ECE 1778:
Creative Applications for Mobile Devices

Lecture 2

(1)

Today

1. Logistics/Organization of Course & Project

2. Introduction to Mobile Phone Environment
— Android Development Toolkit
— Basic Concepts
— Listand Files

3. Introduction to the App Inventor Environment

4. Introductions and ldeas, continued
— Other half of class

)

Welcome Back: Some Logistics

If you missed the first lecture:

B Please see the first lecture on the course website:

http://www.eecq.utoronto.ca/~jayar/ece1778/

Look under content

B Please sign up on the sign up sheets

Can’t really do much in course if not taking for credit
Apper = non-programmer
Programmer = capable of learning new environment fast

can be both, which means you can program well and come
from an application discipline

@)

Have You Started on the Assignment?

B Programmers: P1
— Any issues?
B Appers: A1

— Any issues?

M This is a lot of work to begin,
— Necessary so you can do a project!

(4)

Assignments Due Next Week

B Both assignments due next week, 10am, Tuesday
January 25t

B Submit by email to course TA —
braiden.brousseau@utoronto.ca

B |f you're doing assignments on iphone, then you must

send me a zip file of the full project directory, runnable
under XCode 4.2.

®)

Recall: The Goal

B The goal of this course is to bring together people from
different disciplines and to build an interesting/creative
mobile application

® First Priority is to create those inter-disciplinary groups
— We have more programmers than Appers,

— I'd like to encourage 2 Programmers & 1 Apper to Join forces in
groups of 3

— Reserve the right to add 1 Apper to a group of 2.

B Groups of three programmers will not be allowed

(6)

Extra Meeting to Form Groups

B Wednesday January 19t
B 6:30pm-7:30pm
B Sandford Fleming, room B560

— After today’s finishing introductions
— Will find a way to help make matches there.

7)

Groups of One

B Had several requests to do projects in groups of one.

B Upon consideration, have decided against this, for these
reasons:

1. Want the more ambitious projects that are possible with 2 or 3
people

2. Part of the learning of the course is project work in groups.

3. Do not want the higher number of projects — the course is big
enough already

B So: you will have to find a partner — come on
Wednesday night!

(8)

Once You Have a Group

B Send email to:
— me(jayar@eecg.utoronto.ca)

— the course TA, Braiden Brouseau
(braiden.brousseau@utoronto.ca)

® Provide:

— names,
— student numbers,
— mobile platform you plan to do the project on
- one of Android, iPhone (others require a special discussion)
* If thinking about using Tablet
* If you have your own device you can use

©)

Note for iPhone/iPad Users

B Recall you have to have a mac to do this

B The University of Toronto has signed up under the

University development program, see:
— http://www.its.utoronto.ca/communication-and-collaboration/
Apple iI0OS Developers Centre.htm

— Allows free download to device, which otherwise costs $US 99

— Does not allow for app store distribution
* (I assume, though, if you do pay $99 later, you could do this)

(10)

Initial Thoughts/Pointers on Project

B You should be thinking of ideas for projects, as precursor
to finding and forming your group
— So you can have something to talk about on Wednesday

B Once you have a group:
— If Apper in group, Apper needs to give rough idea of discipline
— All groups: start kicking around ideas

— Send me an email when you think you have something concrete
that you can describe

B Create a Plan; be sure to use Spiral/Agile approach

— Begin by making some small version work, and grow,
incrementally from there

(11)

Programmers:*
Mobile Phones and Android
Development

Some Should still be of interest to Appers

(12)

Mobile Phones are Very Small Computers

Good:

— The most portable computers ever
» With built in sensors

— Amazing portals to the internet

— Can also make phone calls!

