University of Toronto, Department of Electrical and Computer Engineering

ECE 1387F - CAD for Digital Circuit Synthesis and Layout Handout #1

September 1999 J. Rose

Course Information - ANOTHER NEW ROOM (GB120)

Instructor: Jonathan Rose

Office: Pratt Building, Room LP 484E

Phone: 978-6992

Electronic Mail: jayar@eecg.toronto.edu

Office Hours: By appointment - send mail or phone.

Website: www.eecg.toronto.edu/~jayar/courses/ece1387/home.html

Pre-requisites: ECE 1388 (VLSI Design Methodology), or

ECE 451 (VLSI Systems), or

CSC 2410 (Algorithms in Graph Theory), or Permission of instructor.

Basic Programming Skills in C, including data structures.

Lecture: Wednesdays 10am-12 noon, **GB 120 - NEW ROOM!**.

Reference Texts: Combinatorial Algorithms for Integrated Circuit Layout,

Thomas Lengauer, Wiley.

Logic Synthesis, S, Devadas, A. Ghosh. K. Keutzer, McGraw-Hill.

Evaluation: Assignments 50% (3) Paper 20%

Exercises 15% (3) Class Part 15%

Assignments Programming implementations of CAD problems such as placement,

routing, logic optimization, technology mapping using optimization strategies such as simulated annealing dynamic programming, and

branch and bound, and illustrated using computer graphics.

Exercises Hands-on experience with CAD tools such as VPR (Auto Place &

Route), SIS (Logic synthesis), and BC (Behavioral Compiler).

The Paper Is a critical assessment of work in a subset of the field (chosen in

consultation with the instructor) based on 3 to 4 papers.

Class Is the expectation that you will contribute at least one good question

Participation or idea per class to the general discussion. Hopefully much more!

Tentative Lecture and Assignment Schedule

#	Date Lecture	Lecture Topic	Assignment/Exercise Out	Assignment/ Exercise In
1	Sept 15	Introduction, Overview of Synthesis	Paper	-
2	Sept 22	Detailed Routing	Assignment 1 - Maze Router on FPGA	-
3	Sept 29	Timing-Driven Routing	-	
4	Oct 6	Placement	-	Assignment 1
5	Oct 13	Placement (Simulated Annealing)	Exercise 1 - Placement	-
6	Oct 20	Partitioning (Branch & Bound)	Assignment 2 Partitioning Using B&B	Exercise 1
7	Oct 27	Technology-Independent Logic Optimization	-	-
8	Nov 3	Technology-Independent Logic Optimization	Exercise 2 Using Logic Synthesis	Assignment 2
No Lecture, November 10				
9	Nov 16	Technology Mapping (Dynamic Programming)	Assignment 3 Technology Mapping using Dyn Prog	Exercise 2
10	Nov 24	High Level Synthesis		-
11	Dec 1	High-Level Synthesis	Exercise 3 Synopsys Behavioural Compiler	Assignment 3
12		Scheduling and Allocation.	-	Paper & Exercise 3