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Abstract 

If conversational agents can take on a therapeutic role, they may provide a scalable way to help 

many more people suffering from addictions, where and when they need it. Motivational 

Interviewing (MI) is a validated therapy for behaviour change that has been applied to many 

behaviours, including helping smokers to quit. A key technique in MI is to ask open-ended 

questions concerning a negative behaviour, and then provide a reflection of the response. 

Reflections can be simple restatements of the response, or more complex inferences drawing on 

prior statements or general knowledge. This thesis presents a method of generating simple and 

complex reflections with GPT-2 and GPT-3, transformer-based generative language models, from 

open-ended prompts and free-form responses. The models are used both in few-shot mode and are 

fine-tuned. We show that the few-shot approach can produce very promising simple and complex 

reflections even in low-data environments and is significantly improved by fine-tuning. However, 

some of the generated reflections are poor – either off-topic or contradictory to the therapeutic 

goal. To address these reflections, we developed a classifier that can determine if the reflection 

meets an acceptable level of quality and is used to filter poor quality generated reflections. The 

classifier is trained using labels provided by an MI expert, on a corpus of questions, responses, and 
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reflections obtained from trials of a previous smoking cessation chatbot. It achieved an accuracy 

of 81%, a sensitivity of 90%, and a specificity of 71%. We show that with just the few-shot learning 

method, GPT-2 produces acceptable reflections with a 54% hit rate, and GPT-3 improves that to 

89%. Combining GPT-2 with the classifier as a filter, the system achieves a 73% hit rate of the 

time. The fine-tuned GPT-2 language natively achieves an 80% hit rate, and 81% with the classifier 

as a filter.   
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Chapter 1  
Introduction 

 

1.1 Automating Mental Health 

Mental health disorders are the most underserved of all medical fields, and there are insufficient 

practitioners to serve the world-wide need [1,2,3]. Therapeutic conversations [4,5,6] form an 

important part of the treatments available for mental health disorders. If aspects of these 

conversations could be automated and shown to have therapeutic impact, they could provide far 

greater access to care than is currently possible by being delivered through any internet portal.  

An automated conversational agent that can mimic a psychotherapist is likely far beyond current 

capabilities, as this task seems equivalent to building a General AI [7,8]. However, some widely 

used (and validated) therapies have a structure that may lend themselves to automation using 

natural language processing (NLP) techniques. This structure, together with recent advances in 

language models that have exhibited an ability to carry a conversation [9,10,11,12] may provide a 

pathway to creating an effective therapeutic conversation.    

This thesis focuses on a specific therapy called Motivational Interviewing (MI) [6] and addresses 

a specific condition: addiction to smoking.  We narrow the focus to the generation of a specific 

kind of conversational response within MI, called a reflection, that is broadly used as a part of MI 

therapy but also has application in many other kinds of talk therapy [13,14]. An MI-style 

conversational reflection has two main types: a simple reflection, which is a re-statement of 

something that a patient says and is used to encourage the patient to keep talking. A complex 

reflection makes an inference or provides an insight by connecting the patient’s recent words either 

to something relevant and useful conveyed by the patient in the past, or to a helpful insight from 

general knowledge. The purpose of reflections in a smoking addiction MI conversation is to help 

the patient continue to contemplate their smoking behaviour, and to engage in self-reflection. This 

kind of contemplation can lead to the resolution of the ambivalence that many smokers have 

towards the smoking habit and help move them towards their decision to quit [6,15]. The automatic 

generation of appropriate reflections is key to this process, and we believe, could be useful in the 

many other therapies that also require the patient to engage in self-reflection [16,13]. 
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There have been several previous attempts to create automated MI conversations 

[17,18,19,20,21,22,23,24].  However, in most cases the reflections that are presented to the 

subjects are pre-written by humans, and the choice of reflection is based on either an automated 

classification of the subject’s input [17,24] or through topic modeling based on keywords [21]. 

Using pre-written responses makes the bot behave predictably but makes it difficult to reflect on 

specific ideas the subject brings up in the conversation. These reflections are often shallow and 

broadly applicable, reducing their therapeutic effect compared to more personalized reflections. In 

this work we seek a way to create reflections that are generated directly from what the subjects 

say, rather than human-scripted reflections. This method might enable automated MI systems to 

have multi-turn conversations with responses that are unique to each person, rather than selecting 

from a limited list of scripted and therefore more generic responses. This work also demonstrates 

a method to deploy such a reflection generation system using off-the-shelf tools from cloud 

providers for use in downstream applications (for example an MI chatbot web application) by 

deploying the system using AWS [25]. Overall, this work most closely relates to Shen et. al’s [26] 

work on automatically generating reflections, which we describe in more detail in Chapter 2.  

MI conversations begin with open-ended questions from a counselor which produce free-form 

responses from patients. The goal of this work is to generate an appropriate reflection, 

automatically, given an input that is the question together with the response. We are partly 

motivated by recent progress in language models has exhibited remarkable conversational fluency 

in the generation of text [8,27,9,11,10,12]. The few-shot approach to language tasks that was 

suggested in [9] may allow such models to be used to produce good reflections when conditioned 

with only a few examples of good reflections. In this work, we show that both OpenAI’s GPT-2 

[12] and GPT-3 [9] language models produce good simple and complex reflections in an MI-style 

smoking cessation conversation. However, some of the reflections are inappropriate, motivating 

the development of a classifier that can select relevant and good quality reflections. The classifier 

is trained and validated with data that is labelled by an expert MI counselor. We measure the 

difference in quality of reflections generated by GPT-2 and GPT-3, using both hand labels and the 

classifier. We show that GPT-3 is more likely to produce a good reflection, but that with the use 

of the classifier as a filter the GPT-2 model can be significantly improved and require less 

computational power. We also show that using a fine-tuned GPT-2 model significantly improves 

the reflection generation rate. 



3 

 

1.2 Focus and Goals 

The objective of this work is to explore if it is possible to replicate specific therapist behaviour and 

skills used during a counseling session with a patient in an automated way. Though many validated 

therapeutic styles target behaviour change, this work focuses on replicating the skill of reflective 

listening, a major component of Motivational Interview-style counseling, in the context of 

smoking cessation. With this focus in mind, our goal is to determine if it is possible to use modern 

language models to generate an acceptable MI reflection that follows a patient’s response to a 

prompting question in an MI conversation. 

1.3 Contributions 

To achieve the goal stated above, this work makes the following contributions: 

• Demonstrates a way to use GPT-2 [12] and GPT-3 [9] based language models and their 

few-shot learning properties to generate acceptable MI reflections in a low-data setting. 

• Demonstrates a method to detect and filter low-quality generated reflections using a fine-

tuned BERT classifier with 81% accuracy, 0.90 sensitivity, and 0.71 specificity.  

• Builds a system combining a GPT-2-based reflection generator and the reflection filter to 

build a system that produces acceptable reflections 73% of the time. 

• Demonstrate that with enough training data in a specific domain, a fine-tuned GPT-2 based 

reflection generator can produce acceptable reflections 80% of the time in the same 

domain. 

• Demonstrates how a reflection generation system can be deployed using off-the-shelf cloud 

infrastructure through AWS. 

1.4 Organization  

The remainder of this thesis is organized as follows: Chapter 2 reviews relevant background on 

the Motivational Interviewing approach, the language models used to generate and classify 

reflections, and related work on automated MI conversations. Chapter 3 describes the dataset that 

is used to condition/train the generator and classifier. Chapter 4 describes the reflection generation 

methodology, and Chapter 5 describes the training and performance of the classifier. Chapter 6 

presents the performance of the GPT-2 model and the GPT-3 model on reflection generation using 

few-shot learning, the GPT-2 model together with the classifier as a filter, and the GPT-2 model 
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fine-tuned with MI conversation data. This chapter also presents a qualitative analysis of some of 

the generated outputs for each model. Chapter 7 demonstrates how the reflection generation system 

was deployed to be used with downstream MI-based web applications. Chapter 8 discusses the 

limitations of the presented work, concludes, and gives an overview of future directions for this 

project. 
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Chapter 2  
Background and Related Work 

The first Section of this chapter provides relevant background on the Motivational Interviewing 

(MI) therapy approach. The second Section is a survey on the NLP landscape relevant to this 

work. The final Section reviews relevant prior work on the automation of MI. 

 

2.1 Reflections and MI 

MI [6] is a widely-used counseling approach to help people move towards positive behavior 

change. It has been used to target many health behaviours and has been shown to be a successful 

therapeutic tool for many types of behaviour change [28] , including smoking [15]. A key goal of 

the approach is to move a person away from their ambivalence about changing a behavior, a state 

which leaves them unmotivated to change. MI counselors use a structured conversation that 

encourages a patient to contemplate the roots of the behaviour and guides them to overcome this 

ambivalence.  

A key skill used by MI counselors is called reflective listening [6,13,16]. This includes careful 

listening to a patient and responding with words that both reflect what is said, and guides the 

patient towards continued exploration of their thoughts and feelings about change. These 

responses, called reflections, can be simple or complex. A simple reflection repeats or rephrases 

the patient’s words to convey understanding. A complex reflection makes a relevant and helpful 

inference based either on previous statements by the patient or on the meaning within a patient’s 

words. A good reflection invites the patient to continue their own internal exploration about the 

behaviour. The thesis of MI is that doing so will help the patient come to their own conclusion to 

make the change in behaviour. Table 2.1 shows three examples of simple and complex 

reflections that might be given in response to a patient statement. 

Patient Statement Simple Reflection Complex Reflection 

I don’t think I have a problem 
with smoking, I don’t smoke 
that much, and I can control 
my urges when I want. 

You don’t believe smoking is 
a problem for you. 

You don’t believe there is a 
problem with your smoking 
habits, and you don’t see 
these sessions are helpful. 
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I really want to quit, but I get 
headaches if I don’t have a 
few each day. 

You get headaches if you 
don’t smoke. 

You’re frustrated that you’re 
not able to stop. 

I can’t just suddenly stop 
smoking; it would make my 
friends feel awkward when 
we hang out and they all 
smoke. 

You’re worried about ruining 
the mood when you hang out 
with friends. 

It sounds like you’re afraid 
that you won’t be able to 
socialize with your friends 
without smoking together. 

