
University of Toronto, Faculty of Applied Science and Engineering
Department of Electrical and Computer Engineering

ECE 1387F - CAD for Digital Circuit Synthesis and Layout Handout #18

Exercise #3
The Synopsys Behavioral Compiler: A Tutorial

November 1998 Jason Anderson/J. Rose

Assignment Date: November 26

Due Date: December 3,

Late Penalty: -1 mark per day late, with total marks available = 10

The purpose of this exercise is to gain familiarity the behavioural level synthesis in the
Synopsys behavioural compiler. What to hand in:

1. Report that you successfully walked through the entire tutorial.
2. Offer 1 page of comments on what you thought was good and bad about the behav-

ioural compiler.

This tutorial uses a lab exercise to illustrate some of the features of the Synopsys Behavioral
Compiler (BC). The BC performs behavioral synthesis (high-level synthesis). According to
Synopsys, this is a transformation “from an algorithmic specification of the behavior of a circuit
to a register-transfer level (RTL) structure that implements the behavior.”1

The BC reads behavioral VHDL or Verilog code and can synthesize the HDL to an RTL circuit
that consists of functional units (adders, multipliers, etc.), memory elements and a finite state
machine (FSM) for control. The Synopsys Design Compiler can then be used to map the RTL to a
gate-level circuit in the target technology.

Some of the advantages of behavioral synthesis are:

• Shorter code (rely more heavily on the synthesis tool to make architectural decisions)
• No coding for control FSM (BC does automatic FSM generation for dathpath control)
• No need to schedule or allocate a specific number of functional units in HDL code
• Fast, automated exploration of architectural alternatives

For those unfamiliar with high-level synthesis, a reference is given at the end of this lab to a
review paper which will help you get up to speed.

The fascinating thing about the Behavioral Compiler is that different hardware architectures may
be created and evaluated automatically by the tool without modifying the HDL description.

Lab: An Introduction to Behavioral Compiler

1. Behavioral Compiler Public Workshop Notes, April 3rd and 4th, 1996

This lab shows how the Behavioral Compiler can be used to synthesize a piece of HDL code. The
HDL code describes a hardware sort engine that reads in eight 8-bit elements, sorts them, and
writes the elements out in sorted order. The Verilog HDL code and a timing diagram of the
behavior is given at the end of this document. This lab shows how constraints can be set in BC to
create architectures possessing varying amounts of speed or area.

Begin by creating a new directory for yourself. Then, copy all the files in the directory:
~jayar/1387/e3 to your new directory. Change directories to ensure that your current
directory is the one containing the files you have copied.

Make sure that the following line is in your .cshrc file:

source /nfs/vrg/cmc/cmc/tools/synopsys.1997.01/source_vrg.csh

Fire up the Synopsys Behavioral Compiler by typing (you may need to re-login):

bc_shell

Once the BC has finished loading you will see a prompt like:bc_shell>

Set up the Behavioral Compiler environment by including a special script that was created for this
lab. Type:

include lab.syn

This script sets the synthesistarget library and sets thesynthetic library. The synthetic library is
set to allow us to use Design Ware components. These special Synopsys components are large
macros such as multipliers, adders, and comparators.

We begin by performing a syntactic check on the HDL code and translating the code into an
intermediate format. Do this using the analyze command:

analyze -format verilog sort.v

Assuming the HDL description was analyzed without error, we use the elaborate command to
build an internal Synopsys model from the analyzed HDL. Some compiler optimizations are also
performed including dead code elimination and constant propagation. Elaborate by typing:

elaborate -s sort

The ‘-s ’ switch indicates that the HDL module is going to bescheduled with the Behavioral
Compiler. sort is the name of the top-level HDL module.

Constraints are set to let Behavioral Compiler know a designer’s expectations for a synthesized
design. For now, let’s tell BC that we wish to clock the design at 20 MHz. Type:

create_clock clk -period 50

Check the design by typing:

bc_check_design -io superstate_fixed

BC supports three different I/O modes. Different I/O modes allow varying degrees of freedom for
I/O to move with respect to the clock cycle boundaries specified in the HDL description. The
different I/O modes are:cycle_fixed , superstate_fixed , andfree_float . The first
two maintain the order of the I/O given in the HDL description whilefree_float allows the
BC to re-order I/O operations in order to produce more optimal schedules. Incycle_fixed ,
the precise cycle-by-cycle I/O behavior of the HDL description is maintained. In
superstate_fixed , clock cycles other than those in the HDL may be introduced during
scheduling.

