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ABSTRACT
Middleware becomes increasingly important in building dis-
tributed applications. Today, conventional middleware sys-
tems are designed, implemented, and packaged prior to their
applications. We argue that with this middleware construc-
tion paradigm it is often difficult to meet the challenges
imposed by application specific customization requirements.
We propose to reverse this paradigm by automatically syn-
thesizing middleware structures as the result of reasoning
about the distribution needs of the user application of mid-
dleware. We term this type of post-postulated middleware
Just-in-time middleware (JiM). In this paper, we present our
initial design and present an evaluation of the JiM paradigm
through Abacus, a CORBA middleware implementation based
on the aspect oriented refactoring of an industrial strength
object request broker. In addition, we present Arachne, the
Abacus synthesizer, which integrates source analysis, fea-
ture inference, and implementation synthesis. Our evalua-
tions show that, through automatic synthesis alone, Abacus
is able to support diversified application domains with very
flexible architectural compositions and versatile resource re-
quirements as compared to conventional pre-postulated ap-
proaches.
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1. INTRODUCTION
The purpose of middleware such as CORBA1, .NET Re-

moting2, and Web Services3 is to provide uniform and native

∗In Fourth International Conference on Aspect-Oriented
Software Development, Chicago, USA, March 14-18, 2005
1Common Object Request Broker Architecture. URL: www.
omg.org
2Microsoft .NET Remoting. URL: http://msdn.
microsoft.com/library/en-us/dndotnet/html/
hawkremoting.asp
3W3C Web Services Activity URL: http://www.w3.org/

representations of remote services for distributed applica-
tions to avoid dealing with the high degree of heterogeneity
in hardware platforms, operating systems, communication
protocols, programming languages, application semantics,
and many others. Traditional middleware architectures are
often criticized as monolithic or coarse-grained. This high
degree of inflexibility has called for newer paradigms to build
versatile middleware architectures which aptly adapt to ever
changing external execution environments as well as require-
ments of features desired by the user applications of middle-
ware.

Many new architectural paradigms have been proposed,
successfully exploiting techniques such as reflection [2, 4,
11], component frameworks [10], and aspects [14, 8]. A
common characteristic of these solutions, as well as tradi-
tional approaches, is that middleware functionality is inde-
pendently conceived and packaged as either active services
or framework libraries according to which applications are
developed. We term these middleware architectures pre-
postulated architectures with respect to the application de-
velopment time. The pre-postulated solutions have the fol-
lowing limitations:

1.Impedance mismatch – Existing middleware architec-
tures are typically designed according to specific and yet
coarse classifications of application domains such as enter-
prise platforms, resource-constrained environments, safty-
critical systems, and many others. However, user applica-
tions might not be appropriately categorized in the same
way. Consequently, pre-postulated architectures might be
either functionally redundant (overfit), or insufficient (un-
derfit), or incomplete (partial fit). Generally speaking, pre-
postulation is infeasible in providing a tailored architecture
for a specific user application.

2.Application obliviousness – Pre-postulated architec-
tures cannot take full advantage of the rich information em-
bodied in user applications regarding their required middle-
ware features such as data types, invocations styles, pro-
gramming styles, and additional middleware services. It is
very difficult to pre-design a customizable and adaptive sys-
tem which takes the full diversity of user applications into
consideration.

3.Domain limitations – Pre-postulated middleware so-
lutions typically target specific application domains and are
often problematic in supporting applications in other do-
mains. This is because a large number of extrinsic, i.e.,
domain-specific, properties are implemented in a non-modular
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and convoluted fashion4. More importantly, it is difficult to
pre-postutate all of the variations of the deployment environ-
ments in each and every user application scenario. There-
fore, conventional middleware conceived for one application
domain typically cannot readily support a different domain
without considerable re-implementations.

4.Excessive configurability – Middleware composed of
fine granularity have greatly alleviated the difficulty of cus-
tomization. However, in pre-postulation approaches, soft-
ware configuration is independent of the middleware ar-
chitecture and left either minimal in terms of application-
specific tailoring or primarily as the user’s responsibility.
Configurability can be a daunting task because the number
of configuration possibilities grows exponentially as several
authors have shown in [17, 8].

To solve the afore-mentioned problems, we call for a para-
digm shift in the construction of middleware. We propose
a reverse design paradigm in which the constituents of mid-
dleware implementations are not pre-postulated for user ap-
plications but post-postulated from the knowledge embed-
ded in the user application or the specific target application
domain. Borrowing metaphorically from the terminology
Just-in-time (JIT) compilation in the Java world where the
machine-specific code is generated only during runtime, we
term the paradigm Just-in-time Middleware (JiM), where
the executable middleware is only generated at the most ap-
propriate time. Intuitively, the “appropriateness” gets bet-
ter as the time gets closer to the runtime of the application.
Currently, we are primarily concerned with the development
time and defer “later times” till further research.

The JiM approach is based on the observation that indi-
vidual user applications or application domains often do not
require all of the middleware features available in standard
platforms. This feature redundancy in the final middleware
deployed can best be avoided if the distributed computing
intent of the user application can be externalized and ex-
ploited to drive the composition of the middleware. In JiM,
we propose the following general stages to achieve this goal:
gathering functional requirements from both the user appli-
cation and environmental constraints (Acquisition), reason-
ing about the final composition of middleware (Targeting),
and generating the correct middleware as well as the asso-
ciated test cases (Synthesis). The most important premise
of enabling this process is a very high degree of modularity
and configuration granularity. Traditional middleware ar-
chitectures, as limited by their hierarchical structures, suffer
from the incapability of modularizing crosscutting concerns.
This often hinders the separation and the modularization of
generic middleware logic in face of domain specific proper-
ties as pointed out by Harrison and Ossher [7]. Hence, we
believe that aspect oriented programming [9] is one of the
enabling technologies for achieving JiM architectures. Fur-
ther, the horizontal decomposition principles [17] serve as
effective guidance for implementing JiM, as our experience
has shown.

In this paper, we make the following contributions:
1. We present the key ingredients of the JiM paradigm:

acquisition, targeting, including both inference and verifica-
tion, and synthesis. More specifically, we propose a feature
acquisition process bootstrapped by both remote interface
declarations and the user application program source. This

4Please see section 2 for the definition of convolution

process is directed by rule-based dependency and constraint
specifications. We propose a code naming schema to orga-
nize the code space of aspects in order to facilitate fast and
correct synthesis of middleware implementations.

