
ECE324 Fall 2020 Assignment 3

Assignment 3: Multi-Layer Perceptron for Binary Classification

Deadline: Tuesday October 13, at 9pm

Late Penalty: There is a penalty-free grace period of one hour past the deadline. Any work that
is submitted between 1 hour and 24 hours past the deadline will receive a 20% grade deduction.
No other late work is accepted.
Original Author TA: Kevin Shen

Learning Objectives

In this assignment you will learn how to use a Multi-Layer Perceptron (MLP) neural network to
make a prediction about one aspect of a person based on their ‘features.’ You’ll learn some essential
parts of data science techniques. This work begins with a raw dataset and ends with a well-trained
neural network, and includes the following:

1. Loading, cleaning and pre-processing the dataset.

2. Obtaining a basic understanding of the statistics of the dataset.

3. Converting the dataset into a representation appropriate for training a neural network.

4. Training a multi-layer perceptron to do binary classification.

You are provided skeleton code with this assignment to serve as the basis for your code.

What To Submit

You should hand in the following files:

• A PDF file assignment3.pdf containing your visualizations (plots) and answers to the written
questions posed in this assignment. Graded questions are located in each section, indicated
by the heading Questions. Please answer these questions and include them in your
report under the appropriate section headings.

• The code for parts 3, 4 and 5 all together in one large file assignment3.ipynb. However,
you may instead choose to submit your code as python (.py) files, in which case you should
submits files with the same names for files as given in the starter code. To help you, this
assignment contains starter code in separate python files, main.py, dataset.py, model.py,
and util.py provided with this assignment. One note on this: this assignment asks you to
explore different options/hyperparameters. As noted in Section 5.1, you must put all such
options (which could be numerical parameters or flags) in a clearly defined section at the
top of your code, as described in that section, similar to Assignment 2. (Note: If you are
submitting python files, rather than one large notebook, you must make use of the command
line arguments to set the hyperparameters, as shown in the starter code main.py.)

You should upload these files to Quercus under this assignment.

1

ECE324 Fall 2020 Assignment 3

1 Two New Libraries

We will be using two more libraries for this assignment:

• pandas: http://pandas.pydata.org/pandas-docs/stable/10min.html.

• sklearn: http://scikit-learn.org/stable/index.html.

If you’re using Google Colab, it has these libraries already installed. If you installed Python with
Ananconda in Assignment 1, these packages should be already installed.

The Pandas package will be used for data representation and visualization for this assignment. The
package has a DataFrame class which will store the dataset and has some useful helper functions
for manipulating and visualizing the data.

The sklearn package is a general purpose data processing library. Its functionality ranges from
pre-processing data to training models. In this assignment, we will use sklearn to pre-process our
data into a representation suitable for our neural network.

2 Data Science and the Design of a Neural Network Classifier

2.1 Introduction

Figure 1: Key tasks in data science: data collection, pre-processing, and neural network training.

Figure 1 illustrates the series of steps we take between going out into the world to collect and
understand data before training a neural network to determine something meaningful about the
data. These are:

2

http://pandas.pydata.org/pandas-docs/stable/10min.html
http://scikit-learn.org/stable/index.html

ECE324 Fall 2020 Assignment 3

1. Collect the data from wherever it comes from. You’ll be do at least a little of this in your
course project.

2. “Clean” the data. For example, we may need to remove instances that are missing values.
Also, we may remove outliers in the dataset that are known to be erroneous in some way or
mis-representative.

3. Visualize and understand the data. We can often gain valuable intuition and insight on the
dataset by, for example, measuring the frequency distributions of the data, or correlations
between specific input features.

4. Pre-process the inputs. A machine learning engineer must determine the appropriate represen-
tation of the data that is presented to the neural network. In some cases, some human-inspired
manipulation of the data is necessary, which is often referred to as ‘feature engineering.’ Both
of these can have a dramatic effect on the outcome.