Compute area and timing estimates for the functional units needed to implement the design. This
is done by typing:

bc_time_design

The BC considers a variety of architectures for the functional units needed to implement the
operations in the HDL. For example, for an adder, it will compute the area and delay of a ripple-
carry implementation and a carry-look-ahead implementation. These area and delay estimates are
using during scheduling to make area/speed trade-offs.

Check the results ofbc_time_design by typing:

report_resource_estimates

Note that the area and timing estimates that result frombc_time_design do not need to be
recomputed every time a design is scheduled. This information can be saved and re-used. Do this
by typing:

write -hier -o sort_timed.db

Now it’s time to make our first attempt at scheduling the hardware sort circuit. As a default, the
Behavioral Compiler performs ASAP scheduling. This creates the fastest possible schedule
(shortest) without any concern for the area of components. The BC does this by instantiating
multiple components to perform operations in parallel. Find the fastest architecture by typing:

schedule -io superstate_fixed -effort zero

zero effort is acceptable because according to Synopsys, the effort has no effect on the speed of
resultant designs, only their area. We will perform resource constrained scheduling shortly (to
find the architecture with the smallest area).

Save the scheduled (RTL) version of the sort engine:

write -hierarchy -o sort_sch_fastest.db

Look at the results of scheduling by writing the report file to disk:

report_schedule -var -oper -summary -abstract > sort_sch_rpt

The switches have the following meanings:

var = report showing variable lifetimes and register usage
oper = report showing how operations were scheduled into clock steps
summary = report showing timing of loops, estimates of area, and hardware resources
abstract = report showing state table of finite state machine used to control the datapath

Look at thesort_sch_rpt file using a text editor. The first part of the report describes the
register resources needed to implement the design and provides a table of variable lifetimes. You
should see something like:

Storage resource types
======================
 r92.......8-bit register
 r212......8-bit register
 r213......8-bit register
 r215......64-bit register ...

Note that one 64-bit register has been allocated. This is certainly to hold the eight 8-bit data values
that must be sorted.

The variable lifetimes table shows which variables are in which registers during particular clock
cycles. You will see something like the following:

-------+------+------+------+-----+-------+------+------+------+------+------+------
 cycle | r215 | r212 | r217 | r92 | r213 | r262 | r268 | r233 | r237 | r232 | r221
--
 | (64) | (8) | (8) | (8) | (8) | (8) | (8) | (1) | (1) | (1) | (1)
==
 0 |......|......|......|.....|......|......|......|......|......|......|......
 1 |......|..v4..|......|.....|......|......|......|......|......|......|.v39..
 2 |..v5..|..v4..|......|.....|......|......|......|......|......|......|.v39..
 3 |..v5..|..v4..|..v7..|.....|......|......|......|......|......|......|.v39..
 4 |..v5..|..v4..|..v7..|.v8..|......|......|......|......|......|......|.v39..
 5 |..v5..|..v4..|..v7..|.v8..|..v9..|......|......|......|......|......|.v39..
 6 |..v5..|..v4..|..v7..|.v8..|..v9..|......|.v12..|......|......|.v33..|.v39..
 7 |..v5..|..v4..|..v7..|.v8..|..v9..|.v10..|.v12..|......|......|.v33..|.v39..
 8 |..v3..|.v11..|......|.....|......|......|......|.v21..|.v28..|......|.v39.. ...

One of the more interesting parts of the report is the operation schedule. This shows which
operations were scheduled in which clock steps:

 D D D D D D D
 W W W W W W W
 0 0 0 0 0 0 0
 1 1 1 1 1 1 1
 _ _ _ _ _ _ _
 p p c c c c c c c p p
 o o m m m m m m m o o
 r r p p p p p p p r r
 t t 2 2 2 2 2 2 2 t t
-------+------+-----+------+------+------+------+------+------+------+------+-----+------
 cycle | loop | p0 | p1 | r220 | r219 | r223 | r224 | r225 | r115 | r226 | p2 | p3
--
 0 |..L0..|.....|......|......|......|......|......|......|......|......|.W21.|......
 1 |..L3..|.R24.|.R28..|......|......|......|......|......|......|......|.W61.|......
 2 |......|.....|.R28a.|......|......|......|......|......|......|......|.....|......
 3 |......|.....|.R28b.|......|......|......|......|......|......|......|.....|......
 4 |......|.....|.R28c.|......|......|......|......|......|......|......|.....|......
 5 |......|.....|.R28d.|......|......|......|......|......|......|......|.....|......
 6 |......|.....|.R28f.|......|......|......|......|......|.o38p.|......|.....|......
 7 |......|.....|.R28e.|......|......|......|......|......|......|......|.....|......
 8 |......|.....|.R32..|.o38l.|.o38A.|.o38c.|.o38d.|.o38h.|.o38t.|.o38v.|.....|......
 9 |......|.....|......|.o38b.|.o38a.|.o38m.|.o38g.|.o38e.|.o38i.|.o38q.|.....|......
 10 |......|.....|......|.o38..|.o38n.|.o38j.|.o38r.|.o38o.|.o38z.|.o38y.|.....|......
 11 |......|.....|......|.o38u.|.o38w.|.o38f.|......|.o38s.|.o38k.|.o38x.|.W48.|.W51d. ...

