# **ECE 1778:**Creative Applications for Mobile Devices



Lecture 3 January 25<sup>th</sup>, 2011





## **Today**

- Logistics Project!
- 2. Assignments
- 3. What can a phone do?
  - Seeding ideas for projects
  - Small Case studies





## Logistics





## Assignments P1 & A1 were Due at 10am

- Programmers: P1
  - Any issues?
- Appers: A1
  - Any issues?





## **Today is the Deadline for Forming Groups**

- 68 students registered in course
- 8 groups formed as of Tuesday January 25<sup>th</sup>, 9:00am
  - Total of 19 people
  - Will spend some of this class helping form groups





### Once You Have a Group

#### Send email to:

- Me (<u>jayar@eecg.utoronto.ca</u>)
- Course TA, Braiden Brousseau
   (braiden.brousseau@utoronto.ca)

#### Provide:

- Names
- Student numbers
- Mobile platform you plan to do the project on
  - one of Android, iPhone (others require a special discussion)
  - If thinking about using Tablet
  - If you have your own device you can use





## Reminder: Project Milestones

#### 1. Forming Groups

Today!

#### 2. One-Page Proposal

Due February 1<sup>st</sup>; Must receive approval to proceed

#### 3. Design Plan

Due Feb 8<sup>th</sup>

#### 4. Proposal & Plan Presentations

Weeks of March 8 & 15

#### 5. Final Presentations

Weeks of April 12 & 19

#### 6. Final Report Due April 26th





#### Proposal: Due Next Week, Feb 1

- 1-2 Page Proposal for Project
  - Worth 10% of course grade

#### What & Why

- Describe the idea, and its motivation
- Apper groups: make clear how this app fits within the field of the Apper, and the contribution it makes to that field

#### Scope

- Give me a sense of the full functionality what is involved
- Show me that you've thought about the pieces
- So that I can approve/advise
- Suggest you send me prior emails asking for approval





### Plan Due the Following Week: Feb 8

- 1. Reprise of Goal statement, more precise
- 2. Rough design of what the user sees
  - Mock-ups of screens
- 3. Block Diagrams of Code
  - Top down
  - With short prose description of each





#### Plan, continued

- 4. Statement of Risks/Issues
  - What roadblocks/issues/challenges do you foresee?
  - App-wise, programming-wise, hardware-wise
- What do you need to learn that you don't know (all members)
- 6. Apper groups: separate essay on how App relates to field of Apper.
  - 1000 words
- Plan, including presentation, worth 10%

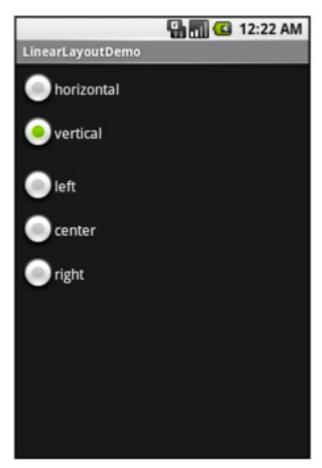


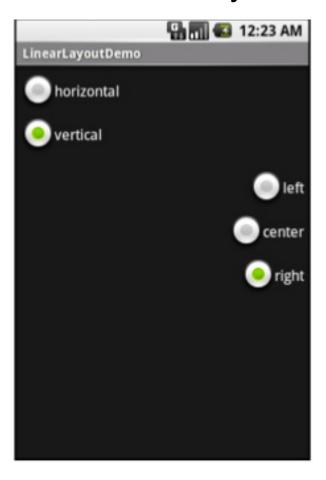


## Assignment P2 Containers, Select, Lists and Files

For Programmers

Now Posted on Course Website:


