority
arrangement provided by the workflow model.

7.2 Configurable distributed systems
Software architectures and event-based systems can be combined
to provide a framework to support runtime configuration. Oreizy
and Taylor [20], for example, propose the use of the C2 architec-
tural style to support these changes. Likewise, event processing
languages (such as GEM) and dynamic architecture languages (as
Darwin) can be used to implement configurable distributed sys-
tems in the application level [21].

7.3 Configurable middleware
Configurable middleware services have been described in the
literature. For example, TAO [22] allows the static configuration
of services or the runtime change of strategic components in a
CORBA ORB. TAO can be configured to cope with different real-
time constraints by selecting the appropriate implementation of
each component of the ORB. It also allows the definition of con-
figurations where unnecessary components are not present, which
addresses small footprint requirements of mobile devices or spe-
cial real-time constraints. The motivation of this work is similar to
ours: the need to cope with different requirements of specific ap-
plication domains. In the case of TAO, real-time is the main ap-
plication domain.

The Apache web server is another example. It uses a pluggable
architecture where modules providing different services can be
added. These modules can be installed in distinct phases of the
request handling, processing and response sending process. This
approach has some similarities to the plug-ins in our notification
server. However, differently from the pluggable publish/subscribe
component in our architecture, Apache uses a very simple exten-
sion model, with no parallelism and distribution flexibility: each
request and response follows the same workflow. It also does not
allow the addition of new services at runtime.

8. CONCLUSIONS AND FUTURE WORK
In this work, we describe the design of a configurable, extensible
and dynamic architecture for notification services, which provides
both: the specialty necessary for the implementation of domain-
specific applications and the generality necessary for supporting
the requirements of a broad set of applications. The architecture
provides (i) customization of the entire event notification service
to meet the needs of different applications; (ii) extensibility to
support the addition of new features; and (iii) dynamism allowing
the introduction of these features at run-time. In order to provide
these advantages, the architecture uses the following main strate-
gies: a publish/subscribe core; the extension of this core with
subscription, notification and protocol plug-ins; the ability to add
consumer and producer side plug-ins; and the adoption of an ex-
tensible subscription, event, protocol and configuration languages
based on XML.

Future work includes the improvement of the prototype, with the
implementation of client-side plug-ins; and the execution of tests
using specific configurations, comparing their performance with

available event-notification servers. Issues as timing, event order-
ing assurance and scalability still need to be explored in more
detail in our design. The study of approaches to optimize the sub-
scription processing, such as the use of the RITE algorithm and
other approaches [23] are also part of our future plans.

9. ACKNOWLEDGEMENTS
The authors thank Eric Dashofy, Marcio Dias, Santoshi D.
Basaveswara, and Max Slabyak for their contributions to the de-
sign of the system. We also thank CAPES (grant BEX 1312/99-5)
for the financial support. Effort sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA) and Air Force Re-
search Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-00-2-0599. Funding also provided by
the National Science Foundation under grant numbers CCR-
0205724 and 9624846. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes not-
withstanding any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Defense Ad-
vanced Research Projects Agency (DARPA), the Air Force Labo-
ratory, or the U.S. Government.

10. REFERENCES
[1] D. Hilbert and D. Redmiles, "An Approach to Large-scale

Collection of Application Usage Data over the Internet," pre-
sented at 20th International Conference on Software Engi-
neering (ICSE '98), Kyoto, Japan, 1998.

[2] P. Dourish and S. Bly, "Portholes: Supporting Distributed
Awareness in a Collaborative Work Group," presented at
ACM Conference on Human Factors in Computing Systems
(CHI '92), Monterey, California, USA, 1992.

[3] Anita Sarma and A. v. d. Hoek, "Palantír: Increasing Aware-
ness in Distributed Software Development," presented at In-
ternational Workshop in Global Software Development at
ICSE'2002, Orlando, Florida, 2002.

[4] G. Cugola, E. D. Nitto, and A. Fuggeta, "The Jedi Event-
Based Infrastructure and Its Application on the Development
of the OPSS WFMS," IEEE Transactions on Software Engi-
neering, vol. 27, pp. 827-849, 2001.