2. We present Abacus, our prototype of JiM based on
the aspect oriented refactoring of ORBacus5, an industrial
strength CORBA implementation, Abacus is capable of au-
tomatically synthesizing specific middleware implementations
to manage distribution concerns for applications in different
execution environments from embedded to desktop and to
enterprise platforms. This synthesis process is facilitated by
our aspect-aware IDL compiler and the Arachne synthesizer.
We also describe an inference algorithm and motivate the
guarantees the algorithm provides for the final middleware
composition – correctness and minimalism.

3. We present a thorough evaluation of Abacus through
both randomized feature selections and an experimental cross-
domain application: an ubiquitous messenger. We measure
and report both the static and the dynamic versatility exhib-
ited by Abacus in transforming itself to dramatically differ-
ent execution environments including cell-phones, desktop
machines and enterprise computing settings.

The organization of the paper is as follows: Section 2
briefly introduce middleware and the horizontal decompo-
sition (HD) principles. Although the focus of this paper is
on customization, we use the HD principles to enable the
architectural flexibility required by JiM. In Section 3, we
present an abstract discussion of key ingredients for achiev-
ing a JiM architecture. In Section 4, we present Abacus, a
JiM implementation. The evaluation of Abacus is presented
in Section 5.

2. BACKGROUND
Middleware: We define middleware as a set of services

that facilitate the development and the deployment of dis-
tributed systems in a heterogeneous networking environ-
ment. In the context of this paper, we further narrow this
definition to be the software substrate which enables trans-
parent remote invocations of services. The design require-
ments for middleware are still very complex because they
cover two orthogonal middleware characteristics, identity
coupling and temporal coupling,among applications request-
ing services (clients) and ones providing computing services
(servers). Identity coupling characterizes how much clients
and servers know about each other, and temporal coupling
characterizes the degree of synchrony of the message ex-
change between them. Traditional RPC-based middleware,
such as DCOM, CORBA, and Java RMI, exhibits strong
identity and temporal coupling. Clients and servers of pub-
lish/subscribe middleware, on the other hand, do not know
about each others’ identities and do not synchronize when
communicating either.

Horizontal decomposition: Horizontal decomposition
(HD) is a set of principles we have proposed in [17] to guide
the aspect oriented design and implementation of complex
systems such as middleware. HD principles play the funda-
mental role in achieving a very high degree of modularity
and enabling the JiM paradigm because they effectively ad-
dress the feature convolution problem prevalent in legacy
middleware architectures. We use “convolution” to denote

5ORBacus. URL:http://www.orbacus.com/support/new
site/index.jsp



large-scale N-by-N interactions among orthogonal features
in vertical architectures, those built using hierarchical mod-
ules [6]. We perceive that the implementation of an aspect
consists of both its functional implementation and its pos-
sible interactions with every other aspect. HD promotes
a two dimensional architecture in which the vertical archi-
tecture implements a minimum set of essential functional-
ity of the application, and the horizontal architecture cap-
tures crosscutting concerns including both functional and
non-functional features [13]. The horizontal features are de-
coupled from each other and each can be independently “wo-
ven” into the vertical architecture. We term this fashion of
architecture “super-impositional architecture” [17].

3. JUST-IN-TIME CUSTOMIZATION
“The program is obsolete by the time it is done” [3]. Tar-

geting a very diversified application domain, the design of
middleware becomes obsolete even faster. We think that one
way of overcoming this “curse” is to postpone at least part,
if not all, of the composition of middleware, or software in
general, as close to its execution time as possible. We think
this is possible because, with the help of higher-degree mod-
ularization techniques, it is possible to separate the mini-
mum common functionality of middleware implementations
across different domains and to construct extrinsic proper-
ties as modules. These modules are constructed in a dis-
ciplined way so that they can be combined with minimum
constraints. The core-based super-impositional architecture
advocated with the horizontal decomposition principles is
one way of achieving this goal.

The spirit of Just-in-time customization is to let the dis-
tribution intentions of the user applications drive the final
composition of middleware. This is contrary to traditional
construction methods in which the design and the imple-
mentation of middleware are conducted prior to that of the
application. With certain assumptions, our current research
effort in JiM focuses on facilitating the composition of mid-
dleware after the user application is developed. The follow-
ing sections discuss essential JiM concepts as well as our
general assumptions. We purposely present the discussion
in an abstract manner rather than in implementational de-
tails. In Section 4, we incarnate these concepts through our
concrete implementation which serve as examples for the
abstract discussion.

3.1 General assumptions
The complete realization and evaluation of JiM is a com-

plex task. However, we are able to test the viability of this
approach under the following assumptions:

1. The JiM paradigm is based on the existence of a min-
imum set of functionalities and their associated structures
which can be factored out from domain-specific variations.
We term this set of middleware functionalities “the middle-
ware core” and use it as the basis of just-in-time customiza-
tion.

2. We limit our discussion to the remote-procedure-call
based middleware. The support of the full spectrum of mid-
dleware types and properties through JiM is an interesting
and future research endeavor.

3. The JiM paradigm is most effective when the middle-
ware is parasitical, i.e., part of the user application stack
that responsible for managing distributed concerns. The
paradigm can also be used in providing specialized active
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Figure 1: JiM customization stages

distributed services tailored for specific applications or do-
mains. We defer to future research the discussion of the
properties of JiM in the case of generic active distributed
services. To these services, the distribution needs of individ-
ual user applications generally are not sufficient in deciding
the included functionalities of middleware.

3.2 Overview
Just-in-time customization consists of four high-level stages

as illustrated in Figure 1. The process is bootstrapped by
the explicit acquisition of middleware functionalities through
either the analysis of the application source or explicit pref-
erence indication by the user. A tool should be provided to
facilitate this process through the use of mappings between
configuration options and elements of user programs. The
initial manifest of middleware features gathered from this
stage is then further analyzed in the Functional Inference
stage. The inference algorithms autonomously adjust the
manifest in compliance with feature dependency rules. The
“inferred manifest” is then validated according to external
constraints in the Verification stage. The violations of ei-
ther dependency rules or constraints re-initiate the Explicit
Acquisition stage where users can adjust the desired feature
set according to the violation information. The finalized
manifest is passed to the Synthesis stage where the tailored
middleware is synthesized according to convolution descrip-
tions and a well-defined coding naming schema. These de-
scriptions and the schema enable the selection of the right
components of a particular feature implementation if this
feature interacts with unselected features.