http://www.eecg.utoronto.ca/~jayar/ece1778/ assignment-p2.pdf



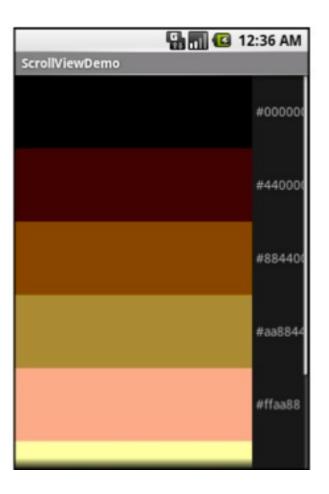



## **Containers: Chapter 10**

How to use XML files to describe what you want to





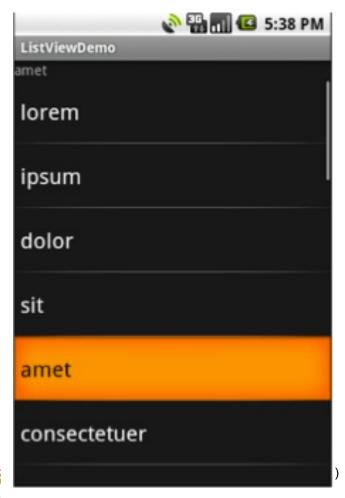





#### **Containers**

■ Relative vs. Linear Layouts










## Lists: Chapter 11, 12

- Very commonly used in all applications
  - Different ways to select, fill in









## **Autocomplete**

■ For text fields, based on contents of list







### Files, Chapter 24

- There are several places to put files
- Anything that you place in res/raw project folder is shipped with the application
  - Can read it as described in Chapter 24
  - Static files, application can't change
- Can read/write files using basic Java I/O
  - See example; note 'on resume' is in mobile context
  - Limited size ~ 70 Mbyte total
- Larger files can go on SD card
- 'Janky' code section also related to mobile context





#### iPhone Developers

- There is now an iPhone 4 text from LaMarche, Nutting and Mark
  - Link on course site, under Textbooks
  - Strongly suggest using text, I liked it a lot
  - Also an 'advanced' text by same people
  - Can purchase electronic version
- See chapters 4, 8 and 12 for Assignment P2





### **Assignment P2**

- Make Android application that allows the user to
  - create a list of people
  - Stores their age and favourite sport,
  - Stores and loads different lists in multiple files on the device.
- Age is just entered as a number
- Favourite sport is selected from a list





### **Assignment A2: Using App Inventor**

Now Posted on Course Website:

http://www.eecg.utoronto.ca/~jayar/ece1778/ assignment-a2.pdf





## **Assignment A2, Part 1**

- Create an app that has three buttons,
  - depending on which button is pressed, it displays a different picture.
  - You pick the pictures





## **Assignment A2, Part 2**

Do the tutorial on how to build an app that shows you how to build a quiz <a href="http://appinventor.googlelabs.com/learn/tutorials/quizme/quizme.html">http://appinventor.googlelabs.com/learn/tutorials/quizme/quizme.html</a>

- Modify this app in two ways:
  - 1. To be a 'name that tune' app by playing snippets of music and having the player give the name of the group or the song (pick one).
  - 2. To give the user a 'multiple choice' for answers.





## **Apper Thoughts**





### What Should Appers Do/Learn Here?

- Make the world of mobile applications comprehensible
  - So that you can engage with developers
  - Commission apps in the future
  - Gain a deeper understanding of what's possible & what it takes
- How?
  - Do some basic programming (Assignments)
  - Engage with developers to conceive and design app (Project)
    - Teach developers essentials of your field
    - Engage in iterative process of design
    - Test the results
    - Gain technology project experience
- I am open to ideas for deliverables, to achieve this





## **Overview of Smartphone Capabilities**

To Get You Thinking about the Project

Based on iPhone, but Android Phones have same capabilities





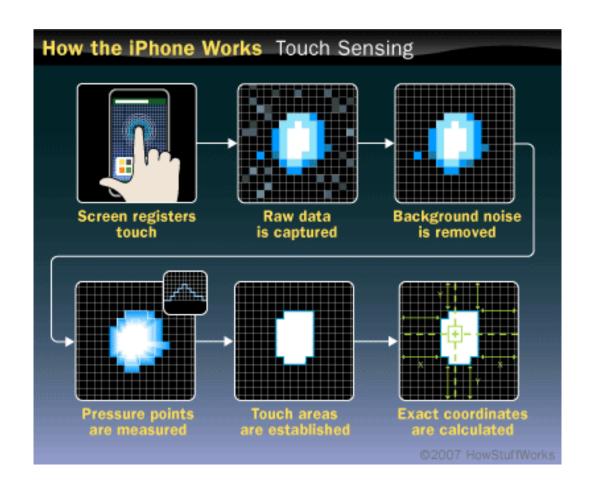


### A Smartphone is ...

- A small computer that you can carry with you
  - Connected to the Internet
  - Can sense its environment in many ways
  - Can speak to its environment in several ways
  - Can also make phone calls
- A computer is
  - A willing slave that will do whatever you tell it to do
    - And never complain
  - Capable of sophisticated computation and analysis of its inputs
    - Sound and images