Notice in the report file that Port p1 is an 8-bit port. The eight reads of port p1 have been
scheduled during cycles 1 - 8. Some comparisons have been scheduled in the same clock cycle as
the eighth read of port p1. In clock cycles 8 and 9, many comparisons are being performed in
parallel.

The summary report follows the operations schedule:

* Summary report for process procA: *

 Timing Summary

 Clock period 50.00
 Loop timing information:
 procA..20 cycles (cycles 0 - 20)
 main_loop..................................19 cycles (cycles 1 - 20)

 Area Summary

 Estimated combinational area 4130
 Estimated sequential area 1300
 TOTAL 5430

 21 control states
 22 basic transitions
 3 control inputs
 24 control outputs

 Resource types

 Register Types
==
 1-bit register.....................2
 8-bit register.....................6
 64-bit register....................1

 Operator Types
==
 (8_8->1)-bit DW01_cmp2.............1
 (8_8->1_1)-bit DW01_cmp2...........6

 I/O Ports
==
 1-bit input port...................1
 1-bit registered output port.......1
 8-bit input port...................1
 8-bit registered output port.......1

The area of the design is given as well as the number and type of resources that have been
allocated to implement the design. In the example above, the latency of themain_loop is 19
cycles. Several DW01_cmp2 components have been allocated. These are comparators that are
used to compare the elements to be sorted.

Make a note of the area of your design and the latency of themain_loop . By doing this, you
can make comparisons between the fastest architecture and the minimum area architecture.

Scheduling completes the generation of an RTL version of the sort engine. You could now
perform a functional simulation to verify the correctness of the RTL. Write out the RTL version of
the hardware sort circuit in VHDL by typing:

vhdlout_levelize = true
vhdlout_equations = true
write -hierarchy -format vhdl -out sort_sch.vhd

You can use VSS (Synopsys VHDL System Simulator) to simulate thesort_sch.vhd RTL
description, though this is beyond the scope of this lab. The timing diagram at the end of this
document depicts the results of simulating a scheduled version of the hardware sort circuit.

Now, let’s find the architecture with the smallest area. To do this, we will re-use the
sort_timed.db that we created after we executed thebc_time_design command. We
must remove the current architecture and perform scheduling again to create a smaller
architecture. To do this, type:

remove_design -design
read sort_timed.db
schedule -io superstate_fixed -effort zero -area

The -area switch directs BC to perform resource constrained scheduling. After scheduling is
complete, save the new architecture:

write -hierarchy -o sort_sch_smallest.db

Use the report_schedule command as before and investigate the area of the new
architecture. You can see that the schedule uses a smaller number of functional units and there are
fewer parallel operations. Notice the latency of themain_loop is longer than before and the

design consumes less area.

You can try some different scheduling efforts in a further attempt to reduce area. The scheduling
efforts are:zero , low , medium, orhigh .

The number of cycles used to implement themain_loop can be explicitly specified. This
allows the designer to make latency/area trade-offs and generate architectures in between the
fastest and the smallest. Try the following:

remove_design -design
read sort_timed.db
find -hier cell main_l*
label = dc_shell_status
set_cycles 22 -from_beginning label -to_end label
schedule -io superstate_fixed -effort zero -area

Then save the design:

write -hierarchy -o sort_sch_22.db

Use thereport_schedule command as before to see the results of specifying a specific
number of cycles for themain_loop . Look at the area of your design and the number and types
of allocated resources. Compare the area with the two architectures you previously synthesized.
By writing Synopsys scripts, many different architectures can be generated automatically through
the use offor loops that vary loop latencies.