Table 2.1: Examples of Simple and Complex Reflections 

An MI counselor requires significant dedicated training in MI which would typically be in addition 

to training in a social science or medical discipline. Counselors are expensive, requiring a full-

time salary but can help only a limited number of people [29]. If an automated and effective 

counselor could be created, it would allow far greater scale of access to help at much lower cost. 

The automatic generation of good quality reflections is a first step towards this goal. 

2.2 NLP and Language Models 

The field of Natural Language Processing (NLP) concerns the research and application of 

computational techniques to represent and manipulate natural language text and speech [30]. 

Recently, significant emphasis has been placed on using neural networks to build NLP systems for 

language representation [31,32], classification [33,34,35,36], and dialogue generation 

[10,37,38,39,40]. Of these, language models based on the Transformer architecture [41] have had 

the most success in generating human-like speech [37,42,43] and in text classification [44]. 

2.2.1 Generative Models 

This work focuses on a specific type of language model known as an autoregressive language 

model (LM), which generate text by taking a sequence of tokens (that represent words) as an input 

and producing subsequent tokens/words [9,12]. The training objective of an autoregressive LM 

optimizes the likelihood of the next token given a series of input tokens. Autoregressive LMs also 

allow fine-tuning of the LM itself on downstream tasks, a feature essential in domains that have 

sparse training data, such as the conversation therapy arena in this work. 
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Fine-tuning for autoregressive LMs is a form of transfer-learning that allows LMs that have been 

pre-trained on one objective to be further trained on a separate objective to improve performance 

in a specific domain. In this work, finetuning is done on autoregressive LMs to improve their 

performance on MI-style dialogue containing a prompt, response, and reflections by further 

training the models with example dialogue. 

One family of autoregressive languages models that have been very successful in various language 

modelling tasks is OpenAI’s GPT-2 (Generative Pre-trained Transformer 2) [12], and its more 

recent larger variant, GPT-3 [9]. GPT-2 employs the multi-headed self-attention decoder 

Transformer block [45,46], which is a slightly modified version of the decoder block described by 

Vaswani et al [41]. A key feature of self-attention is the efficient encoding of long-range 

dependencies in text, compared to earlier text-generation models based on recurrent neural 

networks [35,36]. The attention layers do this because they have visibility over a large context 

window of the input. Figure 2.1 illustrates the Decoder layer and how a stack of decoders are used 

to form GPT-2, adapted from [46,45,12]. 

Figure 2.2: GPT-2 Model Architecture Figure 2.1: GPT-2 Model Architecture 
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The GPT-2 model [12] has 1.5 billion parameters and was pre-trained using the WebText [47] 

language corpus internal to OpenAI, comprised of 40GB of internet text. The dataset was curated 

with an emphasis on document quality, only including websites that are outbound links from 

Reddit with significant user engagement. It comprises text from over eight million documents and 

does not include text from websites that are present in other popular textual datasets such as 

Wikipedia.  

The GPT-3 model  [9] has 175 billion parameters and is trained on 499GB of text data from 

multiple datasets: Common Crawl from 2016-2019 [48], WebText, Books1 and Books2 

(collection of books and movie script text data) [49], and English-language Wikipedia [50].  

In this work, we make use of the pre-trained GPT-2 and GPT-3 models to generate reflections 

using few-shot learning [9]. In [9,10] the term ‘few-shot learning’ is defined differently than the 

original notion [51,38] of having few training examples that fine-tune the model parameters.  Here, 

rather, the input to the model (as opposed to the training samples) are several complete examples 

of the text generation task itself. Each example consists of the context and desired completion 

(which is what the generated text should look like). After the examples, the model is given a final 

context, and from which it generates a completion. The presentation of the examples to the model 

input is referred to as ‘priming’ or ‘conditioning’ the model. 

The examples that form the input to the GPT-2 and GPT-3 model are first converted from their 

text form to an embedding, using a tokenizer. Our work uses the tokenizers provided by the 

HuggingFace library [52]. Then the inputs are passed through a series of Decoder layers, as shown 

in Figure 2.1. The exact number of Decoder layers is determined by the size of the model used. 

The standard GPT-2 model has 12 Decoder blocks; the GPT-2 XL model used in this work has 48. 

Once the input has passed through the decoder blocks, it is passed through a linear and softmax 

layer, which produces a vector with the output probability for each token in the vocabulary. A 

decoding strategy is then used to select the next token from this distribution, the methods for which 

are described in Table 2.2. The token is then appended as part of the input and the entire process 

repeats until an ‘end_of_sentence’ token is reached, at which point the generation is complete and 

the tokens can be converted back into text form.  

GPT-2 and GPT-3 are fixed-length models, meaning the amount of conditioning presented to these 

models is limited by the maximum size of the input available to the model. The maximum size of 
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the inputs to GPT-2 is 1024 tokens, and for GPT-3 it is 2048 tokens. In general, larger/more 

conditioning generates better completions  [9]. Adjustments to the GPT-2 architecture have been 

proposed to address this limitation by turning it into a model with unbounded context by 

implementing a recurrence mechanism [53]. There are other models such as the Transformer-XL 

[27] and XLNet [54] that can handle much larger context windows, however these models require 

fine-tuning to perform well on domain-specific tasks. 

Other factors that influence the quality of the generated text in any autoregressive language model 

is the choice of decoding strategy, which is the algorithm used to select the next word to be 

generated given the probabilities across the vocabulary [9]. There are significant differences in the 

quality of the text generated between different decoding strategies, which are described in Table 

2.2 along with the parameters that affect the strategy. A greedy approach will select the most word 

with the highest probability, given all the previous words but typically does not produce a high 

probability final text, with multiple words. More complex search-based methods such as 

beamforming [55], are better, but require significantly more computation due to many more 

invocations of the model inference. It has also been shown that the volatility inherent in human 

dialogue is best mimicked with a sampling technique such as top-k, or top-p (nucleus) sampling 

[55]. GPT-2 has a choice between greedy decoding (with no parameters), search-based decoding 

with beam search (which uses the number of beams as the parameter), and sampling decoding 

methods (which uses a combination of top_k and top_p sampling). A repetition penalty [56] is also 

used to reduce the likelihood of a previously input or generated token to be repeated.  

 

Decoding Method Description Decoding Parameters 

Greedy At each step, select the highest 

probability token to be part of 

the output. Repeat until 

stopping token reached. 

None 

Beam-Search At each step, keep track of the 

num_beams highest 

probability sequences. Repeat 

until stopping token reached 

for each beam, then return the 

highest likelihood sequence. 

num_beams: The number of 

sequences of tokens to track as 

candidate completion 

sequences. 
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Sampling At each step, sample from 

either the top_k number of 

tokens or from the number of 

tokens corresponding to the 

top_p probability. Repeat 

until stopping token reached. 

Temperature: adjusts the 

differences in probabilities 

between the most likely and 

least likely tokens. 

Temperature of 0 forces the 

selection of the most likely 

word (greedy) while an 

infinite temperature will 

degenerate the distribution to 

the uniform distribution and 

make every token equal 

probability. 

top_k: the number of highest 

probability tokens to sample 

from. 

top_p: threshold for the sum 

of probabilities of the highest 

probability tokens to consider 

when sampling. 

Table 2.2: GPT-2 Decoding Strategies 

2.2.2 Text Sequence Classification Models 

Also relevant to this work is the use of a second model to classify generated text to filter out low-

quality generation. A previous system that took this approach is the DialoGPT system [40].  It uses 

a maximum mutual scoring function to rank generated text to filter bland and generic outputs. In 

Chapter 5 we describe a simpler approach using a fine-tuned text classifier as a secondary model 

to filter out low quality reflections.  

Text sequence classifiers come in two flavours: rule-based and machine learning-based methods. 

Rule-based models make use of hand-crafted features that are then used in a classification model 

to classify text sequences. One popular method of deriving hand-crafted features is using the bag 

of words (BoW), combined with a simple classifier (Naïve Bayes, Support Vector Machines, 

hidden Markov Models) [44]. Although rule-based methods had early success with text sequence 

classification, they required extensive domain knowledge and feature engineering. The features 

were also static; thus, they could not be improved upon by using the growing number of text 

corpora that are available [44]. 
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The machine learning-based methods address many of the weaknesses of rule-based methods, with 

the caveat that large text corpora training data are a required for good performance. These model 

types are used to derive continuous low-dimensional representation of features using vectors, 

commonly referred to as embeddings, that can be used in downstream tasks for text sequence 

classification. Early machine learning-based methods, such as latent semantic analysis (LSA) [31], 

suffered from low parameter sizes and small training corpora, thus they did not perform as well as 

rule-based methods [44]. More recent methods used significantly larger models and corpora with 

billions of words and perform significantly better than rule-based methods [44]. Embedding 

models such as Word2Vec [32] and ELMo [57] have been very successfully used for text-sequence 

classification tasks using Long-Short Term Memory (LSTM) models [34,33]. Although these 

models performed well generally, they needed to be fully trained from scratch for each task, 

reducing these models’ utility in low-data domains. 

A newer model architecture based on the transformer architecture [41] has been shown to be 

significantly more powerful for text sequence classification tasks than its predecessors. The 

Bidirectional Encoder Representation from Transformers (BERT) [11] model uses Masked 

Language Modeling (MLM) as a pretraining step to learn its representation of words. MLM works 

by masking a subset of the input, and then having the model predict those masked words. In 

addition, BERT combines this task with the task of predicting if a second sentence logically or 

naturally follows from the first. This combined training objective allows BERT to encode 

relationships between tokens and their positions in a text sequence and to learn entailment [44] 

relationships from text sequences.  

Once the pre-training step is complete, the BERT model can be augmented by appending various 

neural network layers to its outputs. The augmented model can then be further fine-tuned on a 

small dataset for specific natural language understanding (NLU) tasks, including classifying 

sequences of texts based on specific characteristics. For example, BERT can be fine-tuned to detect 

if question-answer pairs make sense. It can also do general textual entailment between two 

sequences of texts [44]. In Chapter 5 we use a fine-tuned BERT model to classify reflections, as a 

filter on the generated reflections. 
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2.3 Related Work on Chatbots for MI 

There has been a small number of previous chatbots that used Motivational Interviewing 

approaches for behaviour change. That prior work was in several domains, including stress 

management [21], sexual health education [39], and smoking cessation [17]. There are also two 

other studies of the use of MI chatbots, that are clinically-oriented and so do not provide details 

on the design and engineering of the system itself [23,58]. 