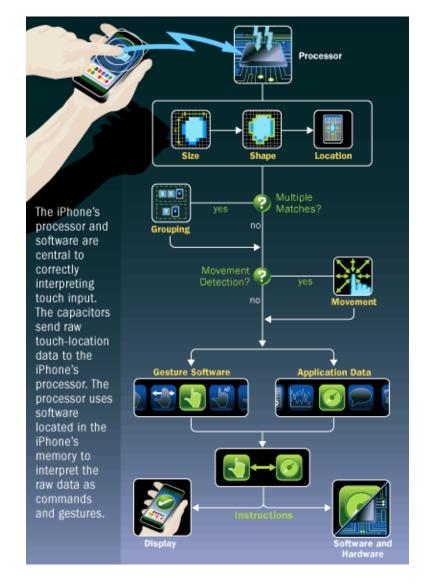

## **Inputs and Sensors**





#### **Touch Screen**

- The screen surface detects the touch of a finger
- Each touch can be turned into a specific coordinate,








#### **Touch Screen**

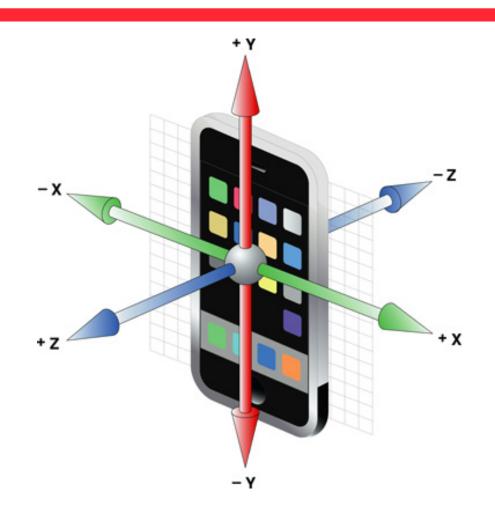
- Coordinates can be turned into several different types of input:
  - Gestures
- 2. Selection actions
- 3. Tap counters
  - Double-tap
  - Triple-tap
- 4. Two Finger touch
- 5. Three Finger Touch ...







#### Can Touch Screen Be More?


- Could this sensor be used to measure something about the finger?
  - Blood flow
  - Blood Pressure
  - Heart Rate
- Use for?
  - Medical Diagnosis
  - Lie Detector





#### Accelerometer

- Can measure acceleration in 3dimensions as shown
- Measured in G's
  - 1G = Acceleration due to gravity
  - Get measurement in each dimension X,Y,Z
- Phone gives can give a 'reading' 100 times/s







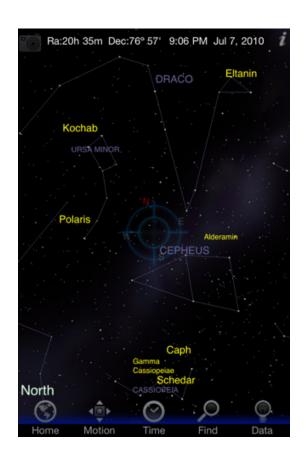
## Can Feel What the User is Doing

- Walking step counting
- Running speed measurement
- Can it tell something about the user's Gait?
  - "Implementation of an iPhone as a wireless accelerometer for quantifying gait characteristics"
  - LeMoyne et. al, 32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina, August 31 - September 4, 2010
  - See other posts online





#### Other Motion Sensing

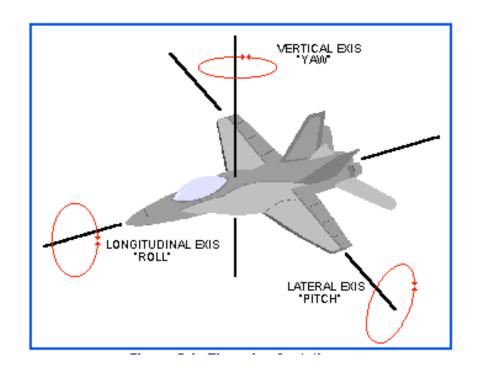

- Can tell if the phone is being shaken
  - Can use as an input
  - How sensitive is it?
  - Can it be used to measure Parkinsons tremors, in a medical application?
- Could perhaps detect if person fell down
  - could alert someone





### Motion Sensing with Accelerometer

- Gravity causes acceleration of 1G
  - If the phone is not accelerating (i.e. you're not moving it)
  - can determine the orientation of the phone,
  - by looking at which dimension has the 'G':
    - X or Y or Z or some combination
- Used by stargazer apps to know where you're looking in the sky ...








