University of Toronto, Fculty of Applied Science and Engineering
Department of Electrical and Computer Engineering

ECE 1387F - CAD for Digital Circuit Synthesis and Layout Handout #18

Exercise #3
The Synopsys Behavioral Compiler: A Tutorial

November 1998 Jason Anderson/J. Rose

Assignment Date: November 26
DueDate: December 3,
L ate Penalty: -1 mark per day late, with total marksavailable = 10

The purpose of thisxercise is to gin familiarity the beheaioural level synthesis in the
Synopsys behdoural compiler What to hand in:
1. Report that you successfullyaliked through the entire tutorial.
2. Offer 1 page of comments on what you thougas\good and bad about the beha
ioural compiler

This tutorial uses a labxercise to illustrate some of the features of the SynopsysvBehla
Compiler (BC). The BC performs beharal synthesis (high-iel synthesis). According to
Synopsys, this is a transformation “from an algorithmic specification of theibelo a circuit

to a rgjistertransfer lgel (RTL) structure that implements the betw” !

The BC reads bekieoral VHDL or Verilog code and can synthesize the HDL to dih Rircuit

that consists of functional units (adders, multipliers, etc.), memory elements and a finite state
machine (FSM) for control. The Synopsys Design Compiler can then be used to map theaR
gate-level circuit in the taget technology

Some of the adantages of bel#ral synthesis are:
» Shorter code (rely more hely on the synthesis tool to malarchitectural decisions)
* No coding for control FSM (BC does automatic FSM generation for dathpath control)
* No need to schedule or allocate a specific number of functional units in HDL code
* Fast, automatedxploration of architectural alternaés

For those urdmiliar with high-level synthesis, a reference is/gn at the end of this lab to a
review paper which will help you get up to speed.

The fascinating thing about the Betaral Compiler is that dierent hardware architectures may
be created andraluated automatically by the tool without modifying the HDL description.

Lab: An Introduction to Behavioral Compiler

1. Behaioral Compiler Public Wrkshop Notes, April 3rd and 4th, 1996

This lab shws hav the Behaioral Compiler can be used to synthesize a piece of HDL code. The
HDL code describes a hardve sort engine that reads in eight 8-bit elements, sorts them, and
writes the elements out in sorted ord€he \érilog HDL code and a timing diagram of the
behaior is given at the end of this document. This labvehbav constraints can be set in BC to
create architectures possessiagying amounts of speed or area.
Begin by creating a e directory for yourself. Then, cgpll the files in the directory:
~jayar/1387/e3 to your nev directory Change directories to ensure that your current
directory is the one containing the files yowdnaopied.
Make sure that the folleing line is in yourcshrc file:

source /nfs/vrg/cmc/cmc/tools/synopsys.1997.01/source_vrg.csh
Fire up the Synopsys Beharal Compiler by typing (you may need to re-login):

bc_shell

Once the BC has finished loading you will see a prometlik _shell>

Set up the Behaoral Compiler emironment by including a special script theaswcreated for this
lab. Type:

include lab.syn
This script sets the synthes@get library and sets thsynthetic library. The synthetic library is
set to allev us to use Design &ve components. These special Synopsys componentsgee lar

macros such as multipliers, adders, and comparators.

We bain by performing a syntactic check on the HDL code and translating the code into an
intermediate format. Do this using the analyze command:

analyze -format verilog sort.v
Assuming the HDL description ag analyzed without errowe use the elaborate command to
build an internal Synopsys model from the analyzed HDL. Some compiler optimizations are also
performed including dead code elimination and constant pabipag Elaborate by typing:

elaborate -s sort

The s’ switch indicates that the HDL module is going to doheduled with the Behwaioral
Compiler sort is the name of the topMel HDL module.

Constraints are set to let Bef@al Compiler knav a designes expectations for a synthesized
design. Br now, let’s tell BC that we wish to clock the design at 20 MHp€er

create_clock clk -period 50
Check the design by typing:
bc_check_design -io superstate_fixed

BC supports three dédrent /0 modes. Diérent I/O modes all@ varying dgrees of freedom for
I/O to move with respect to the clockyde boundaries specified in the HDL description. The
different I/O modes areycle_fixed , superstate_fixed , andfree_float . The first
two maintain the order of the 1/Owgin in the HDL description whilgee_float allows the

BC to re-order 1/O operations in order to produce more optimal scheduleglén fixed

the precise ycle-by-g/cle /0O behsior of the HDL description is maintained. In
superstate_fixed , clock gcles other than those in the HDL may be introduced during
scheduling.