3.3 Dependencies, constraints, and convolu-
tion descriptions

In JiM, three types of specifications are defined in addi-
tion to the middleware implementation: feature dependen-
cies, composition constraints, and convolution descriptions.
A feature dependency rule states that the implementation
of certain functionality is composed from other functional-
ities. These dependencies must be satisfied by adding the
constituent functionalities if a composite functionality is in-
cluded in the manifest. For example, selecting the mid-



dleware data type String would result in both String and
char being included in the feature manifest if the implemen-
tation of String is based on that of the char. Dependency
rules can be either automatically derived from feature im-
plementations or manually specified to express logical rela-
tionships among features. Composition constraints are also
dependencies that dictate the inclusions and exclusions of
functionalities reflecting certain external conditions. Differ-
ent from functional dependencies which are propositional,
constraints are predicates on conditions independent of mid-
dleware itself. For example, targeting a cellphone applica-
tion on J2ME6 platforms requires the omission of certain
functionalities due to the lack of support in J2ME virtual
machines. This omission can be specified as a constraint
to validate a manifest generated for cellphone applications.
Convolution descriptions are also propositions describing the
interactions among features. Convolutional descriptions are
different from functional dependencies as the latter pertains
to the implementations of functionalities and the former to
their interactions. Convolutional descriptions are used at
the synthesis stage to guarantee that the right interaction
code is selected. This mechanism is explained in detail in
Section 3.5.

3.4 Functionality acquisition
The goal of functional acquisition is to obtain a tailored

and minimum set of middleware functionalities as desired by
the user application. The process is divided into two stages:
direct collection of functionalities (explicit acquisition) and
the adjustment according to functional dependencies (infer-
ence).

3.4.1 Explicit acquisition
There are two basic forms of explicit acquisition: auto-

matic feature extraction and user preference indication. Au-
tomatic feature extraction is to examine the program source
and to detect middleware functionalities user applications
intend to use. This intent can be discovered most explicitly
in service declaration descriptions expressed in well-defined
languages such as the interface definition language (IDL) in
the CORBA and DCOM world, remote interfaces of the Java
RMI mechanism, as well as the web service description lan-
guage (WSDL) of Web Services. The language elements of
IDL, for instance, embody a rich set of middleware function-
alities including data types, synchrony/asynchrony of mes-
sage passing, invocations styles, and many others. Remote
service descriptions can serve as the initial recipe for deter-
mining the final ingredients of the synthesized middleware.
In many cases, service descriptions alone are not sufficient to
determine all the necessary functionalities because some are
present, not as language elements, but as libraries or exten-
sion points for controlling the behaviour of middleware itself.
One example is the interceptor infrastructure in CORBA im-
plementations. The use of these types of functionalities can
only be detected by analyzing the application source code.
Another type of explicit acquisition is to allow the user to
select additional features in foreseeing their future uses. A
tool can be provided to facilitate both compiler-based and
user-driven acquisition.

3.4.2 Rule-based inference

6Java Micro Edition. URL: http://java.sun.com/j2me

The functionality manifest established through the ex-
plicit acquisition typically will not be the final manifest used
in synthesis. An inference process is needed to reason about
functional dependency rules and to possibly include addi-
tional functionalities. This process must provide two guar-
antees regarding the inferred manifest:

1. Each functionality in the manifest must have its func-
tionality dependency satisfied.

2. The inferred manifest must be a minimum superset of
the explicit manifest.

The second garantee is critical to the JiM paradigm and
also difficult to implement because the term “minimum” can
be interpreted differently in different contexts. An appro-
priate cost model can be employed by inferrence algorithms
to rank all possible supersets. The cost functions in the
model can reflect the weights of many properties regarding
a particular functionality such as its physical size, memory
requirements, energy consumptions, level of preference, and
others. The definition of the cost function can either be
user-defined or provided by the middleware vendor. We will
describe such an algorithm and the associated cost function
in Section 4.2.

3.4.3 Verification
During the verification stage, the inferred manifest is checked

against composition constraints. Though logically separate
from the functionality acquisition mechanism, verification is
frequently invoked in the inference stage to validate the in-
ferred manifests. Violations of composition constraints can
either be used to prune choices of feature supersets or to re-
initiate the acquisition process with the information about
offending functionalities and violated constraints. This re-
quires different indications of user preferences or modifica-
tions of the application in the worst case.

3.5 Target synthesis
During the target synthesis stage, the tailored middleware

is composed in strict accordance with the final manifest gen-
erated at the inference stage. Due to the convolution phe-
nomena, it is often not correct to naively select the entire
functionality. Instead, we need to select its relevant com-
ponents in the context of a specific final manifest. This
partial selection could be different from synthesis instance
to another. To tackle this difficulty, we propose to use a
structural schema to organize the code space of middleware
features. The convolution descriptions guide the feature se-
lection process. We discuss these concepts abstractly in the
following sections and provide our specific implementations
in Section 4.2.

3.5.1 Structural schema
The primary purpose of the structural schema is to make

the code space of middleware features comprehensive to the
synthesizer. The traditional structure of the code space
is based on name spaces (or packages in Java terms) and,
therefore, suited for the vertical dimension. Features mod-
ularized as aspects are non-hierarchical and convolutional.
Therefore, the structural schema for JiM must make the
following properties explicit for each aspect: the differentia-
tion between implementation and interaction, and the set of
binary relationships with other aspects. The former is nec-
essary because, if the feature is selected, the implementation
of aspects is included completely, but the interaction logic



might subject to partial selection. The explicit binary rela-
tionships in the schema allow the synthesizer to select the
correct parts of an aspect according to what other aspects
it interacts with as specified in the convolution descriptions.
Instantiations of the schema elements, i.e., implementation,
interaction, and binary relationship, can be either source
files or bytecode representations7.

3.5.2 Implementation selection
The implementation selection is the primary role of the

JiM synthesizer which, according to the final manifest, de-
termines and includes the correct constituents of a feature
implementation in the final middleware implementation. The
output of the synthesizer can either be a build configuration
or an executable middleware instance. Utilizing the struc-
tural schema and the convolution descriptions, the mecha-
nism of the synthesizer can be straightforward: if a feature
is present in the manifest, the synthesizer firstly includes its
implementation then its individual binary relationship with
other features if they are also activated, by walking the code
space according to the schema.