### **Gyroscope**

- Gives: pitch, roll, and yaw
  - of phone
  - Rotation rate in radians/s
  - Along X,Y,Z axis
- Gives a better sense of the motion of the phone
- iPhone 4 and Samsung models have this, but not many Androids do







### **Compass**

- Really a magnetometer
  - Can measure the magnetic field in 3 directions, X, Y, Z
  - Can use to make compass
  - Could also use as an instrument to measure presence of magnetic fields
- Where do magnets exist?
  - Speakers, motors, screens, medical imaging
- What are they used for?







#### **GPS** Receiver

## Global Positioning Satellite (GPS) Receiver

- Can determine the location of the phone in the geographic coordinate system
- Quickly accurate to within 100 meters, takes longer to do better
  - Does not work inside buildings
    - Hospital Directions?
  - Will have more trouble when lots of buildings around
- Knowing where you are is incredibly useful in business



#### Where Am I?

Latitude: 37° 19' 54.0804"

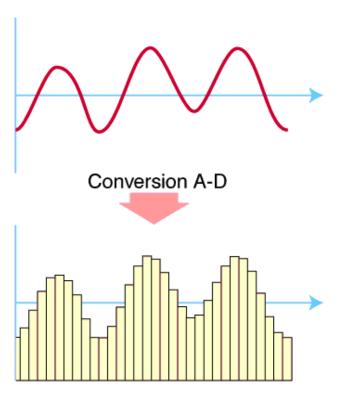
Longitude: -122° 1' 50.6316"



# **Ambient Light Sensor**

- Used to set the brightness of the screen
- Could be used for quick sensing of light,
  - but could also use the camera(s) for more detail






# Microphone

- Converts sound into data
  - Microphone converts sound waves into voltage
    - Which varies over time
  - Circuit converts voltage into into digital values
  - Sound becomes a series of digital values
    - Get samples at 48K samples/s
    - Good quality sound!
- Sound Processing
  - aka Digital Signal Processing









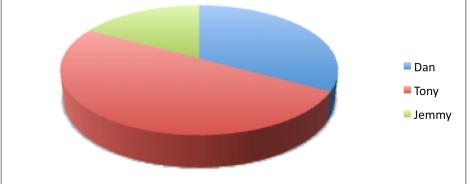


# Sound Processing Example 1

- Famous Shazam app
  - Listens to 15 seconds of song playing
  - Can tell you what the song is
  - Sends sound sample up to server to do this work
  - Lets you buy song
- Most processing is done on a server








# **Sound Processing Example 2**

Listen to a conversation, and measure the fraction of the conversation that each participant takes up!

Currently working on this one with Daniel DiMatteo, 4<sup>th</sup> Year Undergraduate

- Known as 'Diarization'
- Open source software
- LIUM\_SpkDiarization (Javabased)

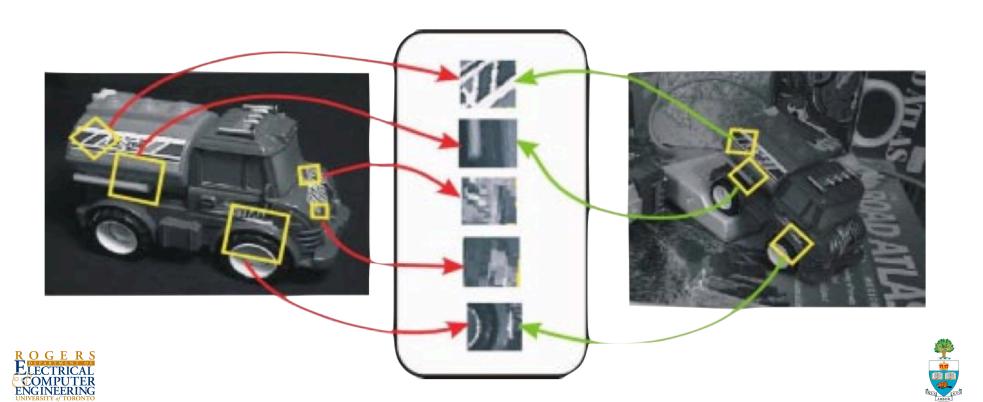






## Camera

- Can record images
  - Large files with high resolution
    - 2MPixels 8 MPixels
- Can record video
  - ~ 30 frames/second of pictures
- Can we use it to "see things"?
  - Yes!
  - Computer Vision field
  - Difficult, slow
  - OpenCV open source software








# **Computer Vision**

- Automated machine extraction of information from images
- Allows computers 'see' the world in much the same way that people see the world