Compute area and timing estimates for the functional units needed to implement the design. This
is done by typing:

bc_time_design

The BC considers aaviety of architectures for the functional units needed to implement the
operations in the HDL. d¥ example, for an addeit will compute the area and delay of a ripple-

carry implementation and a carry-look-ahead implementation. These area and delay estimates are
using during scheduling to malarea/speed tradetsf

Check the results dfc_time_design by typing:
report_resource_estimates

Note that the area and timing estimates that result botime_design do not need to be
recomputed\eery time a design is scheduled. This information can bedsand re-used. Do this

by typing:
write -hier -o sort_timed.db

Now it's time to mak our first attempt at scheduling the haadsvsort circuit. As a dedlt, the
Behavioral Compiler performs ASAP scheduling. This creates #wtebt possible schedule
(shortest) without anconcern for the area of components. The BC does this by instantiating
multiple components to perform operations in parallel. Findake$t architecture by typing:

schedule -io superstate_fixed -effort zero
zero effort is acceptable because according to Synopsys, firé ledis no déct on the speed of

resultant designs, only their areae Will performresource constrained scheduling shortly (to
find the architecture with the smallest area).

Save the scheduled {R) version of the sort engine:
write -hierarchy -o sort_sch_fastest.db
Look at the results of scheduling by writing the report file to disk:
report_schedule -var -oper -summary -abstract > sort_sch_rpt
The switches hee the follaving meanings:
var = report shwing variable lifetimes and ggster usage
oper =report shaving hav operations were scheduled into clock steps
summary = report shwing timing of loops, estimates of area, and hamwresources
abstract = report shwing state table of finite state machine used to control the datapath
Look at thesort_sch_rpt file using a tet editor The first part of the report describes the

register resources needed to implement the design andigsoa table ofariable lifetimes. Wu
should see something &k

Storage resource types

r92....... 8-bit register
r212......8-bit register
r213......8-hit register
r215......64-bit register ...

Note that one 64-bit gester has been allocated. This is certainly to hold the eight 8-bitalatsv
that must be sorted.

The \ariable lifetimes table sk which \ariables are in which gésters during particular clock
cycles. You will see something léthe follaving:

------- S R SN S SN S — - — i — " —
cycle | r215 | r212 | r217 | r92 | r213 | r262 | r268 | r233 | r237 | r232 | r221

[®4)1(@®) [1@)®) [(®) [’ (1) 1) 1) Q)

(O OO U RSN POVINPY ISV FOUON PO NS RV IRV IO

1 VAo e e V39

2 |VELLVAL e e e] V39

3 VELLVALLVT e e e e] V39,

4 |L.V5LLVALLVTL V8. e L[] V39

5 [.V5. [VALV V8. VO e[|] V39

6 |..v5..|.v4.|.v7.].v8..|.v9..|......].v12.......]......|.v33..|.v39..
7].v5..|..v4.]..v7..].v8..]..v9..|.v10..|.v12..|......]......|.v33..|.v39..
8 .3 | V1L || o] V21, V28,V39.. ...

One of the more interesting parts of the report is the operation schedule. TWiss ghizh
operations were scheduled in which clock steps:

D D D D D D D
W W W W W W W
0O 0 O O o 0 o
1 1 1 1 1 1 1
p p ¢c ¢ ¢ ¢ ¢ ¢ ¢ p p
0O 0O m m mM m mM m m o o
r r p p p p p p pr
t t 2 2 2 2 2 2 2 t t
------- S S S R S S A S SR S SR,

0

1

2 |

3 |

4 |

5 |

6 | oo .

0 PO OO 1 = 221 Y SO OO Ot (RUe) IOV ISR SR I

8 |....|.....|.R32..].038l.|.038A.]|.038¢c.|.038d.|.038h.|.038t.|.038V.|.....]......
9 .. [I |.038b.|.038a.|.038m.|.0389.|.038€.|.038i.|.038q.].....]......
10 |......].....]......].038..].038n.]|.038j.|.038r.|.0380.|.038z2.|.038y.].....]......
11 |...... [I |.038u.|.038w.|.038f.]......|.038s.].038k.|.038x.|.W48.|. W51d. ...

Notice in the report file that Port pl is an 8-bit port. The eight reads of portvplbban
scheduled duringycles 1 - 8. Some comparisonvédeen scheduled in the same clogile as
the eighth read of port pl. In clockates 8 and 9, mancomparisons are being performed in
parallel.