Park et al. designed a qualitative case study for a chatbot that conducts a brief MI session with 

university students [21]. The researchers constructed pre-written responses in four MI categories 

of counselor statements: giving information, asking questions, providing reflections, and MI-

adherent statements. The responses were designed to be generic enough that they could be used in 

many conversational contexts. The chatbot responded to statements by selecting from the set of 

responses based on specific keywords present in the statements. The researchers found that the 

students responded well to the chatbot’s open-ended questions but did not relate strongly to the 

reflective and affirming statements, since these statements did not directly address what the 

students had said. The participants felt the chatbot could be improved if it were able to give more 

contextual replies and informational support. The present work addresses this issue directly by 

generating a unique reflection from the preceding question and response.  

A second prior effort where MI chatbots have had some success is providing sexual health 

information through Facebook [39]. This system is designed to address the ‘giving information’ 

component of the MI conversation, specifically providing information about HIV/AIDS. It uses a 

question-answer corpus to train a response classifier to rank potential responses to a user’s 

questions and presents the most likely response while accounting for repetitiveness. Here the 

responses are also pre-written, but because there is a larger set to select from, it more likely to be 

responsive. The context of providing information is also more straightforward than that of making 

reflections, the subject of the present work. 

A more complete automated MI chatbot targeting a specific behaviour was created by Almusharraf 

el al. [17,59]. The researchers designed a fully automatic MI-style chatbot capable of conducting 

a conversation relating to an individual’s reasons for smoking. Their system followed a special 

form of MI known as the running head start technique [6]. The chatbot identified a person’s 

reasons for and against smoking by asking open-ended questions and classifying their responses 
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into one of twenty-one categories. The system was evaluated with 121 participants that produced 

over 6568 responses to the chatbot. Though a significant portion of participants (35%) found their 

interactions with the chatbot helpful in getting them to think about their smoking, there were some 

weaknesses also identified. The conversation was specific to the running head start method and 

does not generalize beyond that; it also cannot respond to participant statements outside of the 

scope given by the smoking reasons. In addition, the structure of the responses was often felt by 

the participants to be repetitive, as they were also scripted and had a repetitive structure. 

In the most relevant prior work to the present one, Shen et al [26] explored how generative models 

can be used to create reflections that could be used in actual MI conversations. Their work focuses 

on trying to reproduce reflections from pre-existing clinical conversations.   The goal was to see 

how closely a GPT-2 based language model can reproduce the actual reflections given by the 

therapists and counselors from those conversation sessions. The authors demonstrate that it is 

possible to produce compelling free-form reflections in a therapeutic context using a transformer-

based generative language model.  They showed that it performs better than standard seq2seq-type 

models. Their approach is to first domain-adapt a GPT-2 based model on transcripts of videos 

from Alexander Street Press and then to fine-tune the model using an MI counseling dataset [60]. 

The authors then evaluate the GPT-2 model’s ability to generate reflections given a subset of 

dialogue history. They also explored how adding more context, by adding reflections from similar 

conversations as part of the input, changes the quality of the generated reflections. The authors 

then evaluated the reflections produced by GPT-2 on how similar they were to the actual 

reflections from the context conversations, as well as manually labeling the generated reflections 

on the quality of the grammar, reflection-likeness, and relevance. They found that the GPT-2 based 

models perform better than the baseline seq2seq models on the generation task. Adding similar 

reflections to the context slightly improves the similarity of the generated reflections to the ground 

truth, though not in all cases. Their qualitative analysis also show that the generated reflections 

were relevant, high quality (in terms of grammar and structure) and had high reflection-likeness.  

All four of these studies cited a need for the chatbot to provide more free-form, contextual 

responses to the user’s statements or queries, described below in Chapter 6. 
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Chapter 3  
Dataset and Therapeutic Context 

This chapter describes the data set used in this work. The first section gives an overview of the 

type of data required to achieve the goal of this work. The next section describes the source dataset. 

The third section details how this dataset was enhanced to provide training data for few-shot 

reflection generation and reflection classification. 

 

3.1 Overview of Required Data 

The goal of this work is to automatically generate a reflection, in the context of behaviour change 

therapy for smoking cessation. The input to this process is an open-ended question/prompt, 

together with the response from a patient. The output is a reflection as described in Section 2.1. 

We have also noted the need for a classifier that can detect good quality reflections, ultimately for 

use in filtering the generations, but also useful for measuring the quality of the unfiltered 

generation process. 

For both tasks, a dataset is required that contains prompts, responses, and reflections. Ideally these 

would come from real counselors and their patients engaged in MI counseling sessions, but such 

counseling transcripts are protected by medical privacy laws and regulations. Fortunately, we have 

access to data from our previous study, in which we prototyped a different MI-oriented chatbot 

[59,17]. It provides us with 204 conversations to mine for appropriate prompt-response pairs. The 

next Section describes this dataset and the original experiment from which the data was collected 

in more detail. 

3.2 Source Dataset 

We collected transcripts from the deployment of a previous MI-oriented chatbot that explored an 

individual’s reasons for smoking [59,17]. The transcripts contain open-ended questions from the 

chatbot asking for the participant’s reasons for and against smoking. The bot then classified each 

reason into one of 21 categories, and then selected a reflection based on that classification from a 

human-authored set. Subsequently, the chatbot asks the participant to recall situations where the 

reason was in play – for example, ‘recall a time when you were stressed.’ It asked the participants 
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to describe a time that this reason caused them to smoke. In addition, they were asked to describe 

a time that they did not smoke with that reason in play. Finally, the participant was asked to say 

what enabled them to resist smoking in the case that they smoked, compared to the time that they 

did not smoke. This last question was a key part of the conversation, as the intention was to evoke 

contemplation within the participant, on what gave them the ability to resist the addiction [59,17]. 

From each transcript in this dataset created by Almusharraf et al. [59,17], we extracted pairs of 

utterances. The first utterance was the question asked by the chatbot itself, with the second 

utterance being the response from the participant. We then manually reviewed this collection of 

utterance pairs in two steps. The first step was to discard any utterance pairs where the first 

utterance was not an open-ended question (where the possible answers were limited to specific 

responses – for example ‘yes’ or ‘no’). Secondly, we reviewed the remaining utterance pairs based 

on whether the participant responses could (and should) be reflected upon, discarding any 

utterance pairs that do not warrant a reflection.  

The resulting dataset consists of 1665 utterance pairs where the first utterance is the prompting 

question, the second being the participant response. However, this dataset does not have the 

(required) reflections that are needed for few-shot generation (as described in Chapter 2 and 4, 

which requires a completion) and classifier training (described in Chapter 5). The prior study did 

not have the capability of generating a free-form reflection. In the next Section we describe how 

this dataset was modified and enhanced for both the few-shot reflection generation task and for 

the classifier training task. 

3.3 Enhancing Dataset for Few-Shot Reflection 
Generation & Classification 

The dataset described above contains utterance pairs of prompts and responses. To create high 

quality conditioning examples that can be used in the few-shot reflection generation task, we first 

manually constructed a set of high-quality reflections for each prompt-response pair in the dataset, 

to form the requisite completions.  

The creation of good-quality reflections requires expertise in the field of motivational 

interviewing, which we gained in two ways: first, the authors undertook a training course in MI, 

and also read and reviewed a fundamental text in the field [6].  We then created 20 reflections, 
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manually, to go along with 20 of the prompt-responses. Using the few-shot priming approach we 

generated 369 reflections (based on 123 different prompt-response pairs, reflected three times 

each) using the few-shot approach described in Chapter 4. 

Each of these 369 reflections were then labelled by an MI expert practitioner at the Centre for 

Addiction and Mental Health in Toronto. The MI expert also provided adjustments to poor quality 

generated reflections to improve the dataset.  

The reflections were given a binary label with ‘0’ meaning that the reflection is not appropriate to 

the prompt and response, and ‘1’ meaning that the reflection is consistent with MI. The reflections 

and the corresponding prompts and responses that received a label of 1 were exclusively used as 

the set from which examples were drawn for the few-shot reflection generation task. This dataset 

will be referred to as the priming set. 

Using the priming set, we were able to generate and label many more prompt-response-reflection 

triplets that were of good quality over multiple experiments. Due to the generative nature of the 

task and the fact that the overall dataset was collected over many reflection generation experiments 

with varying decoding parameter choices (described in Chapter 4), we were able to produce 

multiple distinct reflections for each prompt-response pair. These reflections were then labelled 

by non-expert (student) labellers and left us with a total of 3301 prompt-response-reflection 

triplets, 39% of which were positive and 61% were negative. This set of prompt-response-

reflection-label collection was then used as the training data for the reflection classification task, 

described in Chapter 5. 
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Chapter 4  
Few-Shot Reflection Generation Methodology 

Modern transformer architectures are pre-trained on large corpora of text, so they are already 

capable of generating grammatically correct text given a seed text. The seed text can be either an 

example text showing how to form a completion, or a written description of what the completion 

should be [9,11,42,10]. In this Chapter, we describe how transformer models can be used to 

generate text that is MI consistent, in a domain with low data availability. We employ two 

approaches: few-shot learning (which does not require model training) and fine-tuning (which does 

require model training). 

As described in Chapter 2, a reflection is a response to a prior open-ended question (the prompt) 

and the response from a patient. The reflection generation task is to produce a reflection given the 

prompt and response. We describe the reflection generation process by first describing the few-

shot learning methodology using GPT-2 and GPT-3 (introduced in Chapter 2) in the first Section. 

The first subsection explores how the number of conditioning examples affects the quality of the 

generated reflections while the second subsection describes how different decoding parameters 

affects the quality of generated outputs, and which set of parameters were used during generation 

for the remainder of this work. The second Section describes the fine-tuning steps used with GPT-

2 to attempt to improve its native reflection generation rate. 