## **Computer Vision**

- too slow to do in real time
- There is some open-source software, OpenCV, which can do many things, but not very quickly
- Braiden's Master's thesis is about speeding it up on Android using an FPGA
- He can help with using OpenCV





# **Front Facing Camera**

- Allows for video interaction
  - Skype now uses this
  - Lower resolution than back camera
- Can look at you and see how you're feeling
- Can maybe track your eye movements as you watch things
- Diagnose depression?
  - eyes are the window to the soul







# **Proximity Sensor**

- Can detect if phone is near to something, particularly the head
- Helps turn off touch screen when phone to ear.
- Simple Near/Not input
  - Doesn't give distance, yet







# **Output Devices**

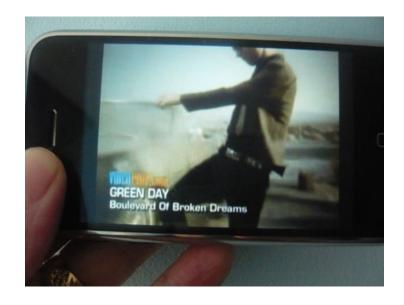




#### **Hi-Resolution Screen**

- Most recent phones have very high quality screens
  - Quality is the # pixels
- Resolution of Samsung Vibrant
  - 480x800 total resolution
- Cheaper phones have less:
  - Hua Wei U8100 240x320
  - Alcatel OT-981A 240x320





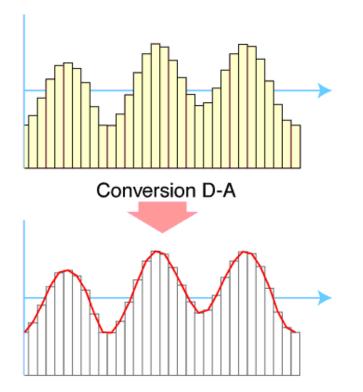





## Video

- Special hardware to enable 30 frames/second video
- Displaying video can use up much or all of the processor's computational capacity;
  - Most phones have special hardware to handle this task








# **Speakers/Audio Out**

- Sound Output
  - Two speakers
    - Quiet one for ear
    - Loud speaker
- Play previously recorded files
  - Should be able to do text-tospeech
- Many possible sound filters
  - Auto-tune voices to make at right pitch
  - Make funny voices
  - Synthesized Musical instruments









# **Vibration Output**

- Can create a short buzz
- Can control vibration pattern, duration and intensity
- This can be a significant output device 'haptic' feedback







## **Camera Flash**

#### Bright White LED

- Meant for taking pictures
- Can be used to light up a room
- Signal someone
- (transmit data?)

#### Undergraduate project:

- Evoke red-eye effect on purpose
- Is a picture of retina
- To do eye-disease diagnosis
  - with computer vision









# The Computer: Storage, Networking and External Devices





# Computer

- What can a computer do?
  - Processors are powerful
  - 500Mhz 1GHz ARM processors
- Many things!
  - Optimization
  - Search
  - Sort
  - Artificial Intelligence







# **Storage Capacity**

- Local storage of 2 to 32 Gbytes of permanent storage
  - Flash-based solid-state disk
- Can load many databases locally onto the device
  - Dictionaries, no problem!
  - Maps
  - Phonebooks
  - Location Services

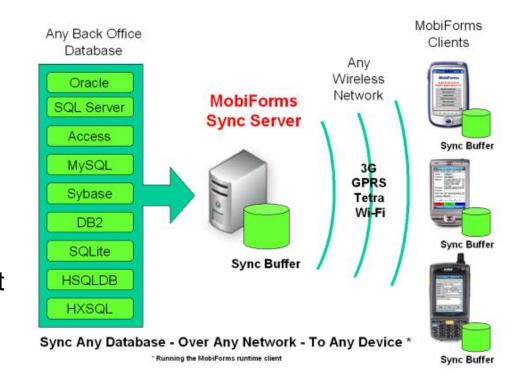




# Network – 3G/Wifi: Gateway to the Internet

- All phones have at least 2 ways to talk to the internet
  - Local WIFI
  - 3G cellular data networks
- Connection to more computing and storage
- Connection to other phones










# Not Just App: Probably Need Web Site

- Many apps need 'backing' website/ database
- Provides phone with:
  - Communication to other people
  - Data
  - Backup
  - Information from Internet