The summary report folles the operations schedule:

* Summary report for process procA: *

Timing Summary

Clock period 50.00
Loop timing information:
PrOCA. ..ottt 20 cycles (cycles 0 - 20)
MaIN_lo0P.....cccovrveiiieiiiiieene 19 cycles (cycles 1 - 20)

Area Summary

Estimated combinational area 4130
Estimated sequential area 1300
TOTAL 5430

21 control states
22 basic transitions
3 control inputs

24 control outputs

Resource types

Register Types

1-bit register
8-bit register
64-bit register.................... 1

Operator Types

(8_8->1)-bit DWO1_cmp2............. 1
(8_8->1_1)-bit DWO1_cmp2........... 6

1/0 Ports

1-bit input port................... 1
1-bit registered output port....... 1
8-bit input port................... 1
8-bit registered output port....... 1

The area of the design isvgh as well as the number and type of resources that bheen
allocated to implement the design. In tlxaraple abwe, the lateng of themain_loop is 19
cycles. Seeral DW01_cmp2components hee been allocated. These are comparators that are
used to compare the elements to be sorted.

Make a note of the area of your design and the Igtehthemain_loop . By doing this, you
can mak comparisons between thasfest architecture and the minimum area architecture.

Scheduling completes the generation of arL Rersion of the sort engine.oM could nav
perform a functional simulation teevify the correctness of thelR. Write out the RL version of
the hardvare sort circuit in VHDL by typing:

vhdlout_levelize = true
vhdlout_equations = true
write -hierarchy -format vhdl -out sort_sch.vhd

You can use VSS (Synopsys VHDL System Simulator) to simulateottiesch.vhd RTL
description, though this is pend the scope of this lafhe timing diagram at the end of this
document depicts the results of simulating a sched@esion of the hardare sort circuit.

Now, let's find the architecture with the smallest areao db this, we will re-use the
sort_timed.db that we created after wexexuted thébc_time_design command. W
must remwee the current architecture and perform schedulinginago create a smaller
architecture. @ do this, type:

remove_design -design
read sort_timed.db
schedule -io superstate_fixed -effort zero -area

The-area switch directs BC to perform resource constrained scheduling. After scheduling is
complete, see the nw architecture:

write -hierarchy -o sort_sch_smallest.db
Use thereport_schedule command as before andvestigate the area of the we

architecture. ®u can see that the schedule uses a smaller number of functional units and there are
fewer parallel operations. Notice the latgraf the main_loop is longer than before and the

design consumes less area.

You can try some de#rent scheduling &rts in a further attempt to reduce area. The scheduling
efforts arezero , low , medium, orhigh .

The number of ycles used to implement thmain_loop can be eplicitly specified. This
allows the designer to makiateng/area trade-& and generate architectures in between the
fastest and the smallestryThe folloving:

remove_design -design

read sort_timed.db

find -hier cell main_I*

label = dc_shell_status

set_cycles 22 -from_beginning label -to_end label

schedule -io superstate_fixed -effort zero -area
Then sae the design:

write -hierarchy -o sort_sch_22.db

Use thereport_schedule command as before to see the results of specifying a specific
number of gcles for themain_loop . Look at the area of your design and the number and types
of allocated resources. Compare the area with theatehitectures you prsusly synthesized.

By writing Synopsys scripts, mamifferent architectures can be generated automatically through
the use ofor loops that ary loop latencies.

When we performed ASAP scheduling, we found that the minimum numbeyctédscto
implement themain_loop was 19. Using the automatic loop pipelining capabilities of the
Behavioral Compiler we can create an architecture wherein we may initiat& sareeery 12
clock g/cles. D do this type:

remove_design -design

read sort_timed.db

find -hier cell main_I*

label = dc_shell_status

pipeline_loop label -initiation_interval 12 -latency 24
schedule -io superstate_fixed -effort zero

Thepipeline_loop command tells the BC to use a latgn€ 24 gcles for themain_loop
and that we wish to initiate theain_loop every 12 gcles. Sae your design:

write -hierarchy -o sort_sch_pipelined.db

Usereport_schedule to evaluate the results of generating a pipelined sort engine. In the
summary portion, you will notice the follong:

* Summary report for process procA: *

Timing Summary

Clock period 50.00
Loop timing information:
PrOCA. ..ottt 25 cycles (cycles 0 - 25)
main_loop........... (initiation interval)..12 cycles
(pipeline latency)..24 cycles (cycles 1 - 25)

Area Summary

Estimated combinational area 4386
Estimated sequential area 1320
TOTAL 5706

The timing summary indicates that theain_loop is pipelined. The timing diagram that
resulted from simulating the pipelined sort engirll Rlescription is gien at the end of this
document.

Another dimension for architecturakmoration is to change the clock period. Recall that we
specified a 50 ns clock period. This can be changed usicgethie clock command.