3.6 Functional verification
The functional correctness of middleware is typically ver-

ified through integration tests in which individual tests are
provided for all the packaged functionalities. In the JiM ap-
proach, such integration tests are difficult to devise since the
functional ingredients of the final middleware implementa-
tion change from case to case. However, we can take advan-
tage of the high degree of orthogonality among the seman-
tics of horizontal features and design test cases only for these
individual features. It is then the synthesizer’s job to auto-
matically assemble the composite test plan from individual
tests for the final middleware implementation. Functional
verification is a separate logical step in completing the JiM
process. It can be integrated as part of the synthesizer if
we incorporate the source code of test cases into the struc-
tural schema described previously. We present such a testing
framework based on JUNIT 8 and AspectJ in Section 4.2

4. JUST-IN-TIME MIDDLEWARE:
THE ABACUS IMPLEMENTATION

In this section, we present the Abacus, the aspect-oriented
ORBacus, as the prototype implementation of JiM to val-
idate key JiM concepts that serve as the basis of our eval-
uation. Abacus is based on our long term aspect oriented
refactoring of ORBacus, an open source industrial strength
CORBA implementation. We have re-structured more than
65% of the original implementation and re-modularized them
as aspects. In addition, we have substantially extended our
aspect-aware IDL compiler [15] and built Arachne, the Aba-
cus synthesizer. The following sections first give an overview
of the characteristics of the Abacus architecture. The imple-
mentation of JiM concepts is then discussed in detail.

4.1 Architectural highlights
The architecture of Abacus is based on a very high level

of configurability along two dimensions: the vertical dimen-

7We think it can also be linkable executables. However, the
current AOP compilers only support weaving either source
code or byte code.
8JUnit. URL: http://www.junit.org

sion by preserving the original hierarchical configurability,
and the horizontal dimension by modularizing crosscutting
concerns. This high degree of configurability is the founda-
tion of Just-in-time customization.

4.1.1 Enhancements of vertical configurability
The vertical configurability, i.e., changing parts of the hi-

erarchical structure, is well designed in the original ORBa-
cus implementation and also entirely preserved. Abacus can
be vertically configured through two traditional ways: sys-
tem property tables, which is the Java equivalence of the
environment variable mechanism; and policies, which is a
CORBA specific way of fine tuning the functionalities of the
ORB9. We enhanced this configurability by adding support
for J2ME environments through the creation of the J2ME
network transport level support according to the MIDP2.0
specification10. This transport can be selected through the
system property table.

4.1.2 Fine-granular horizontal configurability
A vast amount of aspects are available for configuration

including IDL language data types, synchrony of remote in-
vocation semantics, CORBA infrastructures, and program-
ming styles. Table 1 categorizes a total of 26 aspects mod-
ularized in Abacus.

Categories Features

Server Data Integer, String, Double,
Types Fixed, Float, Long

Wide Character, Wide String
Remote Invocation Synchrony, Asynchrony (Oneway),
Semantics Passing-by-value
CORBA Policies, Implementation Repository,
Infrastructures Interface Repository, Type Code,

Collocation Optimization,Interceptors,
Caching, Fault Tolerance,
Object Disposal

Remote Invocation DII, DSI, Any, Dynamic Any
Styles
Regional Support Locale, Encoding conversion

Table 1: Complete Listings of Configurable Aspects

4.2 Arachne: The Abacus synthesizer
The various stages of Just-in-time customization in Aba-

cus are integrated in and largely automated by a tool we have
built named Arachne11. Arachne is composed of three com-
ponents: the aspect-aware IDL compiler, the Java source
parser, and the inference engine. The aspect-aware IDL
compiler produces more modular skeletons and stubs in both
classes and aspects. It also performs the initial feature selec-
tions by examining the language elements used in the IDL
declarations. The Java source parser further selects features
through checking Java class types used in the user appli-
cation. Currently, the just-in-time vertical configuration is

9For the rest of the paper, we use ORB (Object Request
Broker) to denote the implementation instance of CORBA

10J2ME Mobile Information Device Profile URL: http://
java.sun.com/products/midp/

11A mythical character who is too good at weaving



not yet taken into consideration since configurations via en-
vironment variables, policies, or even deployment descrip-
tors typically happen post development time. We defer the
discussion of the “later-time” just-in-time customizations of
both dimensions to our future research.

4.2.1 Aspect-aware IDL compiler
The aspect-aware IDL compiler carries out two key func-

tions in the early stage of the JiM process: aspectizing stubs
and skeletons and explicitly acquiring middleware function-
alities from service declarations. Stubs and skeletons are
integral parts of the middleware, generated by IDL com-
pilers as adapters that translate application semantics into
the machinery of middleware. Therefore, aspect-oriented
modularization of stubs and skeletons must be performed
during IDL compilation by properly generating the mini-
mum (convolution-free) adaptation code and expressing the
rest of the functionalities in aspect modules. During the
same process, the compiler conveniently collects all the IDL
language elements that can be used to initiate functionality
inference. Our aspect-aware IDL compiler is an extension
of a prototype presented in [15] and constructed entirely in
aspects woven into the JacORB 12 IDL compiler. Our com-
piler is still experimental since we do not have access to the
source of the ORBacus IDL compiler.

4.2.2 Dependencies, constraints and
convolution descriptions

In Arachne, dependencies, constraints and convolution de-
scriptions are separate specifications defined as Boolean ex-
pressions. Dependencies and convolution descriptions are
propositional reflecting the innate relationships among mid-
dleware aspects. Constraints are predicative because the
prescribed relationships are only true under specific external
conditions. Constraints can be either provided as references
by the vendor or defined by the user.