## **Bluetooth Connection**

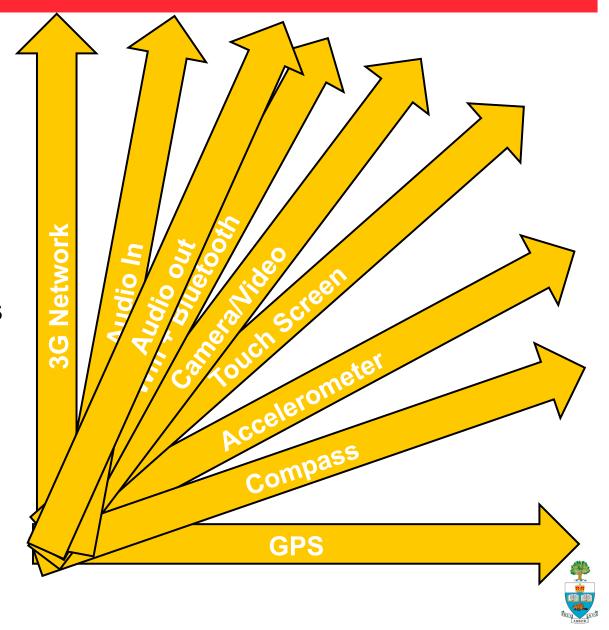
- Connect to a whole class of external devices, wirelessly
  - earphones
  - small spy cameras
- Could be important way to add other devices without physical connection
  - Make use of phone's capabilities without holding it







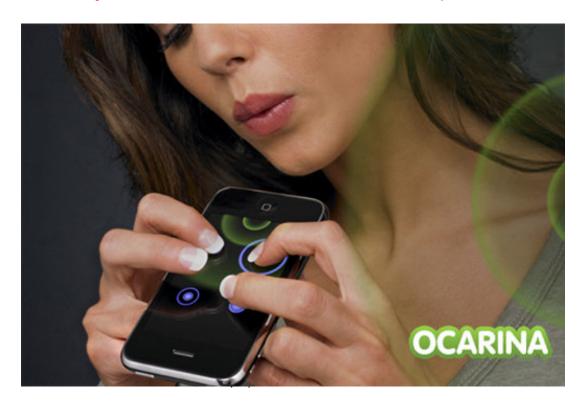



# **Case Study 1: Ocarina**





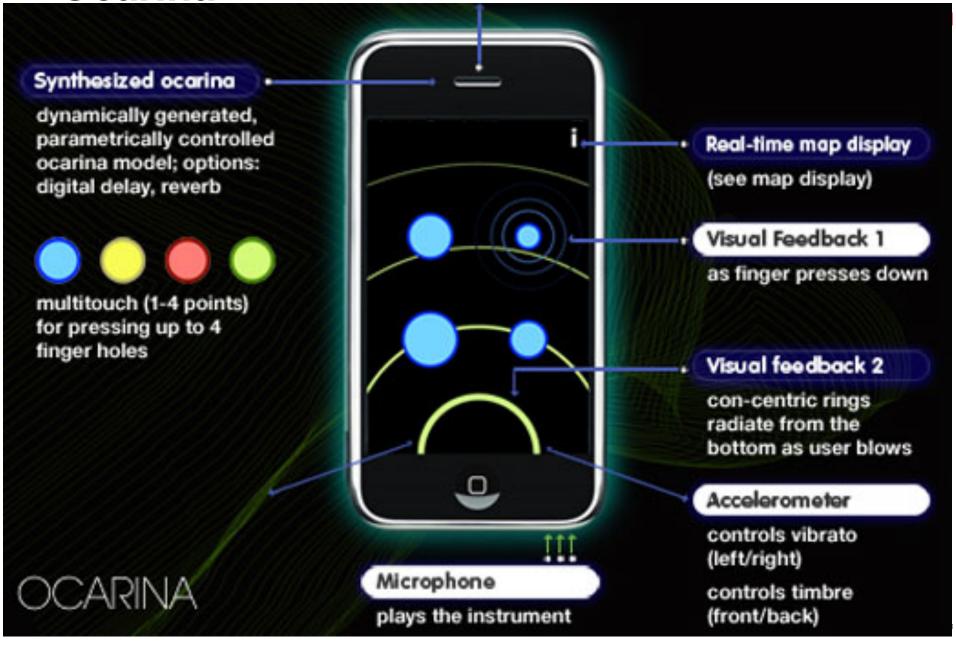
# **Best Example of A New Point in Space:**


- Each capability is an axis
- Each axis multiplies what is possible with the others!
- Ocarina: combines
  - Touch screen
  - Audio out
  - Network/server
  - GPS
  - Display