5. Design the neural network architecture, cost function, optimizer, and other aspects of the
learning process.

6. Tune the hyperparameters of the neural network such as batch size, learning rate, etc.

7. Once the neural network has been trained, we can decide if it is necessary to collect more
data if we are unsatisfied with the results, repeating the process.

For this assignment, we will work with the adult income dataset which provides the annual income
of about 48,000 American adults. It was extracted by Barry Becker from the 1994 US Census
Database. The data set consists of anonymous information such as occupation, age, native country,
race, capital gain, capital loss, education, work class and more. Each row is labelled as either
having a salary greater than ”>50K” or ”<=50K”. The final goal of this assignment is to predict
whether a person is a high income earner or a low income earner based on the information supplied
in the dataset. A high income earner is defined to be someone who earns over $50,000 per year
and a low income earner as someone who earns less than or equal to $50,000 per year. This makes
the problem to be solved a binary classification problem (which means there is only two possible
classes). The goal is to learn to distinguish between these two classes based on the other features
in the dataset. The dataset consists of 48,842 samples with 16 features for each person. (The term
features is commonly used to indicate the inputs to a model/predictor.) Six of the features are
continuous (real) values and eight of them are categorical values. These features include education
level, race, and field of work.

For more information on the dataset itself, please take a look at: http://www.cs.toronto.

edu/~delve/data/adult/adultDetail.html.

3 Data Pre-processing and Visualization (29 Points)

3.1 Loading the dataset

In the files you downloaded with this assignment, you can find the dataset located in the folder
data in the file named adult.csv. Using a spreadsheet program (excel, or google sheets), open
and look at this file, as we did in class, to get a general sense of what the data looks like.

3

http://www.cs.toronto.edu/~delve/data/adult/adultDetail.html
http://www.cs.toronto.edu/~delve/data/adult/adultDetail.html

ECE324 Fall 2020 Assignment 3

The assignment also contains starter code in several python files that you will use throughout
this assignment (you’ll have to merge this code in your notebook file). The next thing you should
do is modify the provided code in main.py to use the pandas libraries to load the dataset into a
variable called “data” using the function pd.read_csv. (after reviewing the pandas documentation
to figure out how to do that).

3.2 Understanding the Dataset (4 Points)

Once the dataset has been loaded, we will first do a few “sanity” checks to ensure that the data
makes sense. The pd.read_csv function stores the dataset in a class called DataFrame. The
DataFrame class has some useful fields and methods that will allow you to inspect the data:

• .shape field. The first number provided by this field is the number of rows (which is the
number of samples, in this case the number of people) in the dataset; the second number is
the number of columns (which is the number of features in each sample).

• .columns field. This field gives the name of each of the columns of the dataset. For more
information on what the columns are and the values they can take, refer to http://www.cs.

toronto.edu/~delve/data/adult/adultDetail.html

• .head() method. This method will print out the first 5 rows of the dataset. On some
computers, the print method may limit the number of columns printed. In this case, use the
function verbose print provided in the [util.py] to do the printing.

• ["income"].value counts(). We can access a specific feature using indexing notation e.g
["income"]. The .value counts() method will return the number of occurrences of each value
of the column. Use this method to determine the number of high and low income earners.

Use the above fields and methods to print out each of the fields or to perform the method calls as
described directly above. As you can see, there are 15 columns in the dataset: 14 features and 1
label called “income”. In this label, a high income earner is represented by the string “> 50K”
and a low income earner is represented by the string “<= 50K”.

Questions

1. (2 points) How many high income earners are there in the dataset? How many low income
earners?

2. (2 points) Is the dataset balanced (i.e. does it have roughly the same number of each of the
classes/labels - in this case high income vs. low income)? What are some possible problems
with training on an unbalanced dataset?