Currently, dependencies in Arachne are specified in a sim-
ple language called horizontal dependency definition lan-
guage (HDL). Figure 2 illustrates the basic structure of
HDL. Identifiers of aspects can be declared using the aspect
keyword (line 1). Dependency rules of the same nature can
be grouped and scoped with a name (line 2). “*” stands
for logical AND, and “+” stands for logical OR. In our ex-
ample (line 3), aspect1 depends on aspect2 together with
either aspect3 or aspect 4. In Figure 3, we list all the
dependencies of horizontal features in Abacus. An excep-
tion is made for the dependency rule “core” (first rule in
Figure 3) in which “core” is not a selectable feature and
always activated by default. The “core” dependency rule
allows us to specify the minimum valid configuration of Aba-
cus. In our current definition, a valid Abacus instance must
support either synchronous or asynchronous communication
(oneway). Constraints are used to limit the freedom of fea-
ture selection by denying the selection of certain features in
certain environments. They are also defined in HDL for-
mat in which the left side of the Boolean expression is the
name of the constraint rather than the name of a feature.
In Figure 4, we list constraints for both J2ME and desktop
platforms defined in two HDL modules. The J2ME con-
straints are mostly reflections of platform incompatibilities
between J2SE and J2ME. The division into separate con-
straining rules is to provide more specific feedbacks to users

12JacORB URL:http://www.jacorb.org

1  aspect   aspect1, aspect2, … ;

2  modulename {
3 aspect1 = aspect2 * (aspect3 + aspect4);
4 …..;

5  };

Figure 2: Illustration of language elements in HDL

aspect any, dynamic, pi, synchrony,

asynchrony,...;

Core {

  core = synchrony + asynchrony;

  any = int + string + ulonglong + ... ;
  dii = dynamic;
  dsi = dynamic;
  pi = dynamic;
  dynamic = any;
  ulonglong = longlong ;
  IR = (DII + DSI)*typecode;
  convert = locale;
  wstring = wchar;
};

Figure 3: Dependency specifications in Abacus using
HDL

upon violations. The Desktop constraints are illustrative.
Table 2 gives the descriptions of the constraints.

Constraint Annotations

Resource J2ME disallows object serialization used
by “valuetype” and user garbage collection

Precision J2ME does not support high precision types
such as “double” and “fixed”

Infrastructure The applet infrastructure is
not supported in J2ME

Reflection & Reflective remote invocations, often assisted
type info by type information are commonly used in

enterprise applications

Table 2: Descriptions of Constraints

Convolution descriptions describe the one-to-many rela-
tionships between any two horizontal features. Figure 5
gives a complete listing of the convolution descriptions used
in Arachne. The left side of the Boolean expression is a se-
lectable feature, which crosscuts the features on the right
side. These descriptions are essential to the final synthesis
as they direct which part of the “weaving” code of a partic-
ular feature should be selected with respect to the activated
features it crosscuts.

4.2.3 Inference algorithm
Given the initial feature manifest, the inference algorithm

in Abacus is responsible for selecting unspecified features in
order to satisfy all functional dependency rules. If multi-
ple choices for selections exist, the algorithm guarantees to
generate a minimum superset of the initial manifest.

Before we introduce the algorithm, we first define a few
terms. Feature state: A feature can be in one of three
states during the inference process: selected (true), ex-



j2me {
resource = ! valuetype * ! finalize;
precision = ! double * ! fixed;
infrastructure = ! applet;

};

desktop {
reflection = ! dii  * ! dsi ;
typeinfo = ! IR + ! IMR ;

};

Figure 4: Constraint specifications in Abacus

convolution_descriptions {
  double = any * valuetype;
  finalize = DII;
  fixed = any * IR;
  IR = policy * PI;
  policy = IMR * oneway * PI;
  ulonglong = any * valuetype;
  any = IR * policy * PI * valuetype;
  dii = any;
  dynamic = IR;
  longlong = double * any * valuetype;
  oneway = collocation;
  PI = DII * DSI * IR;
  wchar = any * convert * valuetype;
};

Figure 5: Convolution descriptions in Abacus

cluded (false), and unspecified (unknown). Rule activation:
A dependency rule r is activated if the feature on the left
side of r is selected, i.e., its value is “1” in the manifest.
Minterm: Our algorithm only deals with rules written in
the form of sum-of-products. Each product term is called a
minterm. A minterm represents an AND relationship between
n features in the term. Cost function: A cost function asso-
ciates each feature with a positive number representing the
cost of including this feature. In our evaluation, we associate
the cost with the bytecode size of each feature to determine
the preferred alternative configuration. The cost could be
other metrics of resource consumptions or even selected by
users.

We first present a simple algorithm, Algorithm 1 requires
all rules having only one minterm evaluated to unknown.
The algorithm simply iterates each dependency rule r and
invokes the evaluate function on r against the inferred man-
ifest. The function returns either true (rule satisfied) or
false (rule violated) or unknown. In the case of unknown,
new features are added to the manifest to satisfy r. The
algorithm stops if no new features are added after iterating
through all rules in consecutive runs. The complete algo-
rithm handles multiple disjunctive minterms in dependency
rules by recursively invoking the simple algorithm on each
minterm. At each recursive step, the cost function is used to
determine the minimum configuration and pass it to the up-
per recursive level. Due to the page limitation, we present
the full description of the algorithm and the proof for its
guarantees in an extended version of this paper.

4.2.4 Packaging schema
Due to the convolution problem, the code of an aspect

needs to be packaged according to a well-defined schema
so that the relevant parts of the aspect can be correctly

Algorithm 1 Simple Inference Algorithm

Require: initial manifest F , dependency rules R
Let F ′ = F
loop

for each r ∈ R do
if r is activated by F ′ then
Boolean result = evaluate(r, F ′)
if result = true then

GOTO next r
else if result = false then

RETURN error
else

for each unkown f in r do
set f to 1 or 0 so that r evaluates to 1

end for
end if

end if
end for
if F ′ = F then

BREAK
else

F = F ′

end if
end loop
Set all unknown features in F to false

RETURN F

<< regular name space >>

aspectname

funct. impl

interaction

core

aspectname

test

default

aspectname

core

<< more aspect names >>

<< more aspect names >>

Figure 6: The packaging schema in Abacus

selected for the final synthesis. Figure 6 illustrates the gen-
eral definition of the schema. In this hierarchical schema,
the implementation and the interaction of an aspect, rep-
resented by aspectname, are separated into two sub-trees,
functional implementation and interaction. The spe-
cific interactions between any two aspects is organized using
one aspect’s identifier as the package name under the “inter-
action” sub-tree of the other aspect’s root. For simplicity,
we use a Java package hierarchy to instantiate this schema.