 

4.1 Few-Shot Learning With GPT-2 and GPT-3 

We first employ the few-shot learning method (described in Section 2.2.1) using the GPT-2 [12] 

and GPT-3 [9] models for the reflection generation task. The GPT-2 pretrained models are easily 

accessible from the Huggingface library [52]. We were able to access the GPT-3 pretrained models 

from OpenAI due to a generous program from OpenAI that enabled several projects at the 

University of Toronto to access and run the large models, but within a fixed budget. As such, we 

decided to explore the various parameters and conditions needed to create good reflections mostly 

with the GPT-2 model given the constrained access to GPT-3. 

The context of the input is the prompt and the response whereas the desired completion is the 

reflection. The few-shot learning method [9] requires several examples of the context and 
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completion to be prepended to the specific input context for which a completion is desired. Since 

the GPT-2 and GPT-3 models have finite context windows, the maximum number of example 

context-completions is limited. For GPT-2 the approximate example limit is eight, and for GPT-3 

is it roughly 12. These numbers are determined by dividing the context window size by the average 

size of context-completions in the dataset. However, the exact number of examples may vary 

because the size of the examples themselves vary. So, in the case the input token was greater than 

the context size limit (which did happen occasionally) the input was truncated from the start until 

the input was equal to the maximum number of tokens.  

The prepended examples are drawn from the priming set described in Section 3.2. According to 

Brown et al. [9], the examples and the final context must be constructed in a specific way, with 

delineators between the elements of the context and completion. We chose to prepend the prompt 

with the identifier ‘Prompt: ’, and on the next line we prepend the response with ‘Response: ’, 

followed by another line where the reflection is prepended with ‘Reflection: ’. To distinguish 

between each example, they are separated with a blank line. The final prompt has one line for the 

prompt, and a second line for the response. The response line is appended with a newline character. 

In the case of GPT-2, the entire input is then passed through the pre-trained GPT-2 tokenizer from 

the HuggingFace library, based on byte-level byte-pair-encoding [52]. The generator then follows 

the examples to produce a completion, which is usually (but not always) of the form ‘Reflection: 

{some text}’. If the generator fails to produce output in this form, we reject the output and record 

it as a blank string. Figure 4.1 presents an example of the full few-shot generation input with three 

example context-completion priming pairs and a final context without the completion. 

Prompt: Please describe a time where you were worried about the smell of 

cigarettes and you didn't smoke 

Response: When I was going to my doctor. I refrained from smoking on the way so 

she wouldn't smell it and be reminded to lecture me about smoking. 

Reflection: You are afraid of being reminded by your doctor to talk about 

smoking. 

 

Prompt: Think back to the time when you were able to prevent yourself from 

smoking. What made it different from when you did smoke? 

Response: Because of the effect it was having on my daughter 

Reflection: You're worried how smoking affects your daughter. 

 

Prompt: Please describe a time where you had a compelling feeling to smoke but 

didn't end up smoking 

Response: I was compelled to have a cigarrette before an interview but refrained 
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Reflection: You felt like you could do without cigarettes. 

 

Prompt: Please describe a time where you smoked because you needed to feel good 

Response: When I am feeling stressed out at work. 

 

Figure 4.1: Example Few-Shot Input Sequence 

4.1.1 Choosing the Number of Primers 

A key parameter of the few-shot generation method is the number of context-completion examples 

to use to condition/prime the models. To determine this number, the following experiment was 

performed: For 100 randomly selected prompt-response pairs, reflections were separately 

generated using seven different numbers of primers, from 2 to 8. The model used was GPT2-XL 

from the HuggingFace model library [52]. The primers were resampled from the primer set for 

each generated completion. Top-k sampling with temperature was chosen for the decoding strategy 

of this experiment, with a temperature of 0.4, top-k of 100, and top-p of 1.0. The high value of top-

k and top-p of 1.0 ensures that a sufficient number of high probability words are considered for 

the completions, while a temperature of 0.4 ensures some creativity in the generated responses 

without letting the text become too random [55]. Other combinations of decoding values are 

explored in the next Section.  

In some cases, the input size was larger than the context window of GPT2-XL, which is 1024 

tokens. To be able to use these larger inputs to produce reflections, the input was truncated during 

tokenization, removing the input text from the beginning until the input size was reduced to 1024 

tokens. In the case that the input was smaller than the context window size, the end of the input 

was padded with ‘end-of-sentence’ tokens.  

Every reflection generated by this process was hand-labeled according to the binary labeling 

criteria described in Section 3.3. We will refer to the fraction of reflections that were acceptable 

as the hit rate. 

Figure 4.2 is a bar chart of the hit rate plotted against the number of priming examples (which 

range from 2 to 8.). These results suggest that, as the number of primers is increased, the likelihood 

that GPT2-XL can produce acceptable reflections reaches a plateau with seven and eight primers. 
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We will use eight primers for the remainder of the experiments with GPT-2 in this work. We can 

observe that using less than three priming examples significantly reduces the likelihood of 

producing an acceptable reflection. 

 

Figure 4.2: Reflection Generation Hit Rate for Different Number of Primers for GPT-2 

4.1.2 Exploring Decoding Parameters for Generation 

A second factor that has significant effect on the quality of the generated output from GPT-2 is the 

decoding strategy, as described in Section 2.2.1. We focus on finding good decoding parameters, 

determined by finding the hit rate on a test sample, for sampling-based decoding as they have been 

shown to be more effective than search or greedy strategies for dialogue generation [55]. We 

explored different combination of values for temperature, top_k, and top_p. To select the best 

decoding parameters for these experiments and datasets, we first produced 50 reflections using 

each combination of parameters, and then manually labeled the generated reflections to determine 

the hit-rate. The results are presented in Figure 4.3, which gives several curves for different 

combinations of parameters, with temperature on the x-axis. The hit rate is somewhat noisy as a 
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function of temperature (because there are only 50 examples per point), but the trend is quite clear:  

a low temperature achieves the highest hit rate. For the remainder of this work, we chose the 

following decoder parameter values: temperature = 0.1, top_k = 100, and top_p = 0.8, which had 

the highest hit rate of 0.66. 

 

Figure 4.3: Reflection Hit Rate at Different Decoding Parameter Combinations for GPT-2 

GPT-3 has many more options for decoding parameters (than GPT-2) that impact the quality of 

the generated output. The only GPT-3 parameters/options that were the same as the decoding 

parameters of GPT-2 are temperature, top_p, and max_tokens. The other decoding parameters 

relevant to generating a single completion were kept at their default values (as recommended by 

OpenAI) which are: presence_penalty = 0, frequency_penalty = 0, best_of = 1, logit_bias = null. 

A full description of these parameters and others can be found in the OpenAI API documentation 

page [61]. When modifying temperature and top_p, the OpenAI API documentation suggests only 

modifying either one or the other but not both when trying to find good values for decoding 

parameters for GPT-3, so we chose to vary the temperature but keep top_p at its default 1.0 value. 
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Ten reflections were then generated with eight primers for temperature values of 0.1, 0.4, 0.5, 0.75, 

and 1.0. The reflections were then manually reviewed for coherence and repetition. We observed 

that the temperature value of 0.4 provided the least repetitive and most coherent reflections and so 

this value was used to generate reflections for the remainder of the experiments when using GPT-

3. 

4.2 Fine-Tuning GPT-2 For Reflection Generation 

Fine-tuning of large language models has the potential to improve their performance on specific 

tasks. In this Section, we describe the method used to fine-tuning a pre-trained GPT2-XL model 

from the HuggingFace Library [52]. 

A sample of 1700 prompts, responses, and reflections with label ‘1’ from the dataset described in 

Section 3.3 was used as the training data to fine-tune GPT-2. To prepare the data for training, each 

example prompt, response, and reflection were concatenated together into a single string in much 

the same way that priming examples are constructed in Section 4.1. An example of a datapoint is 

provided below in Figure 4.4. The same GPT-2 pre-trained tokenizer described in Section 4.1 is 

also used to tokenize the examples in this training set.  

Prompt: Please describe a time where you were worried about the smell of cigarettes 

and you didn't smoke 

Response:  If I went to a formal meeting 

Reflection: Your anxiety over whether someone will notice how badly your clothes 

smell made you decide against smoking 

Figure 4.4: Example GPT-2 Fine-Tuning Datapoint 

The fine-tuning objective of GPT-2 is the same as the pre-training step, which is to model the 

standard language model task [12,62]. For our example, the objective is to model the conditional 

probability of a token from the token vocabulary to be the next token, given a sequence of input 

tokens as the input. The Transformers library from Huggingface [52] provides a Trainer class that 

abstracts this training objective, and is used for our fine-tuning task. 

Model training was done for three epochs, with a batch size of one and two gradient accumulation 

steps. The learning rate was set to 3x10-6, using the version of the Adam optimizer [63] 

implemented by DeepSpeed [64]. DeepSpeed helps us train the GPT-2 XL model by allowing us 

to use mixed precision to train the model while staying within the constraints of the VRAM 

available in the system. FP16 was enabled within DeepSpeed, with the default ranges for mixed 
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precision parameters, which lets DeepSpeed automatically determine where and by how much to 

reduce precision based on the constraints of the hardware.  

The fine-tuning was done on Amazon SageMaker [65] in an 'ml.p3.2xlarge' machine instance 

which contains  hardware optimized for lightweight model training jobs running on Amazon Linux 

2. The training code was written in Python 3.6 and hosted on a Jupyter Notebook [66] instance. 

SageMaker’s built-in version of the Transformers 4.6 and HuggingFace Library [52] was used, 

alongside PyTorch version 1.7 and DeepSpeed [64] version 0.4.4. 

Chapter 6 reports on the performance of this fine-tuned GPT2-XL model at generating reflections 

and compares it to the non-fine-tuned versions. 
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Chapter 5  
Automatically Classifying Reflections 

 

As discussed in Chapter 4, current transformer-based models are not able to generate acceptable 

reflections all the time, and so there is a need to identify when an unacceptable reflection has been 

produced. This can be done by training a classifier that takes the prompt, response, and generated 

reflection as input and produces an acceptable/unacceptable label as output. Such a classifier can 

also be used as a tool to rapidly label many samples that have the prompt, response, reflection 

format. This chapter describes one way to build this classifier, which we call a Reflection Quality 

Classifier (RQC), that can distinguish a high-quality reflection from a poor one.  