3.3 Cleaning (4 Points)

Datasets are often “dirty” when they are first collected, meaning that there could be missing or
erroneous values or unwanted bias. In your final project and in this assignment, you will pre-process
the data by removing missing values and unwanted outliers. Not doing so could be detrimental
to the performance of the model. In the adult income dataset, missing values are indicated with
the “?” string. Let’s begin by figuring out how many missing values there are. Iterate over all the
columns of the dataset and print out the number of “?” entries for each column. You will find the
method .isin("?"]).sum() helpful.

4

http://www.cs.toronto.edu/~delve/data/adult/adultDetail.html
http://www.cs.toronto.edu/~delve/data/adult/adultDetail.html

ECE324 Fall 2020 Assignment 3

You will need to remove any sample/row which has at least one “?” value. To do this, take ad-
vantage of the DataFrame class’s indexing syntax: [data[data[column] != value]] which returns a
DataFrame with all the rows which do not contain the value “value” for column “column”. Once
you have done this, print out the shape of the dataset.

Questions

1. (2 points) How many samples (rows) were removed by the above cleaning process? How many
are left?

2. (2 points) Do you think this is a reasonable number of samples to throw out?

Sometimes there is a trade-off between the cleanliness of the dataset and the amount of data we
have to train on. Ideally, we’d like a very large dataset with no missing values or unwanted samples,
but real-world data is often time-consuming to collect and messy, so sometimes we keep the samples
with missing values in the dataset so that there is more data to train on. We would have to be
very careful how to handle those samples in our model, though. For this assignment, our dataset
is relatively large and the number of samples with missing values is small enough that we can just
discard them. (An alternative is to use average values from the dataset in the missing entries, if
that is appropriate).

A note on terminology: We will refer to rows/samples/entries/instances and columns/features/field
interchangeably.

3.4 Balancing the Dataset (4 Points)

As you saw in Section 3.2 (Question 2) our dataset is unbalanced. There are a few ways to deal
with this:

• Do nothing. We might be okay with the imbalance in the dataset as long as the final model
has high enough accuracy. Note we often care about per-class accuracy.

If ignoring the imbalance leads to a model that does poorly on the under-represented class, then
we can try the following:

• Randomly drop samples of data from the over-represented class so that all classes have the
same number of samples.

• Enforce an equal number of samples from each class in each batch of training data. This
means either you train on each sample in the under-represented class more than once in every
training epoch; or instead train on only a subset of the samples in the over-represented class.

• Have a class-based-weight in your loss function. This would mean reducing the weight of
samples from the over-represented class.

• Collect more data.

To keep things simple, in this lab we will simply drop data from the over-represented class:

5

ECE324 Fall 2020 Assignment 3

1. (4 points) Use the DataFrame.sample (https://pandas.pydata.org/pandas-docs/stable/
generated/pandas.DataFrame.sample.html) method to balance the dataset. If there are
n samples in class A and m samples in class B to begin with, you should be left with
min(n,m) samples in both classes. Hint: use the random state argument to make
sure the samples that are dropped are the same between different runs of your
code. Otherwise you will get slightly different results each run which can make
debugging difficult.

3.5 Visualization and Understanding (10 Points)

Even before we train a model, there’s a lot we can learn about the dataset as shown in class. By
understanding the characteristics of the data beforehand, we are better prepared to design better
models to fit the data. For continuous valued features, it’s often helpful to check basic statistics
such as the mean or variance. Use the .describe() method of the DataFrame class to check
the statistics of our data. Use the verbose print method again. It will provide the following
information about each feature:

• count: the number of samples with non-null value for this field.

• mean: the average value of this field.

• std: the standard deviation of this field.

• min: the minimum value of this field.

• 25%: the lowest 25 percentile of this field.

Question

1. (1 point) What is the minimum age of individuals and the minimum number of hours worked
per week for the dataset?

For the categorical features, it is useful to know the frequency of occurrence of each feature as one
way to understand the dataset. Print the number of times each value of the feature occurs in the
dataset. Notice that the most common features are: Private, White, HS-grad, etc. Pie charts and
bar graphs are often helpful for visualizing categorical data. A pie chart method has been provided
for you in util.py. Visualize the first 3 categorical features using pie charts. Include the plots
in your report. If you are interested, create the pie charts for the other categorical features as well.