4.2.5 Synthesis process
The synthesis process is guided by the Arachne user in-

terface and initiated by loading IDL definitions and appli-
cation source locations. During the source analysis, we link
the class types in the application source to the implemen-
tation class types of an aspect to discover whether this as-
pect should be activated or not. Collecting type information
of Java applications can be accomplished by many tools,
and, for convenience, we chose to use the parsing engine



of Prism [16], our aspect mining tool. Upon the comple-
tion of IDL and source analysis, the activated features are
marked on the feature pallet on which user can make further
selections and adjustments. The complete set of explicitly
acquired features is then processed by the inference engine
which generates the final manifest of features.

With the help of our packaging schema and convolution
descriptions, the final synthesis procedure proceeds as de-
scribed in Algorithm 2. The output of this procedure is a list
of modules corresponding to the final manifest. In our cur-
rent implementation, a resource list is generated and handed
over to the AspectJ weaver. More sophisticated building
tools such as ant13 could also be exploited. A note-worthy
characteristic of our HDL-based feature synthesis procedure
is that it is easy to add a new aspect feature if its imple-
mentation conforms to the code naming schema. Arachne
is able to reason about this new feature if its dependencies
and convolution descriptions are correctly specified in HDL.

Algorithm 2 Synthesis Procedure

Require: final manifest F , convolution descrition set C
for all f in F do

if ∃c ∈ C such that f activates c then
for each f ′ on the right side of c do

Include all modules in the path “f ⇒
functionalimplementation
Include all modules in the path “f ⇒ core
Include all modules in the path “f ⇒
interaction ⇒ f ′”

end for
end if

end for

4.2.6 Integration test synthesis
The functionality of the synthesized Arachne instance can

be verified through a synthesized set of test cases for the
features included in the implementation. In Abacus, test
cases are written in JUnit independently for each feature.
All share a common starting point by registering them-
selves with this starting point through AspectJ advices. The
schema for test-case organization is the same as for the fea-
tures, and the same synthesis procedure (Algorithm 2) is
used. Therefore, when a particular feature is selected, its
test cases are also “woven” into the final test plan.

5. EVALUATION
Our evaluation focuses on assessing the customization ca-

pability of JiM concepts through the Abacus implementa-
tion. This assessment includes a broad range of software
metrics including both static characteristics and dynamic
performance evaluations. We divide the evaluation to two
portions: first the exemplary usage of Abacus in supporting
a ubiquitous messenger application and then the random-
ized selections of features which models different real-world
usage scenarios. All experiments are run on a Pentium 4
2.5GHz Linux workstation running Redhat 9.0. The J2ME
configuration is evaluated using the Nokia Series 90 concept
emulator14.

13Ant. URL: http://ant.apache.org/
14Nokia Emulators. URL: http://www.forum.nokia.com

1  #include<mmsg.idl>
2  module CORBAMessenger{
3 interface MiniMessenger{
4     void login(in string user);
5     void logout(in string user);
6     seqMsg contact(in Msg info);
7 oneway void asyncContact(in Msg info);

};
};

Figure 7: Service declarations of UMessenger

5.1 Ubiquitous Messenger
A distributed application is well-suited for JiM if the same

operational logic ought to be supported in diversified do-
mains. Instant messaging applications such as ICQ or the
MSN messenger are good examples because their primary
functionality, i.e., message exchange, is widely available on
networked computers including cell phones, PDAs, private
desktops and enterprise environments. Each environment
has distinct computational requirements. We have designed
a messenger application, ubiquitous messenger (UMessen-
ger), which provides increasingly richer functionalities in en-
vironments with lesser resource constraints. Table 3 shows
the setup of our target environments, the assumed con-
straints for our messenger applications and the aspect con-
figurations.

Target Constraints Aspect
Environment Configurations

Embedded Platform Only supports sync, async,
(J2ME, CLDC 1.0, strings and string,long long
MIDP 2.0) numeric data
Desktop (J2SE) Supports large All of above +

file exchange double, valuetype
Enterprise Supports dynamic All of above +
Features types, encryption, Any, portable

and transaction interceptors
through interceptors

Table 3: Ubiquitous Messenger Setup

Figure 7 shows the service declarations in IDL definitions
for the messenger in these three target environments. The
remote interfaces are kept simple and identical in all cases,
but we use richer sets of IDL data types in the definitions
of the message payload to reflect different functionalities of
the messenger. Figure 8 shows the corresponding IDL defi-
nitions of messages. Despite its simplicity, we use UMessen-
ger to show the kind of versatility in aspect configurations
Abacus is able to support.

5.1.1 Static properties
We first measure the static properties on the compiled

Java byte code. The static properties such as size and cou-
pling are generally considered as reflecting the complexity
of the code and the degree of difficulties in terms of main-
tenance and evolution. Table 4 reports the sizes of the syn-
thesized ORBs as well as the coupling metrics measured
on bytecode by JDepend15. Our baseline of the compari-

15JDepend URL:http://www.clarkware.com/software/
JDepend.html



module CORBAMessenger{
struct Msg{

string from;
string to;
string stringdata;
long long numericData;

};
};

module CORBAMessenger{
valuetype LargeData{

private string filename;
typedef sequence <octet> content;
long save();

       };
struct Msg{
//repeat fields of minimum message
sequence <double> floatData;

   LargeData payload;
       };
};

module CORBAMessenger{
valuetype LargeData{
//same as in desktop message

        };
struct Msg{
//repeat fields of desktop message

        any anyData;
       };
};

Figure 8: Message definition for embedded environ-
ment (a), desktop environment (b), enterprise envi-
ronment (c)

son is the original ORBacus ORB which does not adapt to
different functionalities in UMessenger. As expected, our
synthesized ORB constantly has smaller bytecode sizes. For
example, the configuration for J2ME produces an ORB mea-
sured 42% of its original size. The degree of coupling in all
three configurations is considerably lower than in the origi-
nal ORB varying from 16% to 33%.

Target Bytecode Efferent Afferent
Environment Size Coupling Coupling

Embedded Platform 823.9k 249 183
Desktop (J2SE) 875.1k 251 185
Enterprise 1168k 304 230

Original 1945.3k 365 275

Table 4: Static comparisons with the original ORB

5.1.2 Runtime properties
To study the runtime characteristics of Abacus, we first

measure and compare the time taken for payloads to traverse
the middleware stack for all three generated ORBs as well
as the original ORB. We then collect the response time, the
memory usage, and the cache miss rates of these ORBs.