When we performed ASAP scheduling, we found that the minimum number of cycles to
implement themain_loop was 19. Using the automatic loop pipelining capabilities of the
Behavioral Compiler we can create an architecture wherein we may initiate a new sort every 12
clock cycles. To do this type:

remove_design -design
read sort_timed.db
find -hier cell main_l*
label = dc_shell_status
pipeline_loop label -initiation_interval 12 -latency 24
schedule -io superstate_fixed -effort zero

Thepipeline_loop command tells the BC to use a latency of 24 cycles for themain_loop
and that we wish to initiate themain_loop every 12 cycles. Save your design:

write -hierarchy -o sort_sch_pipelined.db

Use report_schedule to evaluate the results of generating a pipelined sort engine. In the
summary portion, you will notice the following:

* Summary report for process procA: *

 Timing Summary

 Clock period 50.00
 Loop timing information:
 procA..25 cycles (cycles 0 - 25)
 main_loop...........(initiation interval)..12 cycles
 (pipeline latency)..24 cycles (cycles 1 - 25)

 Area Summary

 Estimated combinational area 4386
 Estimated sequential area 1320
 TOTAL 5706

The timing summary indicates that themain_loop is pipelined. The timing diagram that
resulted from simulating the pipelined sort engine RTL description is given at the end of this
document.

Another dimension for architectural exploration is to change the clock period. Recall that we
specified a 50 ns clock period. This can be changed using thecreate_clock command.

BC allows designers to realize architectures with different characteristics without modifying the
HDL description.

That’s it for this lab! Any of the RTL designs you created could be synthesized to gates using the
Design Compiler and re-verified through gate-level simulation. Placement and routing tools
would take the gate-level netlist and complete the design’s journey through the design hierarchy.

To exit the Behavioral Compiler type:

quit

To access the Synopsys help type:

iview

The documentation for Behavioral Compiler can be found in the chapter on synthesis.

The Behavioral Compiler User’s Guide contains information on the HDL coding style
recommended by Synopsys for behavioral synthesis.

A future lab may include a discussion of how to use Behavioral Compiler to instantiate pipelined
components from the Design Ware library, and a discussion of some of the constraints that may be
applied before scheduling.

For a good general introduction to high-level (behavioral) synthesis including scheduling and
resource allocation, see:

Daniel D. Gajski and Loganath Ramachandran, “Introduction to High-Level Synthesis,” in IEEE
Design and Test of Computers, Winter 1994, pp. 44-54.

This document was prepared by Jason Helge Anderson. In you find any problems in this lab,
please e-mail:janders@eecg.toronto.edu

Last edited: October 23, 1997

Verilog Code for Sort Engine

module sort (in_data,in_data_rdy,out_data,clk,reset,out_rdy);

 parameter width=8; //8-bit data items
 parameter num_items=8; //8-data items
 input [width-1:0] in_data; //port for input data
 input clk;
 input reset; //synchronous reset
 input in_data_rdy; //input handshaking signal
 output [width-1:0] out_data; //port for output data
 output out_rdy; //output handshaking signal
 reg [width-1:0] out_data;
 reg out_rdy;
 integer i,j; //loop indices
 reg [width-1:0] hold;
 reg [width-1:0] data_store [num_items-1:0];
 //registers to hold data items

 always begin: procA
 begin: reset_loop
 out_rdy<=1’b0; //on reset, out_rdy gets 0
 @(posedge clk); if (reset==1’b1) disable procA;
 //implement a synchronous reset behavior
 forever begin: main_loop
 if (in_data_rdy==1’b1) //handshaking
 begin //read in the data items
 for (i=0;i<(num_items-1);i=i+1)
 begin: in_loop
 data_store[i]=in_data;
 @(posedge clk);
 if (reset==1’b1) disable procA;
 end
 data_store[num_items-1]=in_data;//read in last item

 for (i=(num_items-1);i>=1;i=i-1)
 //these ’for’ loops sort the data
 begin: sort_loop
 for (j=0;j<i;j=j+1)
 begin: inner_loop
 if (data_store[j]>data_store[j+1])
 begin
 hold=data_store[j+1];
 data_store[j+1]=data_store[j];
 data_store[j]=hold;
 end
 end
 end
 @(posedge clk);
 if (reset==1’b1) disable procA;
 out_rdy<=1’b1;
 for (i=0;i<num_items;i=i+1)
 begin: out_loop //write sorted items
 out_data<=data_store[i];
 @(posedge clk);
 if (reset==1’b1) disable procA;
 end
 out_rdy<=1’b0;
 @(posedge clk); if (reset==1’b1) disable procA;
 end
 else //if in_data_rdy is 0 then wait one clock cycle
 begin: in_data_not_ready_loop
 @(posedge clk);
 if (reset==1’b1) disable procA;

 end
 end //main_loop
 end //reset
 end //processA
endmodule

T
im

in
g

D
ia

gr
am

 fo
r

S
or

t E
ng

in
e

T
im

in
g

D
ia

gr
am

 fo
r

P
ip

el
in

ed
 S

or
t E

ng
in

e