Not so good:
— Very small screens
— No/small keyboard
— Inexact pointing compared to mouse
— Processor speed and memory are slower/tighter than desktop
— Must make sure don’t interfere with a phone*

(13)

An Android Application

M s a series of windows (screens) presented to the user
— Called ‘Activities’ in Android terminology

B Program responds to events
— e.g. screen touches done by the user
— e.g. shaking phone
— event-driven programming vs. procedural

(14)

Mobile Programming is Event-Driven

B Who is familiar with Event-Driven Programming?
— Prevalent in graphical user-interfaces

B Different from straight-line procedural programming
— Executed path is more linear — processing data in -> out

B Event-Driven
— Flow of program determined by a series of user events
— Sets up a series of user views
— Waits to respond to events, such as:
« User actions: button push, finger move, phone shake
« System naotifications — time elapsed, phone call, notification
from internet
B Can be more complex because must handle different
interacting patterns of events
— shake + notification 9

Other Android Terms

B Services
— Longer running processes
— e.g. continuing music play; monitoring web page

B Intents
— Messages that notify applications of significant events, e.g.

— SD card inserted into phone
— User has arrived within 100 meters of geographic location

B Content Providers
— Abstract data storage, made available to multiple applications
* How applications communicate with each other
* €.g. contacts or photos are content providers

(16)

Projects and Targets

B To create an Android Application, must first create a project

— Software directories that contain all of the files relating to the
application

B Key element: The manifest file
— AndroidManifest.xml
— Describes what parts of the device you’ll use
« Some require user permission, e.g. GPS
— Also which version of Android operating system/APIs

(17)

Android Versions

B Google rapidly evolves Android:

— 1.5 May 2009 = 3

— 1.6 October 2009 =4

— 2.0/2.1 January 2010 = 5/6/7
— 2.2 May 2010 =8

— 2.3 December 2010 =9

— 3.0 later in 2011

W Each version has a name, too,
usually has a name, in order:
Cupcake, Donut, Eclair, Froyo
and Gingerbread and
Honeycomb

(18)

Project Structure

B A new Android project has the following structure:

B AndroidManifest.xml, an XML file describing the
application being built and what components — activities,
services, are being supplied by that application

B build.xml, an Ant script for compiling the application and
installing it on the device

B default.properties and local.properties, property files
used by the Ant build script

(19)

Project Structure, cont’d

B assets/, static files you wish packaged with the
application for deployment onto the device

® bin/, holds the compiled application
— bin/classes/ compiled Java classes
— bin/classes.dex executable created from compiled Java classes

— bin/yourapp.ap_ holds your application's resources, packaged as
a ZIP file (where yourapp is the name of your application)

— bin/yourapp-*.apk is the actual Android application (where *
varies)

B gen/, generated source code (by compiler)
M libs/, third-party Java JARs
B src/, your Java source code

(20)

Resources in Project File

M res/, "resources” - icons, GUI layouts
— res/drawable/ for images (PNG, JPEG, etc.)
— res/layout/ for XML-based Ul layout specifications
— res/menu/ for XML-based menu specifications
— res/raw/ for general-purpose files
— res/values/ for strings, dimensions, and the like
— res/xml/ for other general-purpose XML files you wish to ship

(21)

APK File

B The .apk file is the application

M [t is a ZIP archive containing

— the .dex file, the compiled edition of your resources
(resources.arsc),

— any un-compiled resources (such as what you put in res/raw/)
and the

— AndroidManifest.xml file.

(22)

Targets

B The ‘Target’ of your application is either an actual phone
your want to run it on, or the emulator

— The emulator is a software program running on the desktop that
looks and acts like an Android phone

— You'll all use it to initially test your programs/apps
B Emulator is called an ‘Android Virtual Device’ or AVD

B There is some work in creating the device, as you have
to specify various attributes of the fake phone, such as
— Size of SD card memory
— Which version of Android using
— Size of screen

(23)

What Programmers Should Be Learning

B With Assignment 1:
— After downloading the various elements of the programming
environment
B Java basics if not already known

— http://en.wikibooks.org/wiki/Java Programming/
Language Fundamentals

— Or some basic Java Text
— | liked John Carter, ‘Using Java’

B Working within Eclipse
— or, can choose to do everything in command/shell environment
— lose some of Eclipse’ good features

B Running the basic environment
B Understanding File Types in the Android Project

(24)

Then, Closer to the Real Stuff

B Making a Simple XML Layouts

— How to arrange

B Basic Widgets:
— Labels, Buttons, Images,
— checkbox, radio buttons

B Methods common to many of these, e.g.
— setEnable(),
— isEnabled();
— Changing colour, text etc.