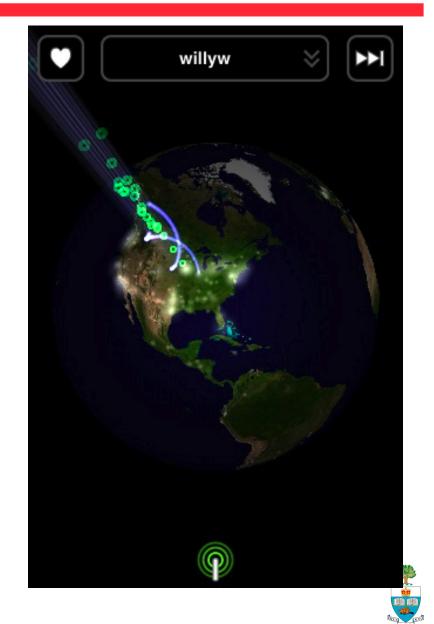


# Case Study: Ocarina Musical Instrument


- A case study in inventiveness
  - Using a novel combination of capabilities
  - "Blow" into microphone:
  - <a href="http://www.youtube.com/watch?v=RhCJq7EAJJA">http://www.youtube.com/watch?v=RhCJq7EAJJA</a>








## **Ocarina**



# Ocarina: The Really Neat Part

- World map
  - uses GPS to locate users
  - White dots on globe show users
- Company records the sound everyone plays by default
  - Dot 'plays' music from randomly chosen Ocarina player, anywhere in the world!
  - Nice graphic too;
  - Moving
- Top 20 iphone app of all time, according to Smule





## **Another Great Instrument: Seline**

- A new natural keyboard
- Great sound!
- http://amidio.com/seline







# **Case Study 2: TeamChooser**

Solving a Problem





## The Problem

- In pick-up team sports games, we like to have fun
- It is good if the teams are 'even' so that the game is fair
- Someone usually has to pick the teams
  - That is hard to do well
  - People get mad at that person when the game is uneven
- Random teams can be bad
- Using Team Captains to select
  - means someone is selected last ☺





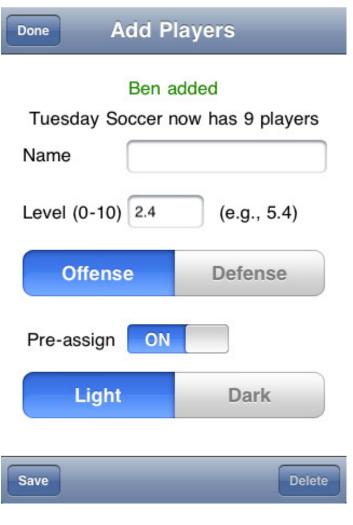
## The Solution: TeamChooser

- Wouldn't it be great if an App made the teams?
  - No one to yell at
  - Possibly give better teams
- Who needs this?
- Every pick-up hockey, soccer, basketball game around!





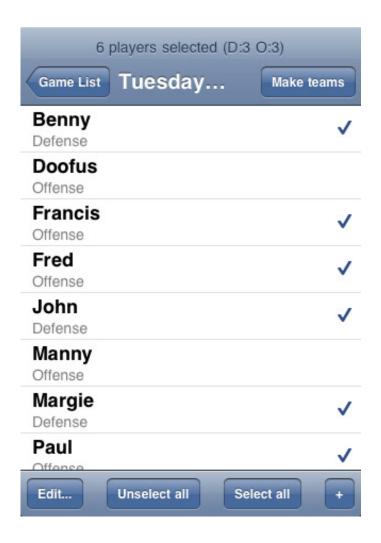



## **TeamChooser: How It Works**

- Enter every user in advance of game day
  - Player's name
  - Preferred position (offence or defense)
  - A rating, from 1-10, as to how effective player is
    - Rating is the trickiest part
    - Key: keep ratings secret from all but a few
    - (apps are personal)
- On game day select all players present
- Push 'Make Teams'
  - And voila, two evenly matched teams






