
ECE324 Fall 2020 Assignment 5

Assignment 5: Subjective/Objective Sentence Classification Using
Word Vectors and NLP

Original Author: Harris Chan
Deadline: Thursday, November 5, 2020 at 9pm
Late Penalty: There is a penalty-free grace period of one hour past the deadline. Any work that
is submitted between 1 hour and 24 hours past the deadline will receive a 20% grade deduction.
No other late work is accepted.

This assignment must be done individually. This assignment is out of 100 points. You can find
the mark associated with each major section. You will be marked based on the correctness of your
implementation, your results, and your answers to the required questions in each section.

Learning Objectives

In this assignment you will:

1. See how text data is processed using the torchtext and spacy libraries

2. Make use pre-trained word vectors as a basis for classifying text

3. Implement a basic, a convolutional and a recurrent neural network architecture for text clas-
sification

4. Use a full train-validate-test data split.

5. Build a simple, interactive application using all three models.

What To Submit

You should hand in the following files:

• A PDF file assignment5.pdf containing answers to the written questions in this assignment.
Graded questions are located the last section; please answer these questions and include them
in your report under the appropriate section number headings.

• Your code can be submitted in two ways: Either as a single assign5.ipynb notebook, or
as individual files based on the skeleton code files: split data.py, main.py, models.py,
subjective bot.py, and any other code files you wrote and used.

• Your 3 saved models model baseline.pt, model rnn.pt, and model rnn.pt.

1 Sentence Classification - Problem Definition

Natural language processing, as we have discussed in class, can provide the ability to work with the
meaning of written language. As an illustration of that, in this assignment we will build models
that classify a sentence as objective (a statement based on facts) or subjective (a statement based
on opinion).

1

ECE324 Fall 2020 Assignment 5

In class we have described the concept and method to convert words (and possibly groups of words)
into a vector (also called an embedding) that represents the meaning of the word. In this assignment
we will make use of word vectors that have already been created (actually, trained), and use them
as the basis for the three classifiers that you will build. The word vectors will be brought into your
program and used to convert each word into a vector.

When working from text input, we need introduce some terminology from the NLP domain: each
word is first tokenized - i.e. made into word tokens. This first step has some complexity – for
example, “I’m” should be separated to “I” and “am”, while “Los Angeles” should be considered
together as a single word/token. After tokenization each word is converted into an identifying
number (which is referred to both as its index or simply as a word token). With this index, the
correct word vector can retrieved from a lookup table, which is referred to as the embedding matrix.

These indices are passed into different neural network models in this assignment to achieve the
classification of a sentence – that it is subjective or objective – as illustrated below:

Tokenize"The fight scenes are fun" 4 427 453 32 249 NN
Model 0.9

Text Sentence Discrete tokens
Output

Probability
(Subjective)

Figure 1: High Level diagram of the Assignment 4 Classifiers for Subjective/Objective

Note: the first ‘layer’ of the neural network model will actually be the step that converts the
index/token into a word vector. (This could have been done on all of the training examples, but
that would hugely increase the amount of memory required to store the examples). From the first
layer on, the neural network deals only with the word vectors.

2 Setting Up Your Environment

2.1 Installing Libraries

In addition to PyTorch, we will be using two additional libraries:

• torchtext (https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.
html): This package consists of both data processing utilities and popular datasets for natural
language, and is compatible with PyTorch. We will be using torchtext to process the text
inputs into numerical inputs for our models.

• SpaCy (https://spacy.io/): For ‘tokenizing’ English words. A text input is a sequence of
symbols (letters, spaces, numbers, punctuation, etc.). The process of tokenization separates
the text into units (such as words) that have linguistic significance, as described above in
Section 1.

If you are using Google Colab, these packages are already installed, but you still must install the
specific english library for your colab environment (every time) with the following code in the
notebook (the exclamation mark causes the code to run in the shell containing your code):

!python -m spacy download en

2

https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html
https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html
https://spacy.io/

ECE324 Fall 2020 Assignment 5

For those using Jupyter Notebook or plain python, you’ll need to install these two packages using
the following commands:

conda install -c pytorch torchtext

conda install -c conda-forge spacy

python -m spacy download en

2.2 Dataset

We will use the Subjectivity dataset [2], introduced in the paper by Pang and Lee [5]. The data
comes from portions of movie reviews from Rotten Tomatoes [3] (which are assumed all be subjec-
tive) and summaries of the plot of movies from the Internet Movie Database (IMDB) [1] (which are
assumed all be objective). This approach to labeling the training data as objective and subjective
may not be strictly correct, but will work for our purposes.

3 Preparing the data (10 points)

3.1 Create train/validation/test splits

The data for this assignment was provided in the file you downloaded from Quercus. It contains the
file data.tsv, which is a tab-separated-value (TSV) file. It contains 2 columns, text and label.
The text column contains a text string (including punctuation) for each sentence (or fragment or
multiple sentences) that is a data sample. The label column contains a binary value {0,1}, where
0 represents the objective class and 1 represents the subjective class.

As discussed in class, we will now use proper data separation, dividing the available data into
three datasets: training, validation and test. Write a Python script (either split data.py or a
notebook code splitdata.ipynb)tosplitthedata.tsvinto3files :

train.tsv: this file should contain 64% of the total data

validation.tsv: this file should contain 16% of the total data

test.tsv: this file should contain 20% of the total data

In addition, it is crucial to make sure that there are equal number of examples in
the two classes in each of the train, validation, and test set. Have your script/notebook
print out the number in each, and provide those numbers in your report. Use this
to check and make sure the balance is there!

Finally, create a fourth dataset, called overfit.tsv also with equal class representation, that
contains only 50 training examples for use in debugging your models below.

3.2 Process the input data

The torchtext library is very useful for handling natural language text; we will provide the
basic processing code to bring in the dataset and prepare it to be converted into word vectors.
If you wish to learn more detail on this, the following tutorial the includes example uses of the
library: https://medium.com/@sonicboom8/sentiment-analysis-torchtext-55fb57b1fab8.
The code described in this section is already present in the skeleton code file main.py.

3

https://medium.com/@sonicboom8/sentiment-analysis-torchtext-55fb57b1fab8

ECE324 Fall 2020 Assignment 5

Below is a description of the code in the skeleton main.py that pre-processes the data:

1. The Field object tells torchtext how each column in the TSV file will be processed
when passed into the data.TabularDataset object. The following code instantiates two
torchtext.data.Field objects, one for the “text” (sentences) and one for the“label”
columns of the TSV data:

TEXT = data.Field(sequential=True,lower=True,tokenize=’spacy’,include_lengths=True)

LABELS = data.Field(sequential=False, use_vocab=False)

Details: https://torchtext.readthedocs.io/en/latest/data.html#torchtext.data.
Field

2. Next we load the train, validation, and test datasets to become datasets as was done in
the previous assignments, with the torchtext method data.TabularDataset.splits.
This method is designed specifically for text input. main.py uses the following code,
which assumes that the tsv files are in the folder data:

train_data, val_data, test_data = data.TabularDataset.splits(

path=’data/’, train=’train.tsv’,

validation=’validation.tsv’, test=’test.tsv’, format=’tsv’,

skip_header=True,

fields=[(’text’, TEXT), (’label’, LABELS)])

Details: https://torchtext.readthedocs.io/en/latest/data.html#torchtext.data.
TabularDataset

3. Next we need to create an object that can be enumerated (Python-style) to be used in
the training loops - these are the objects that produce each batch in the training loop.
The objects in each batch are accessed using the .text field and the .label field that
was specified in the above line.

The iterator for the train/validation/test splits created earlier is done using the data.BucketIterator
as shown below. This class will ensure that, within a batch, the size of the sentences
will be as similar as possible, to avoid as much padding of the sentences as possible.

train_iter, val_iter, test_iter =

data.BucketIterator.splits((train_data, val_data, test_data),

batch_sizes=(args.batch_size, args.batch_size, args.batch_size),

sort_key=lambda x: len(x.text), device=None,

sort_within_batch=True, repeat=False)

4. The Vocab object will contain the index (also called word token) for each unique word
in the data set. This is done using the build vocab function, which looks through all
of the given sentences in the data:

4

https://torchtext.readthedocs.io/en/latest/data.html#torchtext.data.Field
https://torchtext.readthedocs.io/en/latest/data.html#torchtext.data.Field
https://torchtext.readthedocs.io/en/latest/data.html#torchtext.data.TabularDataset
https://torchtext.readthedocs.io/en/latest/data.html#torchtext.data.TabularDataset

ECE324 Fall 2020 Assignment 5

TEXT.build_vocab(train_data,val_data, test_data)

Details: https://torchtext.readthedocs.io/en/latest/data.html#torchtext.data.
Field.build_vocab

4 Baseline Model and Training (10 points)

Using the models.py code, you will first implement and train the baseline model (given
below), which was discussed in class. Some of the code below will be re-usable for the other
two models.

4.1 Loading GloVe Vector and Using Embedding Layer

As mentioned in Section 1, we will make use of word vectors that have already been cre-
ated/trained. We will use the GloVe [6] pre-trained word vectors in an “embedding layer”
(which is just that “lookup matrix” described earlier) in PyTorch in two steps:

1. (As given in the skeleton file main.py code) Using the vocab object from Section 3.2,
item number 4, download (the first time this is run) and load the vectors that are
downloaded into the vocab object, as follows:

TEXT.vocab.load_vectors(torchtext.vocab.GloVe(name=’6B’, dim=100))

vocab = TEXT.vocab

You can see the shape of the complete set of word vectors by printing out the the shape
of the vectors object as follows, which will be the number of unique words in all the
training sets and the embedding dimension (word vector size).

print("Shape of Vocab:",TEXT.vocab.vectors.shape)

This loads word vectors into a GloVe class (see documentation https://torchtext.

readthedocs.io/en/latest/vocab.html#torchtext.vocab.GloVe) This GloVe model
was trained with six billion words to produce a word vector size of 100, as described
in class. This will download a rather large 862 MB zip file into the folder named
.vector cache, which might take some time; this file expands into a 3.3Gbyte set of
files, but you will only need one of those files, labelled glove.6B.100d.txt, and so you
can delete the rest (but don’t delete the file glove.6B.100d.txt.pt that will be created
by main.py, which is the binary form of the vectors). Note that .vector cache folder,
because it starts with a ‘.’, is typically not a visible folder, and you’ll have to make it
visible with an operating system-specific view command of some kind. (Windows, Mac)
Once downloaded your code can now access the vocabulary object within the text field
object by calling .vocab attribute on the text field object.

5

https://torchtext.readthedocs.io/en/latest/data.html#torchtext.data.Field.build_vocab
https://torchtext.readthedocs.io/en/latest/data.html#torchtext.data.Field.build_vocab
https://torchtext.readthedocs.io/en/latest/vocab.html#torchtext.vocab.GloVe
https://torchtext.readthedocs.io/en/latest/vocab.html#torchtext.vocab.GloVe
https://support.microsoft.com/en-ca/help/14201/windows-show-hidden-files
https://apple.stackexchange.com/questions/309450/how-to-unhide-files-on-mac

ECE324 Fall 2020 Assignment 5

2. The step that converts the input words from an index number (a word token) into
the word vector is actually done inside the nn.module model class. So, when defining
the layers in your model class, you must add an embedding layer with the function
nn.Embedding.from pretrained, and pass in vocab.vectors as the argument where
vocab is the Vocab object. The code for this is shown below in the model section, and
is given in the skeleton file models.py.

Details: https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

4.2 Baseline Model

0.9
-0.4
0.2
1.2

The fight scenes are fun
4

0.2
0.1
0.9
-1.5

0.2
-0.1
1.1
0.3

0.1
-0.2
2.1
-1.3

0.5
-0.1
0.3
1.1

0.38
-0.14
0.92
-0.2

Word
Embedding

Average

0.9

Fully Connected

427 453 32 249Vocab Index

Prediction

Figure 2: A simple baseline architecture

The baseline model was discussed in class and is illustrated in Figure 2. It first converts each
of the word tokens into a vector using the GloVe word embeddings that were downloaded. It
then computes the average of those word embeddings in a given sentence. The idea is that
this becomes the ‘average’ meaning of the entire sentence. This is fed to a fully connected
layer which produces a scalar output with sigmoid activation (which is computed inside the
BCEWithLogitsLoss losss function) to represent the probability that the sentence is in the
subjective class.

The code for this Baseline class is given below, and is also provided in the skeleton file
models.py. Read it and make sure you understand it.

class Baseline(nn.Module):

def __init__(self, embedding_dim, vocab):

6

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

ECE324 Fall 2020 Assignment 5

super(Baseline, self).__init__()

self.embedding = nn.Embedding.from_pretrained(vocab.vectors)

self.fc = nn.Linear(embedding_dim, 1)

def forward(self, x, lengths=None):

#x has shape [sentence length, batch size]

embedded = self.embedding(x)

average = embedded.mean(0) # [sent len, batch size, emb dim]

output = self.fc(average).squeeze(1)

Note - using the BCEWithLogitsLoss loss function

performs the sigmoid function *as well* as well as

the binary cross entropy loss computation

(these are combined for numerical stability)

return output

4.3 Training the Baseline Model

Using the main.py code, write a training loop to iterate through the training dataset and
train the baseline model. Use the hyperparameters given in Table 1. Note that we have not
used the Adam optimizer yet in this course; it will be discussed in a later lecture. The Adam
optimizer is invoked the same way as the SGD optimizer, using optim.Adam.

Hyperparameter Value

Optimizer Adam
Learning Rate 0.001

Batch Size 64
Number of Epochs 25

Loss Function BCEWithLogitsLoss()

Table 1: Hyperparameters to Use in Training the Models

The objects train_iter, val_iter, test_iter and overfit_iter described in Section 3.2
are the iterable objects that will produce the batches of batch_size in each training inner
loop step. The torchtext.data.batch.Batch object is given by the iterator, from which
you can obtain both the text input and the length of the sentence sequences from the .text

field of the Batch object, as follows, assuming that batch is the object returned from the
iterator:

batch_input, batch_input_length = batch.text

7

ECE324 Fall 2020 Assignment 5

Where batch_input is the set of text sentences in the batch.

The details on this object can be found in https://spacy.io/usage/spacy-101#annotations-token.

4.4 Overfitting to debug

As was done in Assignment 3, debug your model by using only the very small overfit.tsv
set (described above, which you’ll have to turn into a dataset and iterator as shown in the
given code), and see if you can overfit your model and reach a much higher training accuracy
than validation accuracy. (The baseline model won’t have enough parameters that you can
get an accuracy of 100%; the cnn and rrnn models will have enough). You will need more
than 25 epochs to succeed in overfitting. Recall that the purpose of doing this is to be able to
make sure that the input processing and output measurement is working. So, do not proceed
into the next sections until you’ve achieved 100% training accuracy, because it will be harder
to debug with more data, and whatever the problem is can more easily be found here (such
as mislabelled data, or errors in the data handling; for more suggestions on types of errors,
see Tutorial 4 from October 6.

It is also recommended that you include some useful logging in the loop to help you keep
track of progress, and help in debugging.

Provide the training loss and accuracy plot for the overfit data in your Report.

4.5 Full Training Data

Once you’ve succeeded in overfitting the model, then use the full training dataset to train
your model, using the hyper-parameters given in Table 1.

Using your main.py code (in notebook or raw python form) write an evaluation loop to
iterate through the validation dataset to evaluate your model. We recommend that you call
the evaluation function in the training loop (perhaps every epoch or two) to make sure your
model isn’t overfitting. Keep in mind if you call the evaluation function too often, it will slow
down training.

Give the training and validation loss and accuracy curves vs. epoch in your Report, and
report the final test accuracy. Evaluate the test data and provide the accuracy result in your
Report.

4.6 Saving and loading your model

In your code, save the model with the lowest validation error with torch.save(model,

’model baseline.pt’). You will need to submit this file. See https://pytorch.org/

tutorials/beginner/saving_loading_models.html for detail on saving and loading.

8

https://spacy.io/usage/spacy-101#annotations-token
https://pytorch.org/tutorials/beginner/saving_loading_models.html
https://pytorch.org/tutorials/beginner/saving_loading_models.html

ECE324 Fall 2020 Assignment 5

5 Convolutional Neural Network (CNN) (10 points)

Embedding Dim

Convolutional
Layers with

different filter width

Vector/Embedding

Max-Pooling

Over Words

0.9

Fully Connected

The fight scenes are fun

4 427 453 32 249

Prediction

Figure 3: A convolutional neural network architecture

The second architecture, described in class and illustrated in Figure 3, is to use a CNN-based
architecture that is inspired by Yoon et al. [4]. Yoon first proposed using CNNs in the context
of NLP. You will write the code for the CNN model class within the models.py starter code
with the following specifications:

1. Group together all the vectors of the words in a sentence to form a embedding dim * N

matrix. Here N is the number of words (and therefore tokens) in the sentence. Different
sentences will have different lengths, which is unusual for a CNN but that will be dealt
with in the final pooling step. Note that embedding dim is the size of the word vector,
100.

2. The architecture consists of two convolutional layers that both operate on the word
vector group created above, but with different kernel sizes. The kernel sizes are [k,

embedding dim], and you should use the following values for k ∈ 2, 4. Use 50 kernels
for each of the two kernel sizes. Note that this organization of convolutional layers is
different from your prior use of CNNs in which one layer fed into the next; these are
operating on the same input. Note also, that, even though the kernel sizes span the
entire embedding dimension, you can still use the nn.conv2d method, and explicitly
specify the size of a kernel using the kernel_size=(kx,ky) notation.

9

ECE324 Fall 2020 Assignment 5

3. Use the ReLU activation function on the convolution output.

4. To handle the variable sentence lengths, we perform a MaxPool operation on the con-
volution layer output (after activation), along the sentence length dimension. That
is, compute the maximum across the entire sentence length, and get one output fea-
ture/number from each sentence for each kernel.

5. Concatenate the outputs from the maxpool operations above to form a fixed length
vector of dimension 100 – because each of the two kernel sizes is used 50 times each in
the two different convolutional layers.

6. Finally, similar to the baseline architecture, use a fully connected layer to a scalar
output with sigmoid activation to represent the probability that the sentence is in the
subjective class. (Recall that the BCEwithLogitsLoss function computes the sigmoid
as part of the loss; to actually determine the probability when printing out an answer,
you’ll need to separately apply a sigmoid on the neural network output value.

5.1 Overfit, Training and Test

Once you’ve created the code for the CNN model, follow the same processes described in
Sections 4.3, 4.4, 4.5 and 4.6, except change the file name of the saved model to be model_cnn.

6 Recurrent Neural Network (RNN) (10 points)

The fight scenes are fun
4 427 453 32 249Vocab Index

0.9
-0.4
0.2
1.2

0.2
0.1
0.9
-1.5

0.2
-0.1
1.1
0.3

0.1
-0.2
2.1
-1.3

0.5
-0.1
0.3
1.1

Embedding

h1 h2 h3 h4 h5h0

0.9

Fully Connected

RNN
Hidden

State

Prediction

GRU GRU GRU GRU GRU

Figure 4: A Recurrent Neural Network Architecture

10

ECE324 Fall 2020 Assignment 5

The third architecture, illustrated in Figure 4, is to use a Recurrent Neural Network (RNN)-
based architecture. A recurrent neural network has a hidden state h0 that is initialized at the
start of a sequence of inputs (typically to all zeroes). The network takes in the input - the
vector corresponding to a word in the sentence, xt at each ‘step’ of the sequence, as illustrated
in Figure 4. It computes the new hidden state as a function of the previous hidden state and
input the word vector. In this way the newly computed hidden state retains information from
the previous inputs and hidden states, as expressed in this equation:

ht = f(ht−1, xt) (1)

The final hidden state (hT , where T is the number of words in the sentence), is produced
after the full sequence of words is processed, and is a representation of the sentence just as
the average produced in the baseline above is a representation of the sentence. Similar to the
baseline, we then use a fully connected layer to generate a single number output, together
with sigmoid activation to produce the probability that the sentence is in the subjective class.

Here are some guidelines to help you implement the RNN model in models.py file:

1. You should use the Gated Recurrent Unit (GRU) as the basic RNN cell, which will
fulfill the function of the blue boxes in Figure 4. The GRU takes in the hidden state
and the input, and produces a new hidden state. In the init function of your RNN

model, use the nn.GRU cell (from Pytorch). Set the embedding dimension to be
100 (as that is the size of the word vectors) and select the hidden dimension to be
100.

2. As usual, during training, we send batches of sentences through the network at one
time, with just one call to the model forward function. One issue with this is that the
sentence lengths will differ within one batch. The shorter sentences are padded from the
end onward to the longest sentence length in the batch. PyTorch’s GRU module can
take in a batch of several sentences and return the hidden states for all of the (words
× batch size) in one call without a for-loop, as well as the last hidden states (which is
the one we use to generate the answer).

However, there is a problem if you simply use the last hidden states returned: for the
shorter setences, these will be the wrong hidden states, because the sentence ended ear-
lier, as shown on the left side of Figure 5. Instead, use the nn.utils.rnn.pack padded sequence

function (see documentation https://pytorch.org/docs/stable/nn.html?highlight=

pack_padded_sequence#torch.nn.utils.rnn.pack_padded_sequence) to pack the word
embeddings in the batch together and run the RNN on this object. The resulting final
hidden state from the RNN will be the correct final hidden state for each sentence (see
Figure 5 (Right)), not simply the hidden state at the maximum length sentence for all
sentences.

6.1 Overfit, Training and Test

Once you’ve created the code for the RNN model, follow the same processes described in
Sections 4.3, 4.4, 4.5 and 4.6, except change the file name of the saved model to be model_rnn.

11

https://pytorch.org/docs/stable/nn.html?highlight=pack_padded_sequence#torch.nn.utils.rnn.pack_padded_sequence
https://pytorch.org/docs/stable/nn.html?highlight=pack_padded_sequence#torch.nn.utils.rnn.pack_padded_sequence

ECE324 Fall 2020 Assignment 5

sentence length

ba
tc

h
si

ze

sentence length

ba
tc

h
si

ze

Figure 5: In a batch, each square represents the RNN hidden state at different words in the sequence
(the columns) and input example in the batch (the rows). The shaded cells represent that there
is an input token at that word in the sequence, while a white filled cell indicates a padded input
(with a word vector containing zeroes). Left: If we naively took the hidden at the last column (at
the maximum time step), then we will be getting the hidden state when the RNN has been fed
padding vectors (zeroes). Right: We want to get the RNN hidden state at the last word for each
sequence.

7 Testing on Your Own Sentence (10 points)

In this section, you will write a Python script subjective bot.py or notebook subjective bot.ipynb

that prompts the user for a sentence input on the command line, and prints the classification
from each of the three models, as well as the probability that this sentence is subjective. This
was demonstrated in class, in Lecture 20. Specifically, the ‘bot’ should:

1. Print “Enter a sentence” to the console, then on the next line, the user can type in
a sentence string (with punctuations, etc.). (Hint: you can use the built-in input()

function; also use import readline when you do that.)

2. For each model trained, print to the console a string in the form of “Model [baseline|rnn|cnn]:

[subjective|objective] (x.xxx)”, where x.xxx is the prediction probability that
the sentence is subjective in the range [0,1] up to 3 decimal places.

3. Print “Enter a sentence” prompt again, in an infinite loop until the user decides to
terminate the Python program.

An example output on the console is given below:

Enter a sentence

What once seemed creepy now just seems campy

Model baseline: subjective (0.964)

Model rnn: subjective (0.999)

Model cnn: subjective (1.000)

Enter a sentence

The script can be broken down into several steps that you should implement:

12

ECE324 Fall 2020 Assignment 5

1. Obtain the Vocab object by performing the same preprocessing that was done in Part
3. This object will convert the string tokens into integer.

2. Load the saved parameters for models you’ve trained: model = torch.load(’filename.pt’)

3. You’ll need a tokenizer function, which takes in a string input and converts the words
to tokens using the SpaCy as follows:

import spacy

def tokenizer(text):

spacy_en = spacy.load(’en’)

return [tok.text for tok in spacy_en(text)]

To convert the sentence string that has been input:

tokens = tokenizer(sentence)

Details: https://spacy.io/usage/spacy-101#annotations-token

4. To convert each string token to an integer, use the .stoi variable, which is a dictionary
with string as the key and integer as the value, in the Vocab object as done here:

token_ints = [vocab.stoi[tok] for tok in tokens]

Details: https://torchtext.readthedocs.io/en/latest/vocab.html#torchtext.vocab.
Vocab

5. Convert the list of token integers into a torch.LongTensor with the shape [L,1], where
L is the number of tokens:

token_tensor = torch.LongTensor(token_ints).view(-1,1) # Shape is [sentence_len, 1]

6. Create a tensor for the length of the sentence with the shape [1]:

lengths = torch.Tensor([len(token_ints)])

This will be needed when calling the RNN model.

7. You can convert the torch Tensor into a numpy array by calling .detach().numpy()

on the torch tensor object before printing so that the print formatting will match the
examples.

13

https://spacy.io/usage/spacy-101#annotations-token
https://torchtext.readthedocs.io/en/latest/vocab.html#torchtext.vocab.Vocab
https://torchtext.readthedocs.io/en/latest/vocab.html#torchtext.vocab.Vocab

ECE324 Fall 2020 Assignment 5

8 Experimental and Conceptual Questions (50 Points)

1. (5 points) After training on the three models, report the loss and accuracy on the
train/validation/test in a total. There should be a total of 18 numbers. Which model
performed the best? Is there a significant difference between the validation and test
accuracy? Provide a reason for your answer.

2. (5 points) In the baseline model, what information contained in the original sentence is
being ignored? How will the performance of the baseline model inform you about the
importance of that information?

3. (15 points) For the RNN architecture, examine the effect of using pack padded sequence

to ensure that we did indeed get the correct last hidden state (Figure 5 (Right)). Train
the RNN and report the loss and accuracy on the train/validation/test under these 3
scenarios:

(a) Default scenario, with using pack padded sequence and using the BucketIterator

(b) Without calling pack padded sequence, and using the BucketIterator

(c) Without calling pack padded sequence, and using the Iterator. What do you
notice about the lengths of the sentences in the batch when using Iterator class
instead?

Given the results of the experiment, explain how you think these two factors affect the
performance and why.

4. (10 points) In the CNN architecture, what do you think the kernels are learning to
detect? When performing max-pooling on the output of the convolutions, what kind
of information is the model discarding? Compare how this is different or similar to the
baseline model’s discarding of information.

5. (10 points) Try running the subjective bot.py script on 4 sentences that you come
up with yourself, where 2 are definitely objective/subjective, while 2 are borderline
subjective/objective, according to your opinion. Include your console output in
the write up. Comment on how the three models performed and whether they are
behaving as you expected. Do they agree with each other? Does the majority vote of
the models lead to correct answer for the 4 cases? Which model seems to be performing
the best?

6. (5 points) Describe your experience with Assignment 4:

(a) How much time did you spend on Assignment 4?

(b) What did you find challenging?

(c) What did you enjoy?

(d) What did you find confusing?

(e) What was helpful?

14

ECE324 Fall 2020 Assignment 5

References

[1] Internet movie database. https://www.imdb.com/. Accessed: 2018-09-15.

[2] Movie review data. https://www.cs.cornell.edu/people/pabo/movie-review-data/.
Accessed: 2018-09-15.

[3] Rotten tomatoes. https://www.rottentomatoes.com/. Accessed: 2018-09-15.

[4] Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1746–1751. Association for Computational Linguistics, 2014.

[5] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity.
In Proceedings of ACL, pages 271–278, 2004.

[6] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors
for word representation. In Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, 2014.

15

https://www.imdb.com/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.rottentomatoes.com/

	Sentence Classification - Problem Definition
	Setting Up Your Environment
	Installing Libraries
	Dataset

	Preparing the data (10 points)
	Create train/validation/test splits
	Process the input data

	Baseline Model and Training (10 points)
	Loading GloVe Vector and Using Embedding Layer
	Baseline Model
	Training the Baseline Model
	Overfitting to debug
	Full Training Data
	Saving and loading your model

	Convolutional Neural Network (CNN) (10 points)
	Overfit, Training and Test

	Recurrent Neural Network (RNN) (10 points)
	Overfit, Training and Test

	Testing on Your Own Sentence (10 points)
	Experimental and Conceptual Questions (50 Points)