The first Section introduces the inputs and outputs of the RQC as well as the base model we will 

use, followed by the second Section which discusses the RQC training process. Finally, the third 

Section discusses the performance of the RQC as a labeling tool. 

 

5.1 Reflection Quality Classifier (RQC) Description 

The RQC is a classifier which will take two strings as inputs: a context followed by a completion 

and produce a binary label that represents whether the completion is an acceptable reflection to the 

context. The output is 0 if the reflection is not acceptable and 1 if it is acceptable. This binary 

labeling scheme was chosen to reduce the noise with amateur labelers. More granular labeling 

schemes requires supervision from an expert MI practitioner to produce precise labels, and we had 

limited access to expert resources for labeling. The inputs to the RQC are built by concatenating a 

prompt, a newline character, and a response as the context and using the corresponding reflection 

as the completion.  

The RQC is trained by finetuning a pretrained uncased BERT Base model from the HuggingFace 

library [52]. BERT is used as the underlying model since it has been shown to be successful at text 

sequence classification tasks when finetuned with a small dataset. The input text is tokenized using 

the corresponding pretrained BertTokenizer from HuggingFace tokenizers [52], based on the 

WordPiece tokenization algorithm [67]. 
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5.2 Training the RQC 

The model was fine-tuned in two stages:  the first step used the Microsoft Research Paraphrase 

Corpus (MSRP) [68], which captures a text entailment [69] relationship between a pair of texts.  

Each pair has a binary label which indicates whether the second text is a paraphrase of the first, or 

not. This is similar to the relationship between the MI prompt/response and reflection for simple 

reflections. Using the MSRP dataset increased the total amount of data that the model can be 

trained on, without increasing the burden of collecting and labelling the difficult-to-collect MI-

style conversations. 

The MSRP dataset comes pre-split into a 4077 training samples and 1726 test samples.  We further 

subdivided the training samples into 80% training and a 20% validation set.  

The model was further fine-tuned with the dataset described in Section 3.3, containing prompts, 

responses, reflections, and a binary label for the acceptability of the reflection. Since the dataset is 

unbalanced, a sample of 1075 positive and 1075 negative examples were randomly selected for 

the training task, giving a total of 2150 samples. We then shuffle and split this dataset into 80% 

training, 10% validation, and 10% test sets.  

For both fine-tuning steps training was done using the tf.Keras functionality within the Tensorflow 

library [70]. An initial learning rate of 3x10-5 was used over 20 epochs, with early stopping enabled 

if the validation accuracy does not change over 3 epochs. The Adam optimizer was used due to its 

ability to adapt the learning rate over the training period, and it has also been shown to work well 

with large parameter models [63]. The loss function was the sparse categorical cross entropy loss 

which is recommended by the Tensorflow library when there are two label classes and they are 

provided as integers, and not one-hot encoded [70].  

Table 5.1 reports the accuracy, sensitivity, and specificity of the model at each stage of the fine-

tuning process, across the 220-sample test set described in Section 3.2.  Each row of the table gives 

the accuracy impact with different levels of finetuning: first without any finetuning (the row 

labeled ‘Bert-base No Finetuning’) and when the two different datasets are used to fine-tune BERT 

separately (‘BERT-base MSRP Fine-tuned’ and ‘BERT-base Reflection Fine-tuned’), and when 

they are used together (‘BERT-base MSRP+Reflection Fine-tuned’).  
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Table 5.1 shows that the base pure BERT MODEL without finetuning is no better than an 

uninformative model (at 50% accuracy), but that both training datasets improve this when used to 

train the model separately and do even better when used together. This approach shows that even 

in the absence of a large dataset in a target domain, we can still achieve improved classification 

performance by drawing on datasets designed for similar tasks in different target domains.  

Model Accuracy 
on Test 

Set 

Sensitivity Specificity 

BERT-base No Finetuning 50% 0.07 0.95 

BERT-base MSRP Fine-tuned 55% 0.13 0.97 

BERT-base Reflection Fine-tuned 73% 0.82 0.59 

BERT-base MSRP+Reflection Fine-tuned 81% 0.90 0.71 

Table 5.1: RQC Model Accuracy, Sensitivity and Specificity Pre- and Post- Fine-Tuning 

Since one role of the RQC is to filter generative outputs, it is important to know how likely it is 

that the RQC will produce a false positive classification, and thus fail in its filtering function. For 

the 220-sample test set used above, Table 5.2 gives the count of true positives, false positives, true 

negatives, and false negatives for the final BERT-base MSRP+Reflection fine-tuned model. From 

these we can calculate the specificity, or true negative rate, which is 71% for the final model, 

meaning that the chance that an unacceptable reflection will be classified as acceptable is 29%. 

The false negatives are less important in the filtering application as the cost of a false negative is 

the time and effort required to generate another reflection. However, we must be careful to select 

a model for the RQC that also has a good sensitivity, as practically speaking, we need an RQC 

filter that eventually lets a positive class through. Table 5.1 shows that the sensitivity improves 

with more of the fine-tuning steps included, while specificity decreases. The best balance of 

specificity and sensitivity is achieved with BERT-base MSRP+Reflection Fine-tuned, and this 

model is used as the RQC in the following chapters.  

When used as a reflection dataset labeling tool, the RQC’s performance in labeling both the 

positive and negative classes are important. For this case the accuracy and F1 scores will give us 

an idea of the RQC’s performance as a labeling aid. The overall accuracy of the RQC is 81%, and 

the F1 score is 83%. 

 



27 

 

 

Class Labels Predicted Positive Predicted Negative 

Actual Positive 103 (True Positive, TP) 12 (False Negative, FN) 

Actual Negative 30 (False Positive, FP) 75 (True Negative, TN) 

Table 5.2: RQC BERT-base MSRP+Reflection Fine-tuned Result Counts 

5.3 Automatic Reflection Labeling with the RQC 

A secondary use of the RQC is as an automatic reflection labeling aid to help parse and label large 

collections of MI transcripts to identify utterances with reflections. This has application as both an 

aid for new MI practitioners evaluating MI conversations, or to help build large, labeled corpora 

of MI utterances with labeled reflections. 

We evaluate the performance of the RQC as a labeling aid by using it to label 300 reflections 

produced natively by GPT-2 and GPT-3 models (these are all the reflections generated by the 

models for the testing done in the next chapter). We then compare the RQC labels to the hand-

labeling, using the Cohen-Kappa Interrater correlation [71]. It measures inter-rater reliability 

between labelers who are labeling qualitative items. It considers the likelihood that two labelers 

agreed on the label of a sample randomly, which makes this correlation values more conservative 

than simple percentage agreement between the two labelers. McHugh [72] reports that a Cohen-

Kappa score of 0 implies no agreement between the two labelers, 0.1-0.20 implies slight 

agreement, 0.21-0.40 implies fair agreement, 0.41-0.60 as moderate agreement, 0.61-0.80 as 

substantial agreement, and 0.81-1.0 as almost perfect agreement. The agreement between the hand-

labeling and the RQC labeling is shown in Table 5.3 with both the Cohen-Kappa correlation as 

well as the percentage of matching labels.  

Cohen-Kappa Correlation Percentage Agreement (%) 

0.33 75 

Table 5.3: Inter-rater Correlation Between Hand-Labeling and RQC 

The RQC agrees with the human hand-labeling 75% of the time, with a Cohen-Kappa score of 

0.33. The Cohen-Kappa score indicates ‘fair agreement’ between the hand labeling and the RQC 

in this dataset. 
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Chapter 6  
Generating Reflections 

This chapter describes the different methods used to generate reflections and reports on the 

performance of each method. The first Section begins by describing the models and the parameters 

used for each model during generation. The second Section describes the quantitative performance 

of the models which first reports the performance of generating reflections using GPT-2, with and 

without using the RQC as a filter. Then, the performance of generating reflections with GPT-3 is 

described, using both eight and 12 primers. We then report how a GPT-2 model, fine-tuned using 

the method described in Section 4.2, performs against the previous models. In the third section we 

provide a qualitative discussion of a sample of acceptable and unacceptable generated reflections 

from each model. 

 

6.1 Generation Set-up 

We first present the conditions and parameters used for the models during the few-shot generation 

process:   First, the output sequence was limited to a maximum output of 200 tokens for both the 

GPT-2 and GPT-3 based models, which causes generation to stop when this limit is reached 

(generation also stops when an end-of-sentence token is generated). This limitation on the output 

length was placed to prevent a model from generating extremely long sequences of text, which 

does occur occasionally. We know that a very long output would almost always have little value 

as a reflection, as in MI, it is good practice to let a patient speak more than the therapist [6]. Since 

we know that typical participant statements are roughly 14 words and the longest response 

recorded was 73 words, an acceptable reflection should be in this range, which corresponds 

roughly to 200 tokens.  

The primers used in the few-shot generation were randomly selected from the priming set 

described in Section 3.2, and are separated from the test set used to measure performance. The 

generation is launched by appending the primers with the input prompt and response, for which a 

completion was generated. 
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When generating reflections with the GPT-2-XL model, eight primers were used (as described in 

Section 4.1.1) when generating using few-shot priming. The decoding parameters were set to the 

best-performing combination that was explored in Section 4.1.2, which are as follows: temperature 

= 0.1, top_k = 100, top_p = 0.8. The repetition penalty was set to 1.3.  

The finetuned model uses the same GPT-2-XL model, which is further trained according to the 

steps described in Section 4.2. To explore how finetuning the model changes the quality of the 

output, generation on the test set was done using the same decoding parameters as the model 

without finetuning. The fine-tuned model generation was done without adding any primers to the 

context. Another set of reflections were generated with a higher temperature of 0.7 to understand 

how the fine-tuned model behaves when outputs are allowed to be more creative. 

Reflections generated with the GPT-3 model were done using both eight and 12 primers. The 

reflections generated with eight primers provides a direct way to compare the few-shot reflection 

generation performance of GPT-3 and GPT-2, as eight was the maximum allowed for GPT-2. The 

12-primer method was used to explore how well GPT-3 can generate reflections when taking 

advantage of its much larger context window by adding more priming examples. The GPT-3 

engine used for these experiments were run using the DaVinci engine from the OpenAI API [73]. 

The decoding parameters were set as described in Section 4.1.2. 