# **Entering Players**







# **Selecting Present & Making Teams**







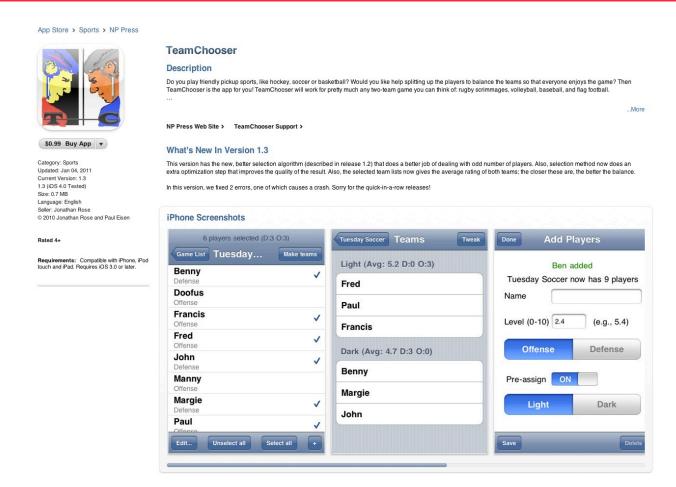


## **Team Selection Method**

- A good method, used over the years
  - Sort in order
  - Top goes to team A
  - Next 2 to team B
  - Next 2 to team A ...
- More complex when dealing with pre-assigns, or making incremental changes to teams when someone shows up late; new release including special 'odd man' algorithm
- Many discussions from CS and ECE Professors over algorithms in hockey game






## Does it Work?

- Yes!
- I've been using it with friends in roughly 40 hockey games and it has almost always done a good job.
  - We've tweaked it's algorithms here and there
  - Added some features
- The rating of players gives rise to some unusual issues, sometimes funny, sometimes not.
  - Apps are personal





# On iPhone App Store Since May



- 60+ Sales
- Mostly in US/ Canada, but a few in UK, Ireland, Japan, Norway and Romania

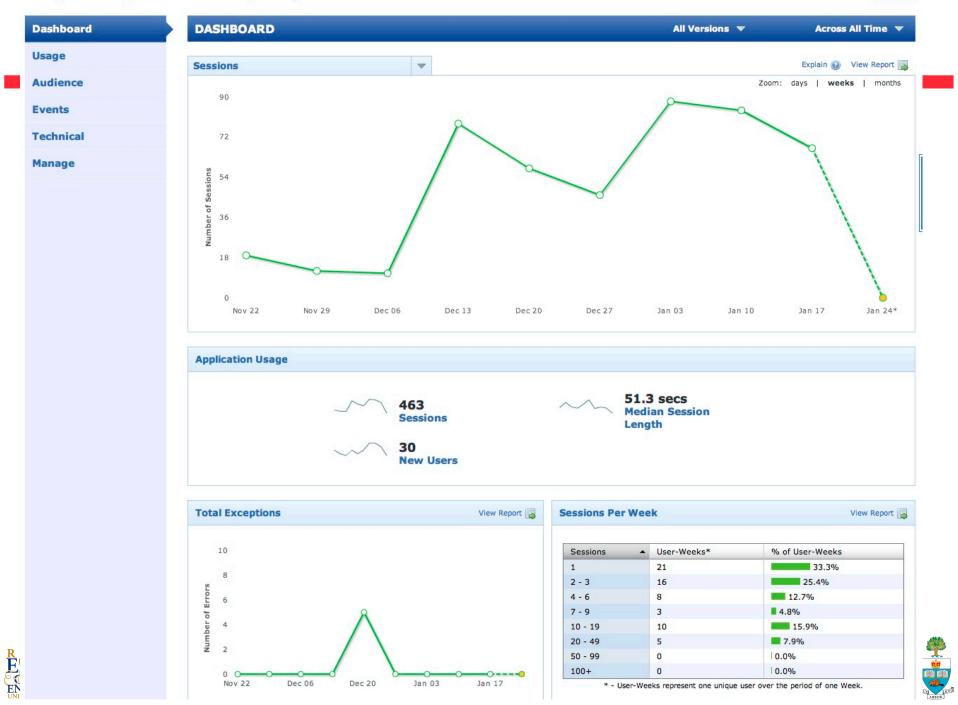




## Improvements Needed

- Really needs a backing website
  - To share teams/ratings between people
  - Is currently a hidden feature, could have people pay for it
  - To support a business model of advertising, promotions related to sports
- Much discussion about using results of games to determine better ratings
  - Rating players is the most difficult part of using






# Is Anyone Using it Who Bought It?

- Instrumented Using Flurry.com
  - Analytics for iPhone, Blackberry and Android
- Reports:
  - # of users sessions, amount of time spent on app
  - Specific pages/events, as you wish from each user
  - Location of user, if already use GPS (no other ID).
  - Anything I wish to report!







#### All Applications > TeamChooser > Analytics



**Dashboard** 

Usage

Audience

**Events** 

**Event Summary** 

**User Paths** 

**Event Logs** 

Search Event Name:

Technical

Manage

**EVENTS** 

**Event Summary Statistics** 







# **Group Forming**





# **Group Forming**

- Appers without Groups
- Programmers