B Once handy with this, Assignment P1 is straightforward
B Eclipse & Emulator are somewhat buggy...

(25)

Things to Demonstrate
I

B Eclipse Startup

® New Project

B Creating new Android Virtual Device (AVD)

B Running a project

B Placing a single widget

— XML description

— Switching between graphic view and XML in Eclipse
— Properties

B Connection to Java Code through findViewByld
(R.id.XXX),

(26)

Widgets

B Button, ImageButton

— Button to press, with special
image

B Textview

— Basic text label, changeable
B |[mageview

— Basic picture
W EditText

— for entering text fields

B CheckBox
— Ticking off an entry

B Radio Buttons

(27)

Useful Methods

M toggle if a widget is enabled via setEnabled()

B see if it is enabled via isEnabled().

— One common use pattern for this is to disable some widgets
based on a CheckBox or RadioButton selection.

M give a widget focus via requestFocus()

M see if it is focused via isFocused().

— You might use this in concert with disabling widgets as
mentioned above, to ensure the proper widget has the focus
once your disabling operation is complete.

(28)

Appers*: Google App Inventor

*Will still be of interest to Programmers

(29)

App Inventor

B Google App inventor is an attempt by Google to allow
people without programming backgrounds to create apps
for Android phones

B [t works reasonably well
B We're going to use it for the ‘Appers’ to give you a sense
of how things work inside the phone

— You may find it is something you can work with as well

— It could help you with the layout and plans for the ultimate app
your project group will build

(30)

Two Screens

1. Designer
— Where you show what each screen contains
— Visual Components — buttons, pictures
— Non-Visual: sounds, shaker detection

2. Blocks Editor
— Write a ‘visual’ program
— Blocks can be related to
* The blocks put down in the designer — e.g.
— ‘When button clicked’
— Play sound
* Built-in: math, logic, control,

(31)

Demonstration

B Hello Bark

(32)

Demo of App Inventor - Designer

JonathanScottRose @gmail.com | Report bug | Sign out
5 4 . . App Inventor is now open!
App Inventor My Projects Design Learn
BETA App Inventor no longer requires
signing up for access. Please pass
the word and helo vour friends. familv
_ Save I Save As l Checkpoint Blocks Editor is open | Package for Phone v

Palette Viewer Components Properties
Basic qu & 5:09PM e [e Screen

A
(@ Buton ? AlLabert BackgroundColor

f
U7 Canvas 5 autiont [0 wnite
@ CheckBox o q_"l‘lsounm Backgroundimage

v ‘None...
£ Clock ; ¥ AccelerometerSensort one
&l Image ? oo
= None...
|A] Label @
5 Scrollable
=| ListPicker ©)
[++] PasswordTextBox 7 Title
I] TextBox ?) Screenl
== TinyDB ?)
Media
Animation
Social
Sensors
Screen Arrangement
LEGO® MINDSTORMS® '

Non-visible components Rename... || Delete...
Other stuff @ @
Sound1 AccelerometerSensori Media
Not ready for prime time
kitty.png

Old stuff oo

| Add...