6.2 Reflection Generation Results 

6.2.1 Few-Shot Reflection Generation 

A set of 100 prompt-response pairs from the dataset described in Section 3.1 was used to evaluate 

the generative models on their ability to produce acceptable reflections. When selecting the 

prompt-response pairs, we ensured that the same prompt-response pair did not exist as part of the 

priming set described in Section 3.2.  This ensures that the model isn’t given an unfairly helpful 

priming set. 

Model Type Human-Label Hit Rate 

GPT-2 - 8 primers 0.54 

GPT-3 - 8 primers 0.89 

GPT-3 - 12 primers 0.74 

Table 6.1: Reflection Hit Rate (for 100 trials) by Model 
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Table 6.1 gives the human-label hit rate when generating reflections using the GPT-2 model with 

eight primers, and with the GPT-3 model using both eight and 12 primers. The GPT-2 model 

achieves a 54% hit rate, which shows that with just a little priming, the language models succeed 

quite often. It seems sufficient to form the basis of a system that includes the output filtering 

function, as discussed in Chapter 5.  

Table 6.1 also shows that both versions of the generation from the GPT-3 model outperform the 

GPT-2 model, achieving 74% and 89% hit rates. This comes at the price of the GPT-3 model being 

more difficult to use at the present time, due to its very large size and computational requirements. 

It can currently only be run on large-scale hardware. By contrast, the GPT-2 based models can be 

run locally on consumer-grade hardware, and smaller versions of it can even be run on lightweight 

machines. 

Table 6.1 also shows a surprising performance difference between the GPT-3 model with 8 primers 

and the GPT-3 model with 12 primers, with the 12-primer version performing worse. This result 

highlights the importance of tuning input and decoding parameters for each model to the target 

task, as performance can vary significantly (and not in an intuitive way) based on the parameter 

values. 

6.2.2 GPT-2 Fine-tuned Reflection Generation 

Here we present the results of using the fine-tuned GPT-2 model. Taking the same set of 100 

prompt-response pairs from the previous section, we use the fine-tuned GPT-2 model to generate 

reflections, which is shown in Table 6.2. The first row reports the human labeled reflection hit-

rate of the GPT-2 model without finetuning from the previous section. The next row gives the 

performance of the fine-tuned model with all decoding parameters identical to the first model and 

shown in Section 4.1 but without using few-shot priming. This is referred to as ‘GPT-2-Fine-tuned-

Native’. We also wanted to evaluate how well the finetuned model performs when the decoding 

encourages more creative outputs by generating 100 reflections with the decoding parameter 

temperature value set to 0.7, shown in ‘GPT-2-Fine-tuned – Native - 0.7 Temp’. 

Model Type Human-Label Hit Rate Percentage Increase vs. 
Few-Shot 

GPT-2 - 8 primers 0.54 - 

GPT-2-Fine-tuned – 
Native - 0.1 Temp 

0.80 26% 
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GPT-2-Fine-tuned – 
Native - 0.7 Temp 

0.66 12% 

Table 6.2: Reflection Hit Rate (for 100 trials) for Fine-Tuned Models 

Table 6.2 indicates a 26% increase in hit rate when generating reflections on the fine-tuned model 

compared to the model that uses few-shot learning with the same decoding parameters. With the 

temperature increased to 0.7, the fine-tuned model still improves on the few-shot generation 

performance by 12%. We notice that the more creative fine-tuned model failed more often than 

the fine-tuned model with default parameters. This behaviour reflects the few-shot learning 

performance, which as we see in Figure 4.3, also performs poorly as temperature is increased. The 

fine-tuned GPT-2 achieves significantly improved performance over its few-shot only counterparts 

and is reasonably close to the performance of GPT-3’s reflection generation (given in Table 6.1), 

but with an order of magnitude lower computer memory and processing requirements. This lower 

hardware requirement can make a fine-tuned GPT-2 model a useful alternative to GPT-3 where 

hardware access is limited. 

6.2.3 Generating Reflections with GPT-2 followed by an RQC Filter 

Here we show the results of a system using the GPT-2 reflection generator, in combination with 

the RQC as a filter, to reduce the number of unacceptable reflections presented. In this system the 

RQC is responsible for providing a label as to whether a reflection is acceptable given the context. 

It takes as input the same prompt and response given to the model, as well as the generated 

completion (which is the reflection produced by GPT-2). If the RQC deemed the reflection as not 

acceptable, the generation system was then re-invoked to generate a new candidate reflection for 

the model.  

This filtering setup assumes that we can stimulate the generative model to produce diverse and 

unique reflections while keeping the input context (the prompt and response) the same when 

producing multiple completions. So, even if the first completion produced is not an acceptable 

reflection, a second or third attempt at generation may produce a completion that is an acceptable 

reflection. We believe this is possible as the generation is simply selecting from a series of output 

probabilities after we pass the inputs to the model. There are many ways to stimulate a GPT-2 

based model to produce different completions for the same context, and we use three techniques 

here. The first technique manipulates the input itself and is used when generating reflections using 
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few-shot priming. The strategy is to resample primers from the primer set for each generation 

attempt. Since the chosen primers between each run will be different, it will likely lead to 

differences in the generation at the output stage as the output probabilities will be different. The 

second strategy is used when we are not using few-shot priming, instead we perturb the sampling 

at the decoding stage, so for each generation a different random seed is set so that the sampling 

changes for each attempt. This method is used when generating with the fine-tuned model at low 

temperature, such as the 0.1 temperature version reported in Table 6.3. The final strategy is to 

simply change the decoding parameters to make the output distributions more uniform, which can 

be done by using a high temperature value. A higher temperature value tends to flatten the 

probability differences between the highest and lowest probability words, making it more likely to 

see different sequences when sampling. The performance of the fine-tuned model with temperature 

at 0.7 is also reported in Table 6.3  

We place a limit of five attempts to generate an acceptable reflection, to limit computational cost 

and avoid a possible infinite loop. If no generated reflection was deemed acceptable by the RQC, 

the fifth reflection generated is passed through as the output. 

It is possible to approximate the hit rate of the combined generation and RQC filtering process.  

Under the (inexact) assumption that there is no limit of 5 filtering operations (and the 

generation/reflection loop would continue until successful), the approximate hit rate can be 

determined based on the generator’s native hit rate (as shown in the GPT_2 row of Table 6.1) and 

the true negative rate (the specificity) of the RQC as follows: 

 CombinedHitRate = 1 – (1- NativeHitRate)(1 - RQC_Specificity)         (1) 

The NativeHitRate when using the GPT-2 model is 0.54 (from Table 6.1), while the 

RQC_Specificity for the RQC model with BERT-base MSRP+Reflection Fine-tuned is 0.71 (as 

given in Table 5.1). Using these two values we obtain an estimated CombinedHitRate for the few-

shot GPT-2 model of 0. 87. We can also compute an approximate hit rate for the ‘GPT-2-Fine-

tuned – Native’ model:  From Table 6.2 its NativeHitRate is 0.80, and so its CombinedHitRate of 

is approximated at 0.94. 

Table 6.3 gives the results of the filtered generation process for both the few-shot and fine-tuned 

models. Here the RQC filtering loop was limited to a maximum of five cycles for each input, and 

if no reflection was deemed acceptable by the RQC, then the 5th reflection is the one used. The 
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same 100 examples comprising the test set for Table 6.1 and 6.2 are used as input. For the few-

shot GPT-2 model, the hand-labelled reflection generation hit rate was improved from 0.54 to 0.73 

when using the RQC filtering. This is a significant improvement on the hit rate and makes the use 

of a reflection filter a practical way to improve performance.  

The filtered hit-rates achieved with the few-shot model is less than the estimated value of 0.87, 

perhaps in part due to the 5 filter-cycle limit. GPT-2 w. RQC Filtering loop failed to pass the filter 

after 5 attempts for 3 of the test samples. If those three poor quality results had been acceptable, 

the hit rate would increase to 0.77. With filtering, a few-shot GPT-2 model approaches the 

performance of the fine-tuned GPT-2 model. The fine-tuned GPT-2 model does not improve 

significantly with the filtering. In cases where fine-tuning a GPT-2 model is infeasible, one can 

alternatively train a classifier, which is often smaller and requires less computing power, to achieve 

similar end-user reflection hit-rate when using the filtering strategy. 

Table 6.3 shows that applying the filtered generation process with GPT-2-Fine-tuned – Native 

from Table 6.2, did not significantly improve the hit-rate of the native model. The hit rate increased 

from 0.80 to 0.81. This is likely due to the low temperature, which makes it less likely for the 

outputs over multiple tries to be significantly different to each other as less likely tokens are 

selected more rarely when sampling. Using a higher temperature value with the fine-tuned model 

did show improvement from the native hit-rate shown in Table 6.2 by going from 0.66 to 0.75 but 

did not achieve the higher hit-rates of the standard finetuned model since the baseline hit-rate 

without filtering was significantly lower at this temperature.  

 

Model/Process Human Label Reflection Hit Rate 

GPT-2 0.54 

GPT-2 w. RQC Filtering loop 0.73 

GPT-2-Fine-tuned – Native - 
0.7 Temp w. RQC Filtering Loop 

0.75 

GPT-2 Finetuned – Native – 0.1 
Temp w. RQC Filtering Loop 

0.81 

Table 6.3: GPT-2 Reflection Generation Rate with and without Filtering 
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6.3 Qualitative Discussion of Reflection Generated 
Reflections 

The quantitative results above indicate that we can achieve some success generating MI-consistent 

reflections. Here we review specific examples of the generated outputs qualitatively, to provide a 

sense of what is promising about the results, and what still needs work. 

Table 6.4 gives a set of ten acceptable (by human labeling) reflections that were generated from 

the models in Section 6.2, when producing the data for Table 6.1, 6.2, and 6.3. Each row of the 

table provides the input prompt and response, as well as the generated reflection, and which 

specific model produced it. 

One can informally observe that the reflections in Table 6.4 do read as if a human created them 

and could be appropriate statements that a therapist could use. It can also be observed that the 

model appears robust when dealing with grammatically incorrect inputs - Examples 1, 5, and 7 

have spelling errors in the responses, but the reflections are still produced with correct grammar 

and address the responses appropriately.  