[5] OMG, "Notification Service Specification v1.0.1," Object
Management Group, 2002.

[6] R. E. Gruber, B. Krishnamurthy, and E. Panagos, "The Ar-
chitecture of the READY Event Notification Service," pre-
sented at In Proceedings of the 1999 ICDCS Workshop on
Electronic Commerce and Web-Based Applications, Austin,
TX, USA, 1999.

[7] L. Lövstrand, "Being Selectively Aware with the Khronika
System," presented at European Conference on Computer
Supported Cooperative Work (ECSCW '91), Amsterdam,
The Netherlands, 1991.

[8] M. Kantor and D. Redmiles, "Creating an Infrastructure for
Ubiquitous Awareness," presented at Eighth IFIP TC 13
Conference on Human-Computer Interaction (INTERACT
2001), Tokyo, Japan, 2001.

[9] B. Krishnamurthy and D. S. Rosenblum, "Yeast: A General
Purpose Event-Action System," IEEE Transactions on Soft-
ware Engineering, vol. 21, pp. 845-857, 1995.

[10] M. Mansouri-Samani and M. Sloman, "GEM: A Generalised
Event Monitoring Language for Distributed Systems," pre-
sented at IFIP/IEEE International Conference on Distributed
Platforms (ICODP/ICDP'97), Toronto, Canada, 1997.

[11] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Design and
Evaluation of a Wide-Area Event Notification Service,"
ACM Transactions on Computer Systems, 2001.

[12] G. Fitzpatrick, T. Mansfield, D. Arnold, T. Phelps, B. Segall,
and S. Kaplan, "Instrumenting and Augmenting the Worka-
day World with a Generic Notification Service called Elvin,"
presented at European Conference on Computer Supported
Cooperative Work (ECSCW '99), Copenhagen, Denmark,
1999.

[13] C. R. B. de Souza, S. D. Basaveswara, and D. F. Redmiles,
"Using Event Notification Servers to Support Application
Awareness," presented at International Conference on Soft-
ware Engineering and Applications, Cambridge, MA, 2002.

[14] D. S. Rosenblum and A. L. Wolf, "A Design Framework for
Internet-Scale Event Observation and Notification," pre-
sented at 6th European Software Engineering Conference/5th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Zurich, Switzerland, 1997.

[15] P. C. Bates, "Debugging heterogeneous distributed systems
using event-based models of behavior," ACM Transactions
on Computer Systems, vol. 13, pp. 1-31, 1995.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software:
Addison-Wesley Publishing Company, 1995.

[17] R. S. Silva Filho, M. Slabyak, and D. F. Redmiles, "Web-
based infrastructure for awareness based on events," pre-
sented at Workshop on Network Services for Groupware -
ACM Conference on Computer Supported Cooperative
Work (CSCW'02), New Orleans, LA, USA, 2002.

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, "The Click modular router," ACM Transactions
on Computer Systems, vol. 18, pp. 263-297, 2000.

[19] M. Rio, N. Pezzi, H. D. Meer, W. Emmerich, L. Zanolin, and
C. Mascolo, "Promile: A Management Architecture for Pro-
grammable Modular Routers," presented at Open Signaling
and Service Conference (OpenSIG 2001), London, UK,
2001.

[20] P. Oreizy and R. N. Taylor, "On the Role of Software Archi-
tectures in Runtime System Reconfiguration," IEE Proceed-
ings - Software Engineering, vol. 145, pp. 137-145, 1998.

[21] M. Mansouri-Samani and M. Sloman, "A configurable event
service for distributed systems," presented at Proc. Configur-
able Distributed Systems (ICCDS'96), Annapolis, MD, USA,
1996.

[22] D. C. Schmidt and C. Cleeland, "Applying a Pattern Lan-
guage to Develop Extensible ORB Middleware," in Design
Patterns and Communications, L. Rising, Ed.: Cambridge
University Press, 2000.

[23] R. E. Filman and D. D. Lee, "Managing Distributed Systems
with Smart Subscriptions," presented at Proc. International
Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA'2000), Las Vegas, Nevada,
USA, 2000.