Payload transportation.For this experiment, we host both
the client and the server on the same machine to minimize
the network delay. Figure 9 shows the average cost, mea-
sured using a regular JVM, of the payload transportation
for the original ORB as well as the synthesized ORBs for
the UMessenger in the desktop and the enterprise settings.
The full J2ME configuration is measured in an emulation
setting using the Nokia Series 90 emulator. The response
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Figure 9: Data transport of UMessenger using Aba-
cus

time of ORBs in the regular JVM is roughly equal as the
graph shows. The synthesized ORBs incur virtually no over-
head compared to the original version in the presence of the
AspectJ runtime infrastructure. We are not observing ap-
parent speedups. This is a combined effect of both the effi-
cient design in the original implementation and the difficulty
in performance gains in face of the JVM overhead and op-
timization. The emulated J2ME responses are significantly
slower compared to regular JVM environments.

Response, resource, and cache.Table 5 reports a few
runtime metrics we have collected in addition to the bench-
mark. We measure the average response time, memory us-
age and cache performance numbers, all compared to that
of the original version. The cache misses are collected for
the server process using PCL16 over 200,000 remote invo-
cations. The response time is measured as the average of
200k remote invocations of an empty method(“ping”). All
three configurations are basically equivalent in terms of the
response time with the J2ME version using regular network
transport being 7% faster than the original ORB. The mem-
ory usages of all three versions are within 1% difference of
each other. However, compared to the original version, Aba-
cus exhibits an average of 24% reduction of memory usage.
Similar patterns are observed on Level-1 cache misses, in-
cluding both data cache (DL1), instruction cache (IL1), and
Level-2 miss rates. The J2ME configuration consistently has
the best performance measures because it has a minimal set
of functionality.

Target Response Memory IL1 DL1 L2

J2ME 261 15223k 64067k 190394k 0.0058
Desktop 281 15164k 69582k 195186k 0.0052
Enterprise 277 15028k 75307k 197084k 0.0052
Original 282 19694k 70277k 210822k 0.0063

Table 5: Dynamic Properties Comparing with Orig-
inal ORB (Response time in µ sec)

16Performance Counter Library. URL:http://www.
fz-juelich.de/zam/PCL/



5.2 Randomized Customization
The purpose of UMessenger is to illustrate one type of

application which can take advantage of the customization
capabilities of JiM. Our intention of evaluating Abacus on
different application domains has influenced the fabrication
of features in UMessenger. And this is not an approximation
of the customization choices that the real world demands of
JiM. To emulate unpredictability of user application fea-
tures, we choose to randomize the selections of features by
assigning each configurable feature a random variable from
a uniform distribution. Each feature has equal chances of
being selected, unselected, or unknown. We iterate this ran-
domization for fifteen times and obtain ten valid configura-
tions. Table 6 shows the initial random selections (under R
header) and the selection decisions made by our inference
engine (under I header) in five random runs. A selected fea-
ture is represented as “1”, or “0” otherwise. “x” means the
selection is unspecified. In the “I” column, we only show the
value if it is modified compared to its initial value in the “R”
column. We can observe a few characteristics of Arachne: 1.
the selection decisions of all features are made; 2. most of
the “x” features are set to “0” driven by the minimalism
goal of our inference algorithm.

Features Random Configurations

RC1 RC2 RC3 RC4 RC5
R I R I R I R I R I

double x 0 x 0 1 x 0 1
finalize x 0 x 0 0 0 0
fixed x 0 x 0 1 1 x
IMR x 0 x 0 1 0 1
IR 0 0 0 0 x
policy x 0 0 x 0 0 0
ulonglong 0 x 0 1 x 0 x
any 1 x 1 0 1 x
applet 0 1 1 1 x
collocation x 0 x 0 x 0 1 0
convert 0 1 x 0 x 0 x
DII x 0 x 0 x 0 x 0 1
DSI 1 0 0 1 x
oneway 1 x 0 1 1 0
PI 1 1 0 x 0 1
valuetype x 0 x 0 x 0 x 0 x
wchar 1 x 0 1 1 x
dynamic x 1 x 1 x 0 1 0
float x 0 1 x 0 0 x
longlong 0 0 1 1 x 0 x

Validity valid valid valid valid invalid

Table 6: Randomized Feature Selection and Synthe-
sis in Abacus

5.2.1 Static properties
We collect the same static properties as in the previous

case. We show in table 7 that the bytecode sizes of six
randomly synthesized ORBs are between 56% (RC3) and
75% (RC4) of the original ORB, with the efferent coupling
ranging from 73.6% (RC3) to 88% and the afferent coupling
ranging 72.6% to 88.7%. This shows the redundancy in the
original implementations and Abacus can always synthesize
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Figure 10: Benchmarking the Randomly Synthe-
sized ORBs

a leaner middleware implementation.

Target Bytecode Efferent Afferent
Size Coupling Coupling

RC1 1237.8k 299 225
RC2 1217.1k 300 224
RC3 1095.6k 269 197
RC4 1463k 322 244
RC5 1290k 309 233
RC6 1351k 313 236

Original 1945.3k 365 275

Table 7: Static Comparisons with Original ORB

5.2.2 Runtime properties
To study the runtime properties of the randomly synthe-

sized ORBs, we repeat the same set of experiments by first
measuring the average time for transporting payloads of in-
creasing sizes. We then measure the response time, the
memory consuption, and the cache miss rates. All exper-
iments are run in the regular JVM.

Payload transportation.In Figure 10, we plot the average
time of the payload transportation for randomly synthesized
ORBs. Similar to the case of UMessenger, the performances
of all versions are roughly equal. This further illustrates the
ORBs synthesized in AspectJ incur no apparent overhead.

Response, resource, and cache.In Table 8, we show the
average response time, memory usage, and cache misses for
the six randomly synthesized configurations. Similar to the
case of UMessenger, the response time of all configurations
are within 1% differences of each other. The memory us-
ages reductions are within 5% (RC4) and 24% (RC3) as
compared to the original version. The reductions of level-1
instruction cache misses is as much as 8% (RC6) and 3% on
average. The reductions of level-1 data cache misses range
from 1% (RC3) to 10% (RC6). The average reduction of
level-2 cache-miss rates is 4%. The large majority of the



synthesized ORBs perform better than the original one.

