
 1

University of Toronto, Department of Electrical and Computer Engineering

ECE241F - Digital Systems - Lab 7

Complex Finite State Machine, Modules and Handshaking

Fall 1999 A. Carusone, P. Lehn, J. Rose

1.0 Purpose

The purpose of this lab is to gain experience with state machines by building a much larger
one that controls a small adder/subtracter unit. This lab amounts to building a very simple
processor (computer). The lab also teaches about using pre-designed functional unitsand uses
the handshaking technique developed in Lab #6 to properly synchronize communication
between two devices.

Warning: this lab is difficult - be sure to allocate sufficient time for preparation. The good
news is that you will learn a great deal in this lab.

2.0 Background

1. In Lab #5 you created a 3-bit D-type register (which was simply three D Flip-flops
with the clock signals connected together), that also had a reset signal which set all of
the flip-flops to zero when activated. Recall that a register with anEnable signal works
in the following way: if the Enable = 1, then the register works as usual in response to
the clock. If Enable = 0, then the outputs (Qi) do not change in response to the clock.

2. The Altera maxplus2 software provides you with a number of pre-designed units,
called theLibrary of Parameterized Modules (LPM). These consist of adders,
adder/subtracters, multipliers, shift registers, decoders and more - basically everything
you’ve been designing in this course, already done for you! The meaning of the word
“parameterized” here is that you can specify many different things about the module.
For example, you can call up an adder and specify that it should be a 10 bit adder, or a
20-bit adder. You can specify that a multi-bit D register has an enable signal (or not).

To look at the different modules that are available, bring up the graphic editor in
maxplus2 and double-click to bring up theEnter Symbol dialog box. Select the
library that ends with “mega_lpm.” The list of symbols that appear are the different
modules. Scroll down the list and select the modulelpm_add_sub. This is a module
that will act either as an adder or a subtracter, depending on the value of a control
signal.

When you select the lpm_add_sub, a symbol appears on the graphic editor and at the
same time a dialog box appears. This dialog box allows you to provide specifications
of the type of adder/subtracter that you require. For example, to obtain a 3-bit adder/
subtracter, select the parameter from the list at the bottom labelled “LPM_WIDTH” by
double clicking on it. In the field next to “parameter value” type the value 3.



 2

To specify that you want this to be an adder/subtracter unit (as opposed to simply an
adder), in the list at the top of the dialog box, select the name “add_sub” and click on
the “used” button under Port Status. This creates a signal, attached to the adder, called
add_sub, which when set to 1, causes the device to add its two inputs, and when set to
0, makes it subtract them. (Later in class, we will show a circuit that does this).

To learn more about the various parameters of this module, click on the “HELP”
button in the dialog box, use the main help menu, under MEGAFUNCTIONS/LPM.

Click OK in the dialog box to create the adder/subtracter. You can modify your
choices by double-clicking on the list of parameters that appear in the graphic editor.

3. Recall from lab #6, that to transmit data between two devices, it is often necessary to
provide handshaking signals that ensure that the data is received correctly. This is
particularly true when two devices are running at very different speeds. Consider the
situation illustrated in Figure1, in which n bits of data are to be transmitted from

Device #2 to Device #1. When Device #1 requires new data, it raises the
Data_Request line high (to “1”). Once #2 sees this and has placed the correct data on
the n Data lines, it raises theData_Ready line high. When #1 has taken the data
(typically stored in a D-register) it lowers theData_Request line after which #2
lowers theData_Ready line. Device #1 can only raise a new requestafter the
Data_Ready line is lowered. This procedure is called a “full handshake” and ensures
that the data is transferred correctly, even when the two devices are running at vastly
different speeds.

We will make use of this concept in this lab, because Device #1 will be a state machine
running at 25 MHz, and device #2, will beyou, (i.e. you will be providing both the
data through switches, and the Data_Ready signal) and you run considerably slower
than 25MHz. This is very similar to the machine you built in Lab #6.

3.0 Preparation

Note: all preparation schematics, VHDL code and simulation outputMUST BE PRINTED
on paper for marking, before the lab begins.

1. Create a 3-bit D-type register symbol that has aReset signal and anEnable signal as
described above (either by creating your own symbol from basic DFFs or by using
module lpm_DFF). Simulate your register to be sure that you understand how the
Enable works.

Figure 1 - Handshaking

Device #1

Data_Request

Data_Ready

Data

Device #2

n



 3

2. Create a 3-bitunsigned adder/subtracter LPM unit in the graphic editor, (with an
add_sub control signal) as described in part 2 of the background. Simulate the unit to
make sure that you understand how it works. It is easier to simulate if you keep the 3-
bit inputs grouped together as a bus, and in the waveform editor, specify these values
as a group.

3. Build the circuit of Figure2 in the graphic editor. Simulate the use of this circuit to add
two numbers, applied one at a time through the input A, similar to Lab #5.

4. Using the circuit of Figure2, simulate the subtraction of two numbers. (Setting
add_sub = 0 makes this unit a subtracter).

5. You are to design a finite state machine that controls the circuit of Figure2, and
interacts with you as the user. The clock signal (for both the finite state machineand
the Registers A and B) will be connected to the 25MHz (period 40ns) clock signal that
is generated on the Altera board, and appears at pin #83 of the MAX 7128 (the global
clock input).

The outputs of the finite state machine (illustrated in Figure3) are:

i. EnableA - the enable signal for register A. When this is turned on, register A
will, on the next positive edge of the clock, copy the input data A[2..0], coming
from user switches into register A.

ii. EnableB - the enable signal for register B. When this is turned on, register B

3-bit Register B 3-bit Register A

3-bit

7-Segment Decoder/Display

Figure 2 - Processor DataPath

ResetB

Adder/Subtracter

33

3

Cout

Input A[2..0]

Clock

EnableB EnableA

add_sub



 4

will, on the next positive edge of the clock, copy the output of the adder/
subtracter into register B.

iii. ResetB - an active low signal which should set the contents of register B to
zero. Make this asynchronous reset.

iv. Request_Data - is an output (to be hooked up to a light on the digital switch
board) which will signal to you that the machine wants you to input data.

v. add_sub - is connected to the add_sub signal of the adder/subtracter, to tell it
which function to perform. (=1 means add, =0 means subtract)

The inputs of the finite state machine are:

i. GO - active low (i.e. active when signal = 0). When activated, this causes the
machine to begin operation, as described below.

ii. Function - this is an input from the user which indicates the “instruction” that
is desired. Function = 1 means that the two numbers should be added. Function
=0 means that the two numbers should be subtracted.

iii. Data_Ready - this signal should be connected to a switch on the switch board.
It is the other part (with Request_Data) of the handshake between you and the
state machine. Once the data is ready, you raise the Data_Ready signal. Once
the Request_Data signal is lowered, you must lower the Data_Ready signal.

When the GO signal is activated, your machine should request two pieces of 3-bit data
from the user (one at a time) and either add or subtract them, depending on the
Function input. To obtain the two pieces of data, you must use the handshaking
protocol described above in the background section.Code your Finite state machine
in VHDL. Turn it into a symbol and connect it to the circuit of Figure2 using the
graphic editor.

4.0 In the Lab

Build and test the circuit of part 5 of the preparation. Make sure thatall of the clock signals on
flip flops and the state machine are connected to the 25MHz clock (pin 83 of the 7128).

Figure 3 - The Finite State Machine

Finite State Machine

Clock

(25 MHz)

GO

Data_Ready

EnableA

EnableB

ResetB

Request_Data

Function

add_sub