Questions

2. (2 points) Are certain groups over or under-represented? For example, do you expect the
results trained on this dataset to generalize well to different races?

3. (2 points) What other biases in the dataset can you find?

Next let’s see how well we can classify salaries by looking at the features ourselves – human perfor-
mance is often a useful benchmark for deep learning algorithms! The binary bar chart method
plots the number of occurrences of each value of a categorical feature. Furthermore, it plots

6

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sample.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sample.html

ECE324 Fall 2020 Assignment 3

the number of times (feature==value and income > 50K) in green and the number of times
(feature==value and income <= 50K) in red. Plot the binary bar graph for the first 3 categor-
ical features. Include the plots in your report. Investigate any other features you are curious
about.

Questions

4. (2 points) List the top three features, that you identify using this method, that are very useful
for distinguishing between high and low salary earners?.

5. (3 points) Suppose you’re told that someone has high school-level of education. How likely
would they be to earn above 50K? Given their education is “Bachelors” and nothing else
about a person what is the best assumption as to whether they earn above or below 50K?

6. (0 points) Now suppose you’re given a new sample, think about how you would classify (by
eye) the person as a high or low income earner. You don’t need to come up with an explicit
algorithm or submit anything for this question (but you can if you want to think about this
problem).

3.6 Pre-processing (4 + 2 Points)

As discussed in class, the performance of neural networks can depend heavily on the representation
of the input. Data that has continuous values (i.e. is a decimal number) should typically be
normalized by the mean and standard deviation of the feature. For categorical data (i.e. where the
feature is one of several specific categories), we should represent the feature as a 1-hot vector, as
discussed in class.

1. Extract the continuous features into a separate variable. To normalize the continuous fea-
tures, subtract the average (computed with .mean()) and divide by the standard deviation
(computed with .std()). Return a numpy representation of the data using the .values field.

2. The categorical features in the dataset are represented as strings. Use the LabelEncoder class
of sklearn to turn them into integers and use the OneHotEncoder class to convert the integers
into one-hot vectors. For each categorical feature, call the .fit transform in LabelEncoder

to convert it into integer representation. Note this includes the “income” column.

3. Next, extract the “income” column and store it as a separate variable (and convert it into a
numpy array as well). We don’t want to convert “income” into 1-hot. Remove the “income”
field from the feature DataFrame completely to separate the features from the label. Use the
OneHotEncoder class to convert each categorical feature from integer to one-hot.

4. Finally, stitch the categorical and continuous features back together.

Questions

1. (2 points) What are some disadvantages of using an integer representation for categorical
data?

2. (2 points) What are some disadvantages of using un-normalized continuous data?

7

ECE324 Fall 2020 Assignment 3

Bonus: (2 points) create a separate dataset where continuous features are un-normalized and
categorical features are represented as integers. Compare the performance of the neural network
on this dataset versus the one created as above. Report any differences in your report. Note that
the input size of the neural network will have to change with this different representation.

3.7 Train-validation split (3 Points)

The function train test split from sklearn, is used to separate out the training and validation
sets. These functions often have useful methods to vary the ways that this is done.

We will train on a fraction of our dataset and evaluate our model on the other portion. Make sure
both features and labels are now numpy arrays. Then use the sklearn train test split method
to divide the dataset into train and validation portions. train test split takes an argument
test size which controls the percentage of data allocated to the validation split (0 means all data
will be in the train split and 1 means all data will be in the validation split). What value should
we use for test size? If we wanted as much data as possible to train on, then we would make
test size small. However, having a small validation set means our evaluation is not very reliable
since we are evaluating only on a few samples. On the other hand, making test size big gives
us very reliable evaluation but worsens our model because there is less data to train on. Hence,
there is an inherent trade off between data for training and the reliability of our evaluation. For
larger datasets, we might be able to get away with making test size a smaller percentage of the
total dataset since the absolute number of samples in the validation split is reasonably large. For
smaller datasets, we should probably use a larger percentage for test size. In this assignment,
we’ll use a value of test size == 0.2. Finally don’t forget to provide a random seed to the
train test split method to make sure your results are deterministically reproducible!