©2010 Google - About - Privacy - Terms Build: Tue Dec 7 15:39:56 2010 (1291765196) —- 18508103

Blocks Editor

Definition
Text
Lists

Math

Logic

Control

Colors

(34)

-
+ B N~
222f%.<0DUliu~>

App Inventor Emulator

Screeni

Pet Kitty

(35)

No Text While Driving Application

@il ® 12:33em

B Automatically responds to "No Text While Driving
SMS Text message with a R R s
message I'm driving right now. I'll contact you shorthy

Modify Response

(36)

Designer

N
s

Palette Viewer Components Properties
Beato G @ 5:09PMm ® [screent
@ Buton - No Text While Driving '7 A PromptLabel BackgroundColor
B Cane . The text below will be sent in response to all texts while this (i) 1 MessageTextbox 0 wnite
- Check B | ' SubmitResponseButton ,
Background
v oo ’ [fm Griving right now, 1l contact you shorty. | T - g
%} Clock | *¢ Texting1 one...
= : _Modity Response | | =
2 Image = TinyDB1
“ : : Reomr Deiete... | No Text While Driving
Al Label 3 i e e , eele.. ‘
ListPicker 3 Media
++ PasswordTextBox ? :
Add... |
1) TextBox 7 _
= TinyDB 7
Media
Animation
Social
Sensors
Screen Arrangement >
Other stuff 3
Not ready for prime time
Old stuff

(37)

Blocks: Texting Block

name
” number

L, MAME hessageText

, value
“ number

= 1 MessageTexthox.Text

(38) &

Store New Response in Data Base

when SybmitResponseButton.Click |
p—

call

do

tag q text
responseMessage
TinyDB1.StoreValue . rostore [

MessageTexthox.Text

L=~

(39)

Initialize the Response on Startup

B \When screen starts

def text
i response q = text |

when Screen.Initialize |

L
set global to c call __ tag q text |
response TinyDB1.GetValue |____responseMessage
C
if test
dl call length text C' global response S q number 0 |

then-do
set to c global I
Cl;ssageTextbox.Text response

= —

'

(40)

Better: Speak Texts and Locate

- :
" Texting1.MessageReceived rumber e
messageText name messa!e].e xt |
do [~
set to value
Texting1.PhoneNumber number
—
t
o ;o c ol e C. MessageTextbox.Text I
wh
toxt q o locations ¢" SubmitResponseButton.Click |
Texting1.Message make text q do
1t Ly 0190 jastknownLocation I call o q i '“P°"’°M°”°LJ°
text TinyDB1.StoreValue
. r. ""“"°9'°"q MessageTextbox.Text |
W J
o ‘loxtthSondlhssnp_I s
call message c call text q toxt message from |
texa q value number
TextToSpeech1.Speak make text " c —
S, Vil messageText |
text
= —
4 f
i response q'm text |
def
Faa Kool e C. ' unknown when Screent.nitialize |
do [~
set global to q call tag q text
when | gcationSensor1.LocationChanged response TinyDB1.GetValue 'e"'°"”"'””'—]°
W J

if test
ﬁc‘ call length text q global response > c. number 0

then-do
set to global
set global to q I l MessageTexthox.Text q response I
lastKknownlLocation LocationSensor 1.CurrentAddress

- —

4 4

O

Introductions, continued

To help in Project Group-forming

(42)

Introductions, Continued

® Last Day, half of the class introduced themselves
B Let’'s do the other half, hopefully sitting on the same side

B Please take notes for people who you think might be
compatible partners

B On Wednesday night, we’ll try to put people in some
categories to help you explore matches.

B Don’t forget, the priority has to be on matching to Appers

(43)

Introduce Yourself, Round 2

Name

Taking Course for Credit — yes, no, maybe
What discipline you work in & degree sought
What your thesis topic is (if doing thesis)

If you work, where.

Why you're taking this course

What idea you have for an app.

NOoO Ok wbh =

(44)

Don’t Forget: Meeting to Form Groups

B Wednesday January 19" (Tomorrow)
B 6:30pm-7:30pm
B Sandford Fleming, room B560

— After today’s finishing introductions
— Will find a way to help make matches there

B Sandford Fleming is building south of Con Hall

B B560 is in basement, south side
— In middle of Galbraith-Sandford Fleming block

(45)