Target Response Memory IL1 DL1 L2

RC1 285 15473k 67518k 194102k 0.0064
RC2 287 15175k 69210k 190411k 0.0055
RC3 284 14960k 68730k 208584k 0.0056
RC4 268 18660k 70895k 205221k 0.0066
RC5 275 15802k 67391k 190998k 0.0062
RC6 281 15231k 64723k 189562k 0.0060

Original 282 19694k 70277k 210821k 0.0063

Table 8: Runtime Properties Comparing with Orig-
inal ORB

5.2.3 Concluding remarks
Our evaluation shows that the JiM paradigm is effective

in solving this design dilemma: achieving generality while
sacrificing specialty or vice versa. Abacus is general enough
to fit dramatically different distribution concerns and yet
sufficiently specialized for individual scenarios. Both static
and dynamic measurements reflect that we can have signifi-
cant complexity reductions and runtime improvements if we
tailor middleware according to specific distribution needs of
individual applications.

6. RELATED WORK
Configurability and customization are active themes of

current middleware research. We skip the comparisons to
research work in [10, 4, 2] because they address adaptation,
which can be interpreted as dynamic customization. Since
adaptation is not the focus of this paper, we first discuss the
related research work in the context of highly customizable
middleware architectures. In addition, we discuss differences
between the synthetic approach of JiM and the product line
approaches.

Customizable Middleware: The FACET [8] project
experiments with the concept of feature subsetting in mid-
dleware through the aspect oriented implementation of a
CORBA event channel. FACET divides the functionality of
the even channel into the “base” and “features” where the
“base” implements the fundamental functionality of FACET
and “features” are added into the “base” via AspectJ. A
large number of configuration possibilities exist in FACET,
and feature dependency graphs are used to limit valid con-
figurations. Fundamentally different from FACET, Abacus
is proposed as a post-postulated solution where the distribu-
tion concerns of applications are evaluated and reasoned. In
terms of implementation techniques, we share some common
design elements, such as the core-based design, the use of
feature dependencies, and the aspect oriented test case syn-
thesis. In Abacus, through dependency specifications, we
make very explicit both the relationships among core and
features as well as the relationships among features. This
serves the foundation for automatic inference and synthesis.

The MicroQoSCorba project [12]17 targets resource-con-
strained environments and provides both a fine-grained ar-
chitecture and CASE tools to make automatic adjustments
according to the variations in both user applications and

17MicroQoSCORBA. URL:http://microqoscorba.eecs.
wsu.edu

platforms. Like Abacus, MicroQoSCorba also uses IDL com-
pilers to collect required middleware features and to di-
rect the building process to select relevant implementations.
However, the source code analysis is missing in MicroQos-
Corba compared to Abacus. The feature dependencies and
the inference stage are not explicitly addressed in MicroQos-
Corba. Most importantly, Abacus provides a higher de-
gree of modularity using AOP and scales in two dimensions.
We have similar approaches to MicroQoSCorba of making
key middleware elements lightweight. However, contrary to
MicroQoSCorba, our “customization” is not at the cost of
losing the original full functionality, benefiting from the as-
pect oriented approach. As we have illustrated, the con-
figuration domains of Abacus are not limited to embedded
systems and also include other application domains.

Product Lines and Generative Programming: Gen-
Voca [1] advocates the synthesis of a family of complex sys-
tems from incrementally adding features to simple ones us-
ing step-wise-refinement (SWR). The AHEAD tool suite al-
lows algebraic specifications of the SWR relationships among
features and carries out the automatic synthesis. GenVoca
embodies a rich yet comprehensive methodology for pro-
gramming specification and program generation. Compar-
atively, our research has two slightly different focal points:
we focus on enabling the user-driven middleware compo-
sition from fine-granularity modules, a paradigm orthogo-
nal and complimentary to the synthesis-based approaches
in GenVoca and SWR; we focus on the higher degree mod-
ularization in large and complex software systems such as
middleware through the effective use of aspects.

Colyer and Clement [5] demonstrated how aspect oriented
refactoring can be used to support commercial middleware
product families. The focus of their work is to evaluate the
suitability of AOP in supporting very large software projects
through capturing crosscutting features in aspects and weav-
ing them into other product family members as new features.
They provide valuable experiences and insights which bene-
fit us in scaling JiM to support even larger size middleware
implementations.

7. CONCLUSION
Traditionally, the middleware architecture and its hosted

applications are bound by a causal relationship: middle-
ware is designed, implemented and packaged first; appli-
cations are developed in accordance with services provided
by a particular middleware implementation. This type of
“pre-postulated” middleware always poses many challenges
in customizing middleware functionalities due to the difficul-
ties in making good presumptions of what features are actu-
ally needed in specific usage scenarios. We believe that, in
the case of middleware customization, the best presumption
is not to make any presumptions at all. We have proposed
to reverse the traditional causal relationship by delaying the
composition of middleware architecture till after the user ap-
plication is designed or implemented. We term middleware
architectures supporting this new relationship Just-in-time
middleware architectures (JiM).

We have presented the mechanism of JiM as a multi-
staged process including feature acquisition, functional in-
ference, constraint verification, and implementation synthe-
sis. We also have built Abacus, a Java ORB based on “as-
pectizing” ORBacus, an industrial strength CORBA imple-
mentation. In addition, we have built Arachne, a tool which



integrates the aspect-aware IDL compiler and the inference
engine. Our evaluation proves that Abacus is capable of
solving the “impedance mismatch” problem by providing
middleware functionalities across application domains from
embedded devices to enterprise environments through post-
compilation customization. Our quantifications show that
Abacus exhibits a great versatility in terms of physical sizes,
resource consumptions, and runtime performance, in addi-
tion to general improvements on these qualities as compared
to the original implementation.

Our title of this paper suggests that we are just at the
beginning of exploiting this useful paradigm. Our current
implementation has greatly benefited from but is also lim-
ited by the design of ORBacus. That is, our customiza-
tion ability is confined within the capability of the original
ORBacus. In our future research, we will focus on further
validation of the JiM approach through supporting more di-
versified middleware features and more application domains
using both new implementations and case studies. We are
also interested in exploiting the load-time weaving capabil-
ity of AspectJ and postponing the synthesis of middleware
implementations in order to take advantage of the load time
information. For instance, we can define cost functions tak-
ing memory usage as inputs. Finally, we will also study
how generative approaches can benefit JiM by incorporat-
ing model driven techniques such as MDA18.
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