1. Use train test split from sklearn to split the data into train and validation splits.

2. Set a random seed for train test split so the data split can be reproducible.

4 Model Training (18 points)

At this point you have cleaned the data, transformed it into the correct representations, and created
the train and validation splits. It’s time to start implementing and training a model whose purpose
is to predict the income level (above or below $50K).

In the training process we will be making use of stochastic gradient descent, which is differ-
ent from the basic gradient descent method you used in Assignment 2. The difference is this:
Basic gradient descent computes the gradients across the entire dataset and then takes a single
optimization ‘step’ (a change based on the gradient and the learning rate) for each of the pa-
rameters. In stochastic gradient descent we instead select random subsets of the dataset of fixed
size (which is called a mini-batch or just batch) and perform the gradient and parameter change
calculations on that subset of data instances. All of the data is used, by running through all the
mini-batches available. One epoch is said to have finished when all mini-batches that cover the en-
tire data have been processed. The advantages and trade-offs of this method were discussed in class,
and are also covered here: https://www.bogotobogo.com/python/scikit-learn/scikit-learn_
batch-gradient-descent-versus-stochastic-gradient-descent.php

8

https://www.bogotobogo.com/python/scikit-learn/scikit-learn_batch-gradient-descent-versus-stochastic-gradient-descent.php
https://www.bogotobogo.com/python/scikit-learn/scikit-learn_batch-gradient-descent-versus-stochastic-gradient-descent.php

ECE324 Fall 2020 Assignment 3

4.1 DataSet

The organization of this batching can get complex, but fortunately PyTorch has a class that will
do most of the work. Use the DataLoader class to manage batch sampling in your training loop.
To do that you, must first define a dataset class that extends PyTorch data.Dataset. Refer
to https://pytorch.org/tutorials/beginner/data_loading_tutorial.html for an example of
creating a dataset class and dataloading in PyTorch in general. This will be our container class that
stores the data which DataLoader will retrieve. This code has been started for you in dataset.py;
complete the implementation for the AdultDataset class.

4.2 DataLoader (2 Points)

In main.py fill in the function called load data. Instantiate two AdultDatasets – one for training
and one for validation. Create two instances of the DataLoader class by passing in the train
and validation datasets. Specify the batch size using the batch size argument. Make sure to use
shuffle=True for the train loader!

Question

1. (2 points) Why is it important to shuffle the data during training? What problem might occur
during training if the dataset was collected in a particular order (e.g. ordered by income) and
we didn’t shuffle the data?

4.3 Model (4 points)

You will be training a Multi-Layer Perceptron (MLP) to do binary classification - to predict if
the person’s income is above or below $50K, based on the input features. An MLP is a basic
neural network with only linear layers and activations. Below we give guidance on how to de-
sign and code the neural network model, which is in the starter code model.py that defines the
MultiLayerPerceptron class.

The init method in the model.py MultiLayerPerceptron instantiate the layers that will be
used in the model, as has been illustrated in class. To begin, create a model with two layers - a
linear (hidden) layer followed by an output linear layer. The first layer should use a ReLU activation
function. Choose a size (number of neurons) for that layer that you think is appropriate.

In the forward method, you should define the complete architecture of the neural net, which
is the sequence of operations to compute the output from the input. The output is provides one of
the inputs that goes into the loss function, which we will want to be a probability value between 0
and 1. To do that, you should apply a Sigmoid activation function after the output linear layer.
Questions:

1. (2 points) Give a justification for your choice of the size of the first layer. What should the
size of the second (output) layer be?

2. (2 points) Why do we think of the output of the neural network as a probability between 0
and 1? What do the specific values of 0 and 1 mean if they are output from the network?

4.4 Loss Function and Optimizer

In main.py (or your notebook) define a method called load model which instantiates the MLP
model and defines a loss function and an optimizer. For the loss function, make use of PyTorch’s

9

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

ECE324 Fall 2020 Assignment 3

mean squared error function, MSELoss, as we have done previously. For the optimizer, we will use
optim.SGD (stochastic gradient descent). load model should take as input the learning rate which
should be passed to the optimizer instantiation function. Make a guess at a good learning rate.

4.5 Training Loop

In the main method call load data and load model. Write a training loop that iterates over the
total number of epochs to train for. For each epoch, iterate over the train loader and perform a
gradient step. Some examples can be found here https://pytorch.org/tutorials/beginner/

data_loading_tutorial.html and examples for training a network here https://pytorch.org/

tutorials/beginner/blitz/cifar10_tutorial.html. Don’t forget to zero your gradients at the
beginning of every step!

In the inner loop, print the loss and number of correct predictions every N steps (mini-batches)
(N = 10 is a reasonable choice). The MLP model should output a value between 0 and 1. Use this
decision function: if the output is greater than 0.5, assume the model is predicting a label of 1, and
otherwise 0.

4.6 Validation (12 points)

Add a method called evaluate to main.py. evaluate should take as input the model as trained
so far and the validation dataset loader and evaluate the accuracy of the model on the validation
dataset. Call evaluate every N steps (batches) inside the training loop and print out the validation
accuracy.
You are now ready to train the neural network. A working model should have validation accuracy
greater than 80%. If your model doesn’t work quite yet, it may be because of the hyperparameters.
Play around with the batch size, MLP hidden size, and learning rate to maximize your validation
accuracy.

1. (10 points) Using Matplotlib, make a plot of the training accuracy and a plot of the validation
accuracy as a function of the number of gradient steps (not per epoch as previously, but per
mini-batch). For the training accuracy, at each mini-batch compute the average accuracy
of the N = 10 most recent batches; that is for each training accuracy data point, compute
the accuracy of the most recent 10 batches, and report the average of those. Include the
plots in your report. Report the batch size, MLP hidden size, and learning rate that you
used. If you aren’t getting over 80% validation accuracy, don’t worry, as we will tune the
hyperparameters in the next section. What validation accuracy does your model achieve?

2. (2 points) The performance of your network may oscillate. Add smoothed plots to your graphs
better visualize the results. You can use any smoothing algorithm you wish; one possibility
is the savgol filter from scipy.signal. Play around with the smoothing algorithm’s
parameters to get a plot that is less noisy but maintain the essence of the original plot. If N
is small, the training error may oscillate alot. In this case, you can apply high smoothing to
the train plot or increase N and batch size.

5 Hyperparameters (34 Points)

The performance of neural networks is highly dependent on hyperparameters: these are values
that are manually set by the ML engineer rather than learned as parameters that are part of the

10

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

ECE324 Fall 2020 Assignment 3

model. Note that hyperparameters can be both real-valued or categorical variables. For our model,
the hyperparameters include: learning rate, batch size (the number of instances in a mini-batch),
activation function of the first layer, number of layers, loss function, and regularization. It is often
stated in deep learning that choosing good hyperparameters is an art more than a science. ML
engineers typically use their prior experience to narrow down the hyperparameters to a reasonable
range before conducting some sort of search. This assignment is the beginning of that experience
for you! Two commonly used search policies are:

• Random: we simply choose a random value within some range [a, b] for continuous hyperpa-
rameters or from some set {a, b, . . . } for categorical hyperparameters. We repeat until the
model achieves satisfactory performance.

• Grid search: for continuous hyperparameters, we start at the lower bound a and increase the
value of the hyperparameter by some increment i until upper bound b. Finally we take the
value that gave us the best performance. For categorical hyperparameters, we try all possible
values and take the best one. This may not be feasible, given the number of possibilities and
the time available.

5.1 Learning rate (7 Points)

Here you will try to understand the effect of learning rate. Use a hidden layer size of 64, and a
batch size of 64. Use a Grid search to find the best learning rate. Make sure that, in your
code, there is a separate section at the top which sets the specific hyperparameters
(as continuous variables or boolean types or strings) that are clearly explained, to be
used in each ‘run’ of your code. If you choose to use Python (.py) rather than a notebook
(.ipynb), set your hyperparameters using command-line flags as shown in in main.py: for example,
there is a –lr flag to set the learning rate.

Vary the learning rate from 1e-3 to 1e3 (in steps that vary by a factor of 10, i.e. 1e-3, 1e-2,
1-e1, ...), retraining the model each time. This is because models are typically only sensitive to a
multiplicative change in the learning rate (but be careful: this multiplicative type of change may
not apply to other hyperparameters). One could also use a smaller multiplication constant than 10
(e.g. 2, 5) but it might not make much of a difference for this particular model.

1. (1 point) Report the highest validation accuracy for each learning rate in a table. Include
this table in your report.

2. (3 points) Make a plot of training accuracy (achieved on the training data) and validation
accuracy (achieved on the validation data) as a function of the number of steps for learning
rate equal to 0.01, 1, and 100. Include the plots in your report.

Questions

1. (1 point) Which learning rate works the best?

2. (2 points) What happens if the learning rate is too low? Too high?

11

ECE324 Fall 2020 Assignment 3

5.2 Number of epochs

The number of epochs to train for might be the easiest hyperparameter to set. If we set the number
of epochs too small, the model won’t have the opportunity obtain a good accuracy. On the other
hand, it doesn’t hurt to train for too long; the only downside is a waste of time and electrical
energy. In main.py the default number of epochs has been set to 20. Throughout the rest of the
assignment, please adjust the number of epochs yourself to find a good setting. For example, if the
learning rate is small, then we probably need to train for longer (more epochs) to compensate. In
general:

• if your validation accuracy is still increasing when the run finishes, the training process has
too few epochs

• if your validation accuracy is flat for a long time near the end of training or going down, the
training process has too many epochs

Generally it’s a good idea to lean on the side of training too many epochs rather than too few. You
can never be completely sure your model won’t suddenly do something interesting! Make sure in
the plots you’re submitting, you’ve run the model for long enough.

5.3 Batch size (11 Points)

Next, consider the effects of batch size (we’ll use the word batch to mean mini-batch). Use the best
learning rate you found in the previous section.

1. (2 points) For the following batch sizes: 1, 64, and 17932 (the size of the entire training
dataset), make plots of the train and validation accuracies versus the number of steps. In-
clude the plots in your report. Note you will need to change N , the frequency at which
you record train and val error. Note2 running batch size 1 will take a long time, so you can
try reducing the number of epochs to compensate.

2. (2 points) Measure the time of your training loop and make a plot of the train and validation
accuracy versus time instead of steps. Include the plots in your report.

Questions

1. (1 point) Which batch size gives the highest validation accuracy?

2. (2 point) Which batch size is fastest in reaching a high validation accuracy in terms of the
number of steps? Which batch size is fastest in reaching its maximum validation accuracy in
terms of time?

3. (2 point) What happens if the batch size is too low? Too high?

4. (2 points) State the advantages and disadvantages of using a small batch size. Do the same
for large batch size. Make a general statement about the value of batch size to use (relative
to 1 and the size of the dataset).

Hint: The difference between using a large and small batch size may be more apparent when you
reduce the amount of smoothing in your graphs (you may need to vary the smoothing to see the
effects).

12

ECE324 Fall 2020 Assignment 3

5.4 Under-fitting (4 Points)

What happens when the model is too small, that is has too few parameters/neurons? This might
be kind of obvious but let’s check. Use the best learning rate and batch size you have found so far
(in terms of validation accuracy) to do the following:

1. (2 points) Change your MLP model to have no hidden layers and only one linear layer that
maps the input directly to output (but still apply the Sigmoid function before the output).
Make a plot of the train and validation accuracy versus

2. (2 points) What validation accuracy does the small model achieve? How does this compare
to the best model you’ve trained so far? Is this model underfitting? (Note you don’t have to
answer “yes” just because this section is called “under-fitting”).

In general “under-fitting” occurs when the model is smaller (has fewer parameters) than needed
to succeed. If a model has underfit, you could increase its size to obtain higher validation accu-
racy. Underfitting often occurs when the training and validation accuracy measurements are about
the same. Typically, good fitting occurs when training accuracy is just slightly higher than the
validation accuracy.

5.5 Over-fitting (4 Points)

What happens when the model is too big? Use the best learning rate and batch size you have
found so far (in terms of validation accuracy).

1. (2 points) Change your MLP model to have a total of four layers (and so we would say it
has 3 “hidden” layers), with the hidden layers of size 64. Note that training might take
somewhat longer. Make a plot of the training and validation accuracy versus the number of
steps. Include the plots in your report.

2. (2 points) What validation accuracy does the large model achieve? How does this compare
to the best model you’ve trained so far? Is this model over-fitting?

In general the term “over-fitting” can be caused by having a model that is larger (has more param-
eters) than needed to succeed. If a model has overfit, the training accuracy is significantly greater
than the validation accuracy. We would also say the model has bad “generalization.” This means
the model can do well on the training set but will not generalize to data not seen during training.
The most extreme example would be to use a lookup table in place of a neural network as the
model and simply match samples in the validation set to samples in the training set and assign
a prediction that way (if the sample doesn’t appear in the training set, the model would assign a
random sample’s output). You would not expect the lookup table to generalize well. When there
is evidence of over-fitting, this suggests that decreasing the size of the model may obtain higher
validation accuracy.

5.6 Activation function (4 Points)

1. (3 points) Take the best model you’ve trained so far. Replace the ReLU activation function
(used in the hidden layer(s)) in your model with a tanh, and then a Sigmoid activation

13

ECE324 Fall 2020 Assignment 3

function. Plot the train and the validation accuracy of all three models on the same graph.
Do you notice any qualitative or quantitative differences? Include the plots in your
report.

2. (1 point) Measure the time of each of the training runs with each activation function. Include
a table of the times in your report. Is there a difference between the activation functions in
terms of how long they take to run?

5.7 Hyperparameter search (4 Points)

In this last part of the assignment, use what you’ve learned about hyperparameter tuning to find
the best configuration for training your network. Make sure to write down the value of the random
seed that you used and the hyperparameter values so the results are reproducible.

6 Feedback

1. Describe your experience with assignment 3:

(a) How much time did you spend on assignment 3?

(b) What did you find challenging?

(c) What did you enjoy?

(d) What did you find confusing?

(e) What was helpful?

14

	Two New Libraries
	Data Science and the Design of a Neural Network Classifier
	Introduction

	Data Pre-processing and Visualization (29 Points)
	Loading the dataset
	Understanding the Dataset (4 Points)
	Cleaning (4 Points)
	Balancing the Dataset (4 Points)
	Visualization and Understanding (10 Points)
	Pre-processing (4 + 2 Points)
	Train-validation split (3 Points)

	Model Training (18 points)
	DataSet
	DataLoader (2 Points)
	Model (4 points)
	Loss Function and Optimizer
	Training Loop
	Validation (12 points)

	Hyperparameters (34 Points)
	Learning rate (7 Points)
	Number of epochs
	Batch size (11 Points)
	Under-fitting (4 Points)
	Over-fitting (4 Points)
	Activation function (4 Points)
	Hyperparameter search (4 Points)

	Feedback

