Operating Systems —
Processes

ECE 344

ECE 344 Operating Systems

The Process Concept

 An OS executes a variety of programs
— In batch systems, referred to as jobs

— In time shared systems, referred to as user
programs or tasks

o So far pretty informally referred to as
programs in execution, processes, jobs, tasks

 From now on we’ll try to use the term
process synonymously with the above terms
and really mean ...

ECE 344 Operating Systems

Definitions of Processes

Exact definitions in textbooks differ:
 Program in execution
* An instance of a program running on a computer
* A unit of execution characterized by
— A single, sequential thread of execution

— A current state

— An associated set of system resources (memory,
devices, files)

A unit of resource ownership

ECE 344 Operating Systems

The OS has to ...

e Load executable from hard disk to main
memory

« Keep track of the states of each process
currently executed

 Make sure
— No process monopolizes the CPU
— No process starves to death
— Interactive processes are responsive
— Processes are shielded from one another

ECE 344 Operating Systems

Process Structure

A process consists of
1. An executable (i.e., code) stack
2. Associated data needed by dynamic data
the program (global data,
dynamic data, shared data) 1
3. Execution context (or state)
of the program, e.g., t
- Contents of data data
registers
- Program counter, stack
pointer code
- Memory allocation

- Open file (pointers)ece 344 operating systems

Processes

16 users may all be running an application
(e.g., emacs), while there is only one image of
“emacs” loaded In the system

This image (i.e., binary) Is shared among the
different processes running on behalf of the
16 users

|.e., code (and data) can be shared among
processes

Shared libraries, shared objects, .so, DDLS!

ECE 344 Operating Systems

Process Control Block (PCB)

Process state
Program counter
CPU registers

CPU scheduling information (e.g., priority,
scheduling queue information)

Memory management information (e.g., base
and limit registers)

Accounting information (e.g., time)
/O status information

ECE 344 Operating Systems

PCB

—

pointer

(to next PCB) Process state

process | D

registers

memory limits (e.g., base and limit)

lists of open files

ECE 344 Operating Systems

Process Organization in OS161
thread.h

Anything missing? This is our notion of a process.

struct thread {
struct pcb t_pcb;
char *t_name;
const void *t_sleepaddr;
char *t_stack;
struct addrspace *t_vmspace;
struct vnode *t_cwd,

ECE 344 Operating Systems

$ more arch/mips/include/pcb.h
/*
* Process Control Block: machine-dependent part of thread
*/
struct pcb {

/[stack saved during context switch

u_Int32_t pcb_switchstack;

// stack to load on entry to kernel

u_Int32_t pcb_kstack;

/[are we In an interrupt handler?

u_Int32_t pcb_ininterrupt

/] recovery for fatal kernel traps

pcb_faultfunc pcb badfaultfunc;

/[jJump area used by copyin/out etc.

Jmp_buf pcb_copyjmp; 2

ECE 344 Operating Systems

Process Organization in BSD

b

= Contents of process contrc

Process group Session

—’|Proc credential

. block include
User credential

—'l VM space

Region list

Scheduling info

>
—]

Process identifier
-
>

Process —Eile descriptors File entries Process state
entry [Resource limits = Wait channel
Signal state
T Statistics Tracing info
"’l Signal actions Machine state
Process control block Uil
Qﬂ;er Process kernel stack = Other stuff 1s pointed to by
M:;hci'ne User structure process entry
dependent Process group implements
info hierarchy of processes

ECE 344 Operating Systems

Process State

As a process executes it changes state.

New: the process Is being created.
Running: instructions are being executed.

Waiting: the process is waiting for some
event to happen.

Ready: the process is waiting to be assigned
to a processor.

Terminated: the process has finished
executing.

ECE 344 Operating Systems

Diagram of Process States

admitted interrupt exit

scheduler dispatch
/O or event completion /0 or event wait

ECE 344 Operating Systems

Process Scheduling Queues

e Job queue: Set of all processes In the
system.

 Ready queue: Set of all processes residing In
main memory; ready and waiting to execute.

 Device queues: Set of processes waiting for
an 1/O device.

Processes migrate between the various queues

ECE 344 Operating Systems

Example: Ready and Various Device I/O Queues

queue header PCB PCB

7 2

head
tail registers registers

-

-

5 /

terminal

unit O

ECE 344 Operating Systems

Process Scheduling

i:l_-ready queue

I/O request

e
/0 queue

time slice
expired

child
executes

fork a
child

interrupt

OCCuUrs

ECE 344 Operating Systems

wait for an
interrupt

0S161 kern/thread/thread.c

[* States a thread can be In. */
typedef enum {

S RUN,

S READY,

S SLEEP,

S ZOMB,
} threadstate t;

ECE 344 Operating Systems

Context Switch

CPU switching from one process to another
process Is called a context switch.

Execution state of running process has to be
saved and execution state of next process has
to be loaded (context is switched.).

Time to save old and load new processes’
execution state iIs called context-switch time.

This time is overhead; The system does no
useful work while switching. Needs to me small.

Time depends on hardware support.

ECE 344 Operating Systems

Context Switch lllustrated

process F,

operating system process P,

interrupt or system call

!

save state into PCBO

reload state from F’CB1

interrupt or system call executing

| T

save state into F’CB1

-

reload state from PCB0

ECE 344 Operating Systems

Process Creation

Parent processes create child processes, which
In turn create other child processes forming a
tree of processes

Resource sharing (all, some, or nothing)
Execution

— Parent and child execute concurrently
— Parent waits for child to terminate

— Parent terminates prior to child process, which
continues to execute

The Init process inherits processes whose
parents have terminated (Unix)

ECE 344 Operating Systems

Process Tree on a Unix System

root .

pagedaemon l swapper I

user 1 I

ECE 344 Operating Systems

More on Process Creation

« Address space
— Child is duplicate of parent process

— Child has a program loaded into it’s address
space

o Unix examples
— Fork system call creates a new process

— Exec system call used after a fork to replace
the process’s address space with a new
program

e Let's look at that in action ...

ECE 344 Operating Systems

#include <stdion.h>
void main(int argc, char* argv[]){
int pid;
pid = fork()
iIf (pid < 0){ /* error occurred */
fprintf(stderr, “Fork Fairled”);
exit(-1);
by
else 1f (pid == 0) { /* child process */
execlp (“/bin/ls”, “Is”, NULL);
else { /* parent process */
/* parent will wait for child to complete */
wailt(NULL);
printf(““Child completed™);
exi1t(0);
}

} ECE 344 Operating Systems

process

Integer variable

~~~~~~~~~~~~~~~~ parent

awi

child’'s PID

’
s
.
,
.,
.
’
’
.,
’
.,
.,
.,
’

0id=234562

newly created

ECE 344 Operating Systems



Summary

Processes and thelr characterization
Process control block

PCB management, process states and state
transitions

Context switch
Process creation

ECE 344 Operating Systems



