
ECE 344 Operating Systems

Operating Systems –
Processes

ECE 344



ECE 344 Operating Systems

The Process Concept

• An OS executes a variety of programs
– In batch systems, referred to as jobs
– In time shared systems, referred to as user 

programs or tasks
• So far pretty informally referred to as 

programs in execution, processes, jobs, tasks
…

• From now on we’ll try to use the term 
process synonymously with the above terms 
and really mean …



ECE 344 Operating Systems

Definitions of Processes

Exact definitions in textbooks differ:
• Program in execution
• An instance of a program running on a computer
• A unit of execution characterized by

– A single, sequential thread of execution
– A current state
– An associated set of system resources (memory, 

devices, files)
• A unit of resource ownership
• …



ECE 344 Operating Systems

The OS has to …

• Load executable from hard disk to main 
memory

• Keep track of the states of each process 
currently executed

• Make sure
– No process monopolizes the CPU
– No process starves to death
– Interactive processes are responsive
– Processes are shielded from one another



ECE 344 Operating Systems

Process Structure
A process consists of
1. An executable (i.e., code)
2. Associated data needed by

the program (global data, 
dynamic data, shared data)

3. Execution context (or state)
of the program, e.g.,
- Contents of data 

registers
- Program counter, stack 

pointer
- Memory allocation
- Open file (pointers)

code

stack
dynamic data

data



ECE 344 Operating Systems

Processes

• 16 users may all be running an application 
(e.g., emacs), while there is only one image of 
“emacs” loaded in the system

• This image (i.e., binary) is shared among the 
different processes running on behalf of the 
16 users

• I.e., code (and data) can be shared among 
processes

• Shared libraries, shared objects, .so, DDLs!



ECE 344 Operating Systems

Process Control Block (PCB)

• Process state
• Program counter
• CPU registers
• CPU scheduling information (e.g., priority, 

scheduling queue information)
• Memory management information (e.g., base 

and limit registers)
• Accounting information (e.g., time)
• I/O status information



ECE 344 Operating Systems

PCB

pointer
(to next PCB)

process state

process ID

registers

memory limits (e.g., base and limit)

lists of open files

…



ECE 344 Operating Systems

Anything missing?   This is our notion of a process.

struct thread {
struct pcb t_pcb;
char *t_name;
const void *t_sleepaddr;
char *t_stack;
struct addrspace *t_vmspace;
struct vnode *t_cwd;

};

Process Organization in OS161 
thread.h



ECE 344 Operating Systems

$ more arch/mips/include/pcb.h
/*
* Process Control Block: machine-dependent part of thread
*/

struct pcb {
// stack saved during context switch
u_int32_t pcb_switchstack;
// stack to load on entry to kernel
u_int32_t pcb_kstack; 
// are we in an interrupt handler?
u_int32_t pcb_ininterrupt
// recovery for fatal kernel traps
pcb_faultfunc pcb_badfaultfunc; 
// jump area used by copyin/out etc.
jmp_buf pcb_copyjmp; };



ECE 344 Operating Systems

Process Organization in BSD



ECE 344 Operating Systems

Process State

As a process executes it changes state.
• New: the process is being created.
• Running: instructions are being executed.
• Waiting: the process is waiting for some 

event to happen.
• Ready: the process is waiting to be assigned 

to a processor.
• Terminated: the process has finished 

executing.



ECE 344 Operating Systems

Diagram of Process States



ECE 344 Operating Systems

Process Scheduling Queues

• Job queue: Set of all processes in the 
system.

• Ready queue: Set of all processes residing in 
main memory; ready and waiting to execute.

• Device queues: Set of processes waiting for 
an I/O device.

Processes migrate between the various queues



ECE 344 Operating Systems

Example: Ready and Various Device I/O Queues



ECE 344 Operating Systems

Process Scheduling



ECE 344 Operating Systems

OS161 kern/thread/thread.c

/* States a thread can be in. */
typedef enum {

S_RUN,
S_READY,
S_SLEEP,
S_ZOMB,

} threadstate_t;



ECE 344 Operating Systems

Context Switch

• CPU switching from one process to another 
process is called a context switch.

• Execution state of running process has to be 
saved and execution state of next process has 
to be loaded (context is switched.).

• Time to save old and load new processes’
execution state is called context-switch time.

• This time is overhead; The system does no 
useful work while switching. Needs to me small.

• Time depends on hardware support.



ECE 344 Operating Systems

Context Switch Illustrated



ECE 344 Operating Systems

Process Creation
• Parent processes create child  processes, which 

in turn create other child processes forming a 
tree of processes

• Resource sharing (all, some, or nothing)
• Execution

– Parent and child execute concurrently
– Parent waits for child to terminate
– Parent terminates prior to child process, which 

continues to execute
• The init process inherits processes whose 

parents have terminated (Unix)



ECE 344 Operating Systems

Process Tree on a Unix System



ECE 344 Operating Systems

More on Process Creation

• Address space
– Child is duplicate of parent process
– Child has a program loaded into it’s address 

space
• Unix examples

– Fork system call creates a new process
– Exec system call used after a fork to replace 

the process’s address space with a new 
program

• Let’s look at that in action …



ECE 344 Operating Systems

#include <stdion.h>
void main(int argc, char* argv[]){
int pid;
pid = fork()
if (pid < 0){  /* error occurred */
fprintf(stderr, “Fork Failed”);
exit(-1);

}
else if (pid == 0) {  /* child process */
execlp (“/bin/ls”, “ls”, NULL);

else {  /* parent process */
/* parent will wait for child to complete */
wait(NULL);
printf(“Child completed”);
exit(0);
}

}



ECE 344 Operating Systems

pid=fork()

pid=0 pid=234562

tim
e

parent

parentchild

integer variable

child’s PID

newly created

process



ECE 344 Operating Systems

Summary

• Processes and their characterization
• Process control block
• PCB management, process states and state 

transitions
• Context switch
• Process creation