# Prompt Response Reflection Model 

1 Think back to the time when you 
were able to prevent yourself 
from smoking. What made it 
different from when you did 
smoke? 

i dont want to 
embarse my kids in 
front of their friends 

You didn't want 
them to see how 
much you 
struggled with this 
problem.  

GPT-2 

2 I want you to describe a time or 
situation where you experienced 
the reason "Relationship 
Problem" and it did not lead you 
to smoke 

 I refused her 
request to stop at 
the gas station to 
buy cigarettes on 
the way to work.  I 
didn't want one and 
wanted to 
demonstrate it to 
her. 

You are making a 
conscious decision 
not to smoke.  

GPT-3 - 8 
Primers 

3 Let me see if I understand, 
smoking is helpful because it 
provides a useful distraction for 
you. Are there other things that 
are good about smoking? If so, 
please tell me 

 I'm able to meet 
new people 

You enjoy meeting 
new people when 
you smoke.  

GPT-3 - 8 
Primers 

4 Think back to the time when you 
were able to prevent yourself 
from smoking. What made it 

 I was very stressed 
at work 

You've been 
working long hours 
lately.  

GPT-2 with 
RQC Filter 
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different from when you did 
smoke? 

5 Think back to the time when you 
were able to prevent yourself 
from smoking. What made it 
different from when you did 
smoke? 

 I felt like I was 
affecting my 
chances at having 
childnre 

You're worried 
about the impact 
on your fertility.  

GPT-3 - 8 
Primers 

6 Let me see if I understand, 
smoking is helpful because it 
provides a useful distraction for 
you Are there other things that 
are good about smoking? If so, 
please tell me 

 I'm able to meet 
new people 

You met someone 
interesting.  

GPT-2 with 
RQC Filter 

7 Think back to the time when you 
were able to prevent yourself 
from smoking. What made it 
different from when you did 
smoke? 

I was feelimg good 
about myself and I 
had more 
determination. 

You felt better 
than before 
because of how 
much effort you 
put into stopping 

GPT-2-Fine-
tuned - Native 

8 Think back to the time when you 
were able to prevent yourself 
from smoking. What made it 
different from when you did 
smoke? 

For this last instance 
I felt more in 
control 
 
 

 

You feel like things 
are going better 
now than before 

GPT-2-Fine-
tuned – Native  

9 Please describe a time where 
you had a compelling feeling to 
smoke and actually smoked 

when i am stressed 
at work 

You felt like 
smoking would 
help relieve your 
stress. 

GPT-2-Fine-
tuned – Native 
- 0.7 Temp 

10 Please describe a time where 
you were worried about the 
smell of cigarettes and you 
didn't smoke 

If I went to a formal 
meeting 

The smells are too 
strong for most 
people. 

GPT-2-Fine-
tuned – Native 
- 0.7 Temp 

Table 6.4: Acceptable and Better Reflection Examples 

Although all examples in Table 6.4 are acceptable MI-consistent reflections, there is still a 

variation in the level of each reflection, with a mix of simple and complex reflections. Recall that 

complex reflections not only follow from the response but has an insight or a suggestion to move 

the conversation forward by drawing on ideas and experiences that have not been spoken by the 

patient. Consider Example 1, where the patient expresses the desire to not embarrass their children 

by smoking in front of the children’s friends. The reflection suggests a deeper struggle the patient 

may be facing about their smoking. This kind of reflection often encourages a patient to 

contemplate further in a specific direction related to their previous response, which is one of the 

key goals of MI-based therapy.  
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Reflections 2,4, 6, and 10 in Table 6.4 also draw from an idea that was not present in the patient’s 

response to help the patient contemplate the prompt further. Consider Example 2, which connects 

the idea of making a “conscious decision not to smoke” to the dynamic of an interaction during 

driving that is about buying cigarettes. Similarly, Example 4 makes a guess that the person was 

working “long hours” recently. A good therapist will make a guess like this to keep the patient 

contemplating cause and effect about their habit. 

Reflections 7 through 10 in Table 6.4 also provide examples of complex reflections. These 

examples focus more on extrapolating the participant’s feelings about their smoking, which is a 

different form of complex reflection that also encourages a participant to contemplate why they 

smoke.  

Sometimes a reflection does not need to be complex to have a therapeutic effect [6]. A simple 

restatement of the response, in different words, is sufficient to build rapport with a patient and 

move the conversation forward. Reflections 3 and 5 in Table 6.4 are simple restatements of a 

patient’s response.  

These examples demonstrate that within the context of these prompts and responses, few-shot and 

fine-tuned generation with GPT-2 and (few-shot only) GPT-3 can produce reflections consistent 

with the ones a therapist may use in an MI session. The language sounds natural, follows many of 

the principles of MI, and fulfills the goal of moving the conversation forward.  

However, not every reflection produced by these models can fulfill the therapeutic goal, and some 

examples of the unacceptable cases are shown in Table 6.5. There are multiple ways the models 

fail to generate acceptable reflections, but there were two categories of failures that were more 

common: The first category is statements that are coherent and follow from the context prompt 

and response but fail to adhere to MI principles. For example, reflection 1 in Table 6.5 responds 

to the patient’s statement about having important bills to pay by stating that they would choose to 

buy cigarettes rather than paying bills. This misrepresents the patient’s intent and is directly 

counter-productive to the smoking-cessation goal. Arguably, it is phrased in an accusatory tone, 

something that therapists are trained to avoid as much as possible as it produces discord in the 

patient-therapist relationship.  
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Reflection 3 in Table 6.5 dismisses the patient’s response about their attempt to resist smoking, 

stating rather unhelpfully that the patient needs to stop smoking completely to quit. This kind of 

reflection falls into the ‘expert trap’ [6] category, where the therapist offers direct guidance instead 

of letting the patient draw their own conclusions on their journey. 

The second common category of failure occurs when the generated completion does not follow 

from the context prompt and response, and thus cannot be considered a reflection. This kind of 

failure occurs in reflections 2 and 4-10 in Table 6.5. Reflections 2 and 4 have the same context 

prompt and response with the reflection being generated by two different models, but both models 

failed to generate an acceptable reflection. In both instances, the generated reflections focused on 

addressing stress whereas the patient response was about not being able to remember an example 

where they experienced stress without it leading them to smoke.  

Reflection 5 in Table 6.5 is a reflection that appears to focus on a specific word (‘flavour’) in the 

prompt and ignores the essence of the patient’s response. Reflection 6 fails to capture the context 

of the response and makes a leap about the patient’s boyfriend for which there is no evidence. 

Examples 7-10 also fail to capture the context of the response in their reflections, and produce 

reflections with logical leaps that cannot reasonably occur given the context of the response. 

Beyond these two categories of failure, there are some rare instances where the models would 

produce incoherent reflections or just produce a blank reflection. These types of failure case were 

not present in the reflections produced from this test set but were observed with a specific 

combination of decoding parameters.  

The failure cases show that the reflection generation is still imperfect and there is significant room 

to improve. One positive aspect of these failure cases is that they are less about actual grammar or 

language issues, and more about the nuance of human conversation, suggesting that if the models 

had more exposure to human experiences (through more diverse training data) some of the failure 

cases may be addressable. Including a filter like the RQC can help identify these failure cases, 

although as we see from the ‘RQC Label’ column in Table 6.5, it is only able to detect some of the 

failures and thus has room to be improve.  

# Prompt Response Reflection Model RQC Label 

1 Think back to the time 
when you were able to 
prevent yourself from 

 The difference 
was that I was 

When you have a 
choice between 
spending money 

GPT-2 with 
RQC Filter 

0 
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smoking. What made it 
different from when you 
did smoke? 

paying 
important bills 

on cigarettes vs 
other things, you 
will choose 
cigarettes over 
those other 
things.  

2 Please describe a time 
where you experienced 
stress and didn’t end up 
smoking 

 i cant really its 
been so long  

Stress causes 
anxiety which 
leads to 
depression.  

GPT-2 with 
RQC Filter 
(Case where 
5-cycle limit 
was hit) 

0 

3 Think back to the time 
when you were able to 
prevent yourself from 
smoking. What made it 
different from when you 
did smoke? 

 it feels good to 
know i can resist 
if i try 

The only way to 
stop smoking is 
to quit 
completely 

GPT-2 
 
 

 

0 

4 Please describe a time 
where you experienced 
stress and didn’t end up 
smoking 

 i cant really its 
been so long  

You feel stressed 
about smoking.  

GPT-3 - 8 
Primers 

1 

5 Please describe a time 
where you dreaded tasting 
the flavour of smoking a 
cigarette and you didn't 
end up smoking 

 plenty of times 
just sat at home, 
especially when i 
already dont feel 
well 

you know that 
there are many 
flavours out 
there 

GPT-2 with 
RQC Filter 

1 

6 Please describe a situation 
where you thought about 
being a good role model 
and that cause you not to 
smoke 

 on my first date 
with my current 
boyfriend 

You found 
someone who 
smokes and 
he/she doesn't 
judge you 

GPT-2 
 
 

1 

7 Ok, so you associate Smell 
as something negative 
about smoking Please 
describe a time where you 
were worried about the 
smell of cigarettes but 
ended up smoking 

it was after the 
news from my 
grandmother 

Your mother's 
death had an 
impact on you 
that lasted for 
years. 

GPT-2-Fine-
tuned – 
Native 

1 

8 Please desccribe a 
situation where you 
thought about wanting to 
be a good role model but 
ended up smoking 

On my way to a 
job interview 

You worry that 
people will 
notice your 
cigarette odor 
and make fun of 
you for it. This is 
why many 
smokers try to 
cover their stinky 
clothing with 

GPT-2-Fine-
tuned – 
Native 

1 
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bandanas or 
other cloths 
before going out 
in public 

9 Please describe a time 
where you experienced 
stress and ended up 
smoking 

Whenever I 
argue with my 
son 

You feel stressed 
by being unable 
to control how 

much nicotine is 
in your system. 
This can lead to 

addiction 

GPT-2-Fine-
tuned – 
Native - 0.7 
Temp 

1 

10 Think back to the time 
when you were able to 
prevent yourself from 
smoking. What made it 
different from when you 
did smoke? 

i was not able to 
see friends from 
different 
departments 
within my work 
enviroment 

Your colleagues 
don't want to be 

seen with 
someone who 

smokes 

GPT-2-Fine-
tuned – 
Native - 0.7 
Temp 

0 

Table 6.5: Not Acceptable Reflection Examples 
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Chapter 7  
Deploying a Reflection Generation System 

This Chapter describes the deployment of a reflection generation system making use of the few-

shot model one described in Chapter 6. The system is hosted on Amazon Web Services (AWS) 

[74]. The first Section describes how the reflection generation software was built and how it was 

deployed using AWS. The second Section describes how the API was used on a web application 

where we asked a participant their reasons for smoking and produced a reflection on their response. 