BC allows designers to realize architectures witliedént characteristics without modifying the
HDL description.

That’s it for this lab! Ary of the R'L designs you created could be synthesizedteggusing the
Design Compiler and reevified through gte-level simulation. Placement and routing tools
would tale the agite-level netlist and complete the desigiourneg through the design hieranch
To exit the Behaioral Compiler type:

quit
To access the Synopsys help type:

iview
The documentation for Betiaral Compiler can be found in the chapter on synthesis.

The Behaioral Compiler Uses Guide contains information on the HDL coding style
recommended by Synopsys for belbaal synthesis.

A future lab may include a discussion ofahto use Behdoral Compiler to instantiate pipelined
components from the Designarfé library and a discussion of some of the constraints that may be
applied before scheduling.

For a good general introduction to high«é (behaioral) synthesis including scheduling and
resource allocation, see:

Daniel D. Gajski and Lagnath Ramachandran, “Introduction to High#&keSynthesis,in |IEEE
Design and Test of Computers, Winter 1994, pp. 44-54.

This document as prepared by Jason Helge Anderson. In you fiydpaoblems in this lab,
please e-mailanders@eecg.toronto.edu

Last edited: October 23, 1997

Verilog Codefor Sort Engine

module sort (in_data,in_data_rdy,out_data,clk,reset,out_rdy);

parameter width=8; //8-bit data items
parameter num_items=8; //8-data items

input [width-1:0] in_data; /Iport for input data
input clk;

input reset; /Isynchronous reset

input in_data_rdy; //input handshaking signal
output [width-1:0] out_data; /Iport for output data
output out_rdy; /loutput handshaking signal
reg [width-1:0] out_data;

reg out_rdy;

integer i /Nloop indices

reg [width-1:0] hold;
reg [width-1:0] data_store [num_items-1:0];
/Iregisters to hold data items

always begin: procA
begin: reset_loop
out_rdy<=1'b0; //on reset, out_rdy gets O
@(posedge clk); if (reset==1'b1) disable procA;
/limplement a synchronous reset behavior
forever begin: main_loop
if (in_data_rdy==1'b1) //handshaking
begin //read in the data items
for (i=0;i<(num_items-1);i=i+1)
begin: in_loop
data_store[i]=in_data;
@(posedge clk);
if (reset==1'b1) disable procA,
end
data_store[num_items-1]=in_data;//read in last item

for (i=(num_items-1);i>=1;i=i-1)
[lthese "for’ loops sort the data
begin: sort_loop
for (j=0;j<i;j=j+1)
begin: inner_loop
if (data_store[j]>data_store[j+1])
begin
hold=data_store[j+1];
data_store[j+1]=data_store[j];
data_store[j]=hold;
end
end
end
@(posedge clk);
if (reset==1'b1) disable procA,
out_rdy<=1'b1,;
for (i=0;i<num_items;i=i+1)
begin: out_loop //write sorted items
out_data<=data_store][i;
@(posedge clk);
if (reset==1'b1) disable procA,
end
out_rdy<=1'b0;
@(posedge clk); if (reset==1'b1) disable procA;
end
else //if in_data_rdy is O then wait one clock cycle
begin: in_data_not_ready_loop
@(posedge clk);
if (reset==1'b1) disable procA;

end
end //main_loop
end /lreset
end //processA
endmodule

aulbu3 u0S Joj weibeiq bulwip

]

N FT=1T«T T=17*1 S
+
| nfl o AQHLNO/AL
ﬁ 0 1353490/
0 1o/
0 AOH WLva MI/aL
I¥ | 98| 44| 99| 35| 00|80 L0 aln Iy (DA Llva Lnosal =
m iy Iv|3s|or|9sl9al0lenl NN il (/) 19a Mg <
+ T T T _ T T T T T T T T T _ T T T T T Qmﬁ-m
= 0001 005 o
v

1818 [w]3i] [[l<[=T =] [E[=]=] [e Tl [EETE] @O

auibu3 uos pauljadid 1o} weibeiq buiwi

g | I 3 =
i+
B | } AQHLNO/AL
Ll o 13530/8L
i N1o/aL
| | of| AQY VLva NiEL
e e e R T) D . A EE R nn 33| (Dviva LnoEy =
= /5 33|ze|pi|ot]asanjes] 22 |3v|3s|oi|as]as]ofsd] nn sl (mviva niEy =
) T T T T T T T QEQE
=0002 0051 0001 005 a
o

316]3] [&] [<= T[] [E] =[] =Tl [EE] [@lela)

disHl mopuiip suondg MalA 0105 Jayde§ upJ ajg