 

7.1 Reflection Generation Microservice 

Over the past decade, cloud providers have made it significantly easier to deploy and host software 

on the internet, and use that software to fulfil functions in other programs [75] over the web. Cloud 

vendors such as Amazon Web Services (AWS) [74], Azure [75], and Google Cloud Platform 

(GCP) [76] have produced large scale infrastructure that can be used to deploy software with 

relative ease. The cloud systems help reduce latency, increase scalability, and reduce cost [75]. 

Although all three cloud providers have the functionality required to deploy a reflection generation 

model as an API, AWS provides the most flexibility on how the software is designed and on what 

kind of hardware we can run our system. At the time of development, AWS was also the lowest-

cost option out of the three major providers. 

The reflection generation system was deployed as a microservice [77], which means that each 

component of the software is hosted as different services accessible over the web. Communication 

between microservices and other web applications were conducted through Representational state 

transfer (RESTful) operations [78]. The reflection generation API was its own microservice. It was 

also used as part of a full chatbot that can conduct an MI conversation, that was recently deployed 

beyond the scope of this thesis [79]. Section 7.2 also shows an example software using this 

microservice as a demonstration.  

The core functionality of the reflection generation microservice is to take a prompt and a response 

string as part of its inputs and return a generated reflection through a GET operation. The code to 

choose which model to use, the number of primers, and decoding strategies are all be internal to 

the program itself and not exposed as parameters or options through the API. For this 
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demonstration, we used a GPT2-XL model from the Hugging Face Transformers library [52], and 

generated reflections using the few-shot learning strategy, whose performance is reported in 

Chapter 6. The API itself is built and defined using Connexion [80], a package that integrates the 

OpenAPI 3.0 specification [73] and other python packages within itself  to allow us to build a web 

server using Python without having to code the barebones HTML required to make and receive 

API calls. Using Connexion allows us to simply run our Python program, and Connexion routes 

any API calls made to the server hosting our program to the appropriate Python function simply 

based on the URL that is called. Connexion only requires us to define this mapping from URL to 

python function in a configuration file using the YAML [81] format. Any parameters that are 

required by the function are automatically extracted from URL parameters in the API call by 

Connexion.  These are associated with the appropriate function parameter. For our system these 

parameters are the prompt and response texts. Connexion is also used to define the API response, 

which is mapped to take the function output and send the output back to the caller through a JSON 

packet.   This is triggered by a GET request and it returns the reflection that is produced by our 

reflection generator function in our python code. The full API configuration YAML file is shown 

in Figure 7.1 

The microservice is deployed using AWS’ Elastic Beanstalk (EBS) [82]. EBS is an easy-to-use 

service that takes the Python code and configuration information and runs it on an AWS instance 

that is automatically provisioned by EBS. A key feature of EBS is its ability to automatically scale 

the number of instances of servers when the demand for the microservice grows. This is quite 

relevant to our ultimate goal of deploying and testing a full chatbot, to enable good response times 

for multiple simultaneously conversations. 

Since we are using a large model (GPT-2-XL) and we would like each individual reflection 

generation to be returned in a few seconds, GPU acceleration was required. Using only the CPU 

(a custom Intel Cascade Lake Xeon chip designed for AWS [83]), each generation with GPT-2-

XL requires approximately 100 seconds. When using GPU acceleration with Nvidia T4 GPUs 

[84], which are optimized for model inference tasks, and storing the model in the GPU memory, 

the time to generate rarely exceeds 10 seconds. We expect that as AWS updates the GPU instances 

available with more recent GPUs, the speed of generation can be made even faster, though it is 

already at a latency that is usable in downstream chatbot conversation systems [79]. The instance 

employed the AWS Deep Learning Conda Amazon Machine Instance (AMI) [25], which is pre-
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installed with Amazon Linux 2 and is configured to come pre-installed with PyTorch [85] and 

Anaconda [86] packages.  To ensure that the instance initializes correctly and that the model can 

be loaded correctly, we must also ensure that the EBS volume size is 200 GB or more, to account 

for the installed packages and for the downloaded GPT-2 model.  

The automatic scaling of the number of instances is controlled by setting the minimum and 

maximum number of concurrent EBS instances than can be run. Within these constraints EBS will 

spin up or shut down copies of our microservice based on how much the API is being called while 

still being accessed through the same URL. Load balancing, or the logic that determines to which 

instance to route an API call based on how busy the instance is currently, is handled by AWS itself 

and can be configured in the EBS settings.  

 

Figure 7.1: Reflection Generation API Schema 

Once set up is complete, the EBS instance status will show as ‘OK’, meaning this instance (or the 

multiple underlying instances when we allow for it) is now ready to be used. AWS provides a base 
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URL for the microservice, and this base URL can now be combined with the path from the API 

schema in Figure 7.1 to construct the URL that needs to be used when we want to use this 

microservice. To revise the code run by the microservice, we simply need the updated code to be 

uploaded to EBS, and it will update each instance of the microservice with the updated code 

automatically. 

7.2 Reflection Generation Microservice 

The microservice described in Section 7.1 is designed to be used as a standalone reflection 

generation service and can be integrated to be used in many web applications. To test this 

microservice, we built a website that asks a participant about a specific smoking behaviour they 

are looking to change, collects their response, and presents a reflection to their response. Figure 

7.2 provides screenshots of the website with a walkthrough of a user answering the question and 

receiving a reflection.  

 

Figure 7.2: Example Reflection Generation Application 

This website was built using JavaScript React and hosted on AWS Amplify [25]. To integrate the 

reflection generation microservice, we need to use a package that implements a RESTful [78] API 

service (in this case we used Axios [87]), the URL of the microservice (provided by EBS as 

described in Section 7.1), and format the prompt and response appropriately in the body of the 
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GET request. Once the GET request is sent, the application waits for a response from the server in 

the background which contains the status of the call (providing a code 200 return if the API call is 

successful) and the response body which contains the generated reflection. 

Figure 7.3 shows how this is implemented in the above web application to get a reflection from 

the reflection generation microservice.  

 

Figure 7.3: Reflection Generation Microservice Call Code Snippet 

This example application demonstrates how a microservice can easily be integrated into a web 

application. In this example, we ask a question about a specific smoking behaviour and use the 

microservice to produce a reflection on the response with only a few lines of code. Although this 

web application does not conduct a full MI conversation, future implementations expand on the 

infrastructure by updating the reflection generation microservice with better generation [79] and 

building other microservices to emulate other MI-consistent therapeutic behaviours (such as 

summarization or affirmations). This chapter provides a small demonstration of how such a system 

may be built cheaply and efficiently using cloud infrastructure and software tools that are readily 

available. 
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Chapter 8  
Conclusions, Limitations, and Future Work 

 

8.1 Conclusions 

This work is a first step towards moving therapeutic chatbots from responding repetitively and 

predictably, to a form where they can respond with human-like specificity and understanding. We 

demonstrated that transformer-based language models can be effective at producing MI-consistent 

reflections when responding to participant statements within a specific domain, even when 

working in a low-data environment. We also showed that the larger GPT-3 model produces 

acceptable reflections more frequently than the GPT-2 XL based model, but that the difference can 

be minimized if we have sufficient data to fine-tune the GPT-2 XL model. As one method for 

mitigating unacceptable reflections, we trained a reflection quality classifier (RQC) to determine 

whether a reflection is acceptable and showed that it has fair correlation to human labels. We also 

demonstrated that a GPT-2 model can be used with the RQC as a filter to build a system that can 

produce reflections at a better rate than just using GPT-2 with few-shot learning. This comes at 

the cost of slightly higher memory usage and longer execution time needed to generate extra 

reflections. Finally, we demonstrated one way of deploying our custom models and scripts using 

a microservice architecture deployed through AWS. 

8.2 Limitations 

In this work we have attempted to show how few-shot generation might be used to generate 

reflections within MI-style smoking cessation conversations, and we have shown how fine-tuning 

the same models might lead to better reflection generation. The most significant limitation in this 

work is that the reflections were evaluated within the scope of the specific questions and responses 

from the smoking cessation dataset described in Chapter 3, and we cannot conclude that the 

approach is generalizable beyond that dataset. However, since we’ve employed few-shot learning 

there is some hope that the few-shot technique would generalize to other topics and be usable to 

replicate other MI skills. The fine-tuning strategy would also likely translate to other domains and 

MI skills if we were able to find a similar amount of relevant training data.  
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Another limitation of these results is the low test-set sample size, which was necessary due to the 

significant labour required to label the reflections produced by the generative models. Since trained 

MI-experts are difficult to find and their availability is limited, only the primer set was labeled and 

edited by a trained MI expert. All other labeling was done by the author and non-MI-expert 

participants, whose experience with labeling MI came from readings [6] and brief consultations 

with MI practitioners. The non-MI-expert labels are also likely to be less clinically precise, which 

is a reason why the reflection labeling was left as a binary label and not on a more granular scale 

that differentiates between the different types and levels of reflections. 

8.3 Future Work 

There is significant work to be done on evaluating the reflection generation process and how 

effective it will be in the context of different prompts and responses. Further, we would also like 

to be able to control whether a simple or more complex reflection will be produced, as different 

situations in a full MI conversation may call for one or the other. Another area that needs more 

work is on using the techniques in this thesis to build a generative system for the other therapist 

skills used in an MI conversation, for instance to generate affirmations or summary statements.  

Finally, the reflection generation system was evaluated solely on its ability to produce acceptable 

MI-consistent reflections and not on therapeutic impact. To evaluate the latter, the reflection 

generation system needs to be integrated into a full chatbot and measured as an intervention.  
